1 //===- DropUnitDims.cpp - Pass to drop use of unit-extent for broadcasting ===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements patterns/pass to remove usage of unit-extent dimensions
10 // to specify broadcasting in favor of more canonical representation of the
11 // computation
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "PassDetail.h"
16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
17 #include "mlir/Dialect/Linalg/IR/Linalg.h"
18 #include "mlir/Dialect/Linalg/Passes.h"
19 #include "mlir/Dialect/Linalg/Transforms/Transforms.h"
20 #include "mlir/Dialect/Linalg/Utils/Utils.h"
21 #include "mlir/Dialect/Tensor/IR/Tensor.h"
22 #include "mlir/IR/AffineExpr.h"
23 #include "mlir/IR/AffineMap.h"
24 #include "mlir/IR/BuiltinTypes.h"
25 #include "mlir/Transforms/FoldUtils.h"
26 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/Debug.h"
29 
30 #define DEBUG_TYPE "linalg-drop-unit-dims"
31 
32 using namespace mlir;
33 using namespace mlir::linalg;
34 
35 /// Implements a pass that canonicalizes the uses of unit-extent dimensions for
36 /// broadcasting. For example,
37 ///
38 /// ```mlir
39 /// #accesses = [
40 ///   affine_map<(d0, d1) -> (0, d1)>,
41 ///   affine_map<(d0, d1) -> (d0, 0)>,
42 ///   affine_map<(d0, d1) -> (d0, d1)>
43 /// ]
44 ///
45 /// #trait = {
46 ///   args_in = 2,
47 ///   args_out = 1,
48 ///   indexing_maps = #accesses,
49 ///   iterator_types = ["parallel", "parallel"],
50 ///   library_call = "some_external_fn"
51 /// }
52 ///
53 /// func @broadcast_test(%arg0 : tensor<5xf32>, %arg1 : tensor<5xf32>) ->
54 /// tensor<5x5xf32>
55 /// {
56 ///   %0 = linalg.tensor_reshape %arg0 [affine_map<(d0, d1) -> (d0, d1)>] :
57 ///        tensor<5xf32> into tensor<1x5xf32>
58 ///   %1 = linalg.tensor_reshape %arg1 [affine_map<(d0, d1) -> (d0, d1)>] :
59 ///        tensor<5xf32> into tensor<5x1xf32>
60 ///   %2 = linalg.generic #trait %0, %1 {
61 ///        ^bb0(%arg2: f32, %arg3: f32):
62 ///          %3 = arith.addf %arg2, %arg3 : f32
63 ///          linalg.yield %3 : f32
64 ///        } : tensor<1x5xf32>, tensor<5x1xf32> -> tensor<5x5xf32>
65 ///   return %2 : tensor<5x5xf32>
66 /// }
67 ///
68 /// would canonicalize to
69 ///
70 /// ```mlir
71 /// #accesses = [
72 ///   affine_map<(d0, d1) -> (d1)>,
73 ///   affine_map<(d0, d1) -> (d0)>,
74 ///   affine_map<(d0, d1) -> (d0, d1)>
75 /// ]
76 ///
77 /// #trait = {
78 ///   args_in = 2,
79 ///   args_out = 1,
80 ///   indexing_maps = #accesses,
81 ///   iterator_types = ["parallel", "parallel"],
82 ///   library_call = "some_external_fn"
83 /// }
84 ///
85 /// func @broadcast_test(%arg0 : tensor<5xf32>, %arg1 : tensor<5xf32>) ->
86 /// tensor<5x5xf32>
87 /// {
88 ///   %0 = linalg.generic #trait %arg0, %arg1 {
89 ///        ^bb0(%arg2: f32, %arg3: f32):
90 ///          %3 = arith.addf %arg2, %arg3 : f32
91 ///          linalg.yield %3 : f32
92 ///        } : tensor<5xf32>, tensor<5xf32> -> tensor<5x5xf32>
93 ///   return %0 : tensor<5x5xf32>
94 /// }
95 
96 /// Given dims of the iteration space of a structured op that are known to be
97 /// single trip count (`unitDims`), return the indexing maps to use in the
98 /// canonicalized op with these dims removed, given the original `indexingMaps`.
99 static ArrayAttr replaceUnitDims(DenseSet<unsigned> &unitDims,
100                                  ArrayRef<AffineMap> indexingMaps,
101                                  MLIRContext *context) {
102   if (indexingMaps.empty())
103     return nullptr;
104   unsigned numIterationDims = indexingMaps.front().getNumDims();
105   unsigned numSymbols = indexingMaps.front().getNumSymbols();
106 
107   // Compute the replacement for each dim expr.
108   SmallVector<AffineExpr, 4> dimReplacements;
109   dimReplacements.reserve(numIterationDims);
110   unsigned numKeptDims = 0;
111   for (unsigned dim : llvm::seq<unsigned>(0, numIterationDims)) {
112     if (unitDims.count(dim))
113       dimReplacements.push_back(getAffineConstantExpr(0, context));
114     else
115       dimReplacements.push_back(getAffineDimExpr(numKeptDims++, context));
116   }
117 
118   // Symbols remain the same.
119   SmallVector<AffineExpr, 4> symReplacements;
120   symReplacements.reserve(numSymbols);
121   for (unsigned symbol : llvm::seq<unsigned>(0, numSymbols))
122     symReplacements.push_back(getAffineSymbolExpr(symbol, context));
123 
124   SmallVector<AffineMap, 4> newIndexingMaps;
125   newIndexingMaps.reserve(indexingMaps.size());
126   for (AffineMap operandMap : indexingMaps) {
127     // Expected indexing maps to have no symbols.
128     if (operandMap.getNumSymbols())
129       return nullptr;
130     newIndexingMaps.push_back(simplifyAffineMap(
131         operandMap.replaceDimsAndSymbols(dimReplacements, symReplacements,
132                                          numIterationDims - unitDims.size(),
133                                          numSymbols)));
134   }
135 
136   // Check that the new index maps are invertible. If not, something went
137   // wrong, so abort.
138   if (!inversePermutation(concatAffineMaps(newIndexingMaps)))
139     return nullptr;
140   return ArrayAttr::get(context,
141                         llvm::to_vector<4>(llvm::map_range(
142                             newIndexingMaps, [](AffineMap map) -> Attribute {
143                               return AffineMapAttr::get(map);
144                             })));
145 }
146 
147 /// Update the index accesses of linalg operations having index semantics.
148 static void replaceUnitDimIndexOps(GenericOp genericOp,
149                                    const DenseSet<unsigned> &unitDims,
150                                    PatternRewriter &rewriter) {
151   for (IndexOp indexOp :
152        llvm::make_early_inc_range(genericOp.getBody()->getOps<IndexOp>())) {
153     OpBuilder::InsertionGuard guard(rewriter);
154     rewriter.setInsertionPoint(indexOp);
155     if (unitDims.count(indexOp.dim()) != 0) {
156       rewriter.replaceOpWithNewOp<arith::ConstantIndexOp>(indexOp, 0);
157     } else {
158       // Update the dimension of the index operation if needed.
159       unsigned droppedDims = llvm::count_if(
160           unitDims, [&](unsigned dim) { return dim < indexOp.dim(); });
161       if (droppedDims != 0)
162         rewriter.replaceOpWithNewOp<IndexOp>(indexOp,
163                                              indexOp.dim() - droppedDims);
164     }
165   }
166 }
167 
168 namespace {
169 /// Pattern to fold unit-trip count loops in GenericOps.
170 struct FoldUnitDimLoops : public OpRewritePattern<GenericOp> {
171   using OpRewritePattern<GenericOp>::OpRewritePattern;
172   LogicalResult matchAndRewrite(GenericOp genericOp,
173                                 PatternRewriter &rewriter) const override {
174     SmallVector<AffineMap, 4> indexingMaps = genericOp.getIndexingMapsArray();
175     if (indexingMaps.empty())
176       return failure();
177 
178     // Check if any of the iteration dimensions are unit-trip count. They will
179     // end up being unit-trip count if they are used to index into a unit-dim
180     // tensor/memref.
181     AffineMap invertedMap = inversePermutation(concatAffineMaps(indexingMaps));
182     if (!invertedMap)
183       return failure();
184     SmallVector<int64_t> dims = genericOp.getStaticShape();
185 
186     DenseSet<unsigned> unitDims;
187     SmallVector<unsigned, 4> unitDimsReductionLoops;
188     ArrayAttr iteratorTypes = genericOp.iterator_types();
189     for (const auto &expr : enumerate(invertedMap.getResults())) {
190       if (AffineDimExpr dimExpr = expr.value().dyn_cast<AffineDimExpr>())
191         if (dims[dimExpr.getPosition()] == 1)
192           unitDims.insert(expr.index());
193     }
194 
195     if (unitDims.empty())
196       return failure();
197 
198     // Compute the modified indexing maps.
199     MLIRContext *context = rewriter.getContext();
200     ArrayAttr newIndexingMapAttr =
201         replaceUnitDims(unitDims, indexingMaps, context);
202     if (!newIndexingMapAttr)
203       return genericOp.emitError("unable to compute modified indexing_maps");
204 
205     // Compute the iterator types of the modified op by dropping the one-trip
206     // count loops.
207     SmallVector<Attribute, 4> newIteratorTypes;
208     for (const auto &attr : llvm::enumerate(iteratorTypes)) {
209       if (!unitDims.count(attr.index()))
210         newIteratorTypes.push_back(attr.value());
211     }
212 
213     rewriter.startRootUpdate(genericOp);
214     genericOp.indexing_mapsAttr(newIndexingMapAttr);
215     genericOp.iterator_typesAttr(ArrayAttr::get(context, newIteratorTypes));
216     replaceUnitDimIndexOps(genericOp, unitDims, rewriter);
217     rewriter.finalizeRootUpdate(genericOp);
218     return success();
219   }
220 };
221 
222 struct UnitExtentReplacementInfo {
223   Type type;
224   AffineMap indexMap;
225   ArrayAttr reassociation;
226 };
227 } // namespace
228 
229 /// Utility function for replacing operands/results to a linalg generic
230 /// operation with unit-extent dimensions. These can be replaced with
231 /// an operand/result with the unit-extent dimension removed. This is only done
232 /// if the indexing map used to access that didimensionmension has a
233 /// AffineConstantExpr of value 0. Given the `type` of an result/operand of a
234 /// Linalg op, and its `indexMap` the utility function returns:
235 /// - the new type with dimensions of size 1 removed.
236 /// - modified index map that can be used to access the replaced result/operand
237 /// - the reassociation that converts from the original tensor type to the
238 ///   modified tensor type.
239 static llvm::Optional<UnitExtentReplacementInfo>
240 replaceUnitExtents(GenericOp genericOp, OpOperand *opOperand,
241                    MLIRContext *context) {
242   AffineMap indexingMap = genericOp.getTiedIndexingMap(opOperand);
243   ArrayRef<int64_t> shape = genericOp.getShape(opOperand);
244   ArrayRef<AffineExpr> exprs = indexingMap.getResults();
245   SmallVector<AffineExpr> reassociations;
246   SmallVector<Attribute> reassociationMaps;
247   SmallVector<AffineExpr> newIndexExprs;
248   SmallVector<int64_t> newShape;
249 
250   int64_t origRank = genericOp.getRank(opOperand);
251   AffineExpr zeroExpr = getAffineConstantExpr(0, context);
252   auto isUnitExtent = [&](int64_t dim) -> bool {
253     return shape[dim] == 1 && exprs[dim] == zeroExpr;
254   };
255 
256   // Early return for memrefs with affine maps to represent that we will always
257   // leave them unchanged.
258   Type actualType = opOperand->get().getType();
259   if (auto memref = actualType.dyn_cast<MemRefType>()) {
260     if (!memref.getLayout().isIdentity())
261       return llvm::None;
262   }
263 
264   int64_t dim = 0;
265   // Fold dimensions that are unit-extent at the beginning of the tensor.
266   while (dim < origRank && isUnitExtent(dim))
267     reassociations.push_back(getAffineDimExpr(dim++, context));
268   while (dim < origRank) {
269     reassociations.push_back(getAffineDimExpr(dim, context));
270     newIndexExprs.push_back(exprs[dim]);
271     newShape.push_back(shape[dim]);
272     // Fold all following dimensions that are unit-extent.
273     while (dim + 1 < origRank && isUnitExtent(dim + 1)) {
274       ++dim;
275       reassociations.push_back(getAffineDimExpr(dim, context));
276     }
277     reassociationMaps.push_back(AffineMapAttr::get(AffineMap::get(
278         origRank, /*symbolCount = */ 0, reassociations, context)));
279     reassociations.clear();
280     ++dim;
281   }
282 
283   // Compute the tensor or scalar replacement type.
284   Type elementType = getElementTypeOrSelf(opOperand->get());
285   Type replacementType;
286   if (elementType == opOperand->get().getType()) {
287     replacementType = elementType;
288   } else if (actualType.isa<RankedTensorType>()) {
289     replacementType = RankedTensorType::get(newShape, elementType);
290   } else if (actualType.isa<MemRefType>()) {
291     replacementType = MemRefType::get(newShape, elementType);
292   }
293   assert(replacementType && "unsupported shaped type");
294   UnitExtentReplacementInfo info = {replacementType,
295                                     AffineMap::get(indexingMap.getNumDims(),
296                                                    indexingMap.getNumSymbols(),
297                                                    newIndexExprs, context),
298                                     ArrayAttr::get(context, reassociationMaps)};
299   return info;
300 }
301 
302 namespace {
303 
304 SmallVector<ReassociationExprs, 2>
305 convertAffineMapArrayToExprs(ArrayAttr affineMapArrayAttr) {
306   SmallVector<ReassociationExprs, 2> reassociationExprs;
307   for (auto attr : affineMapArrayAttr)
308     reassociationExprs.push_back(
309         llvm::to_vector<4>(attr.cast<AffineMapAttr>().getValue().getResults()));
310   return reassociationExprs;
311 }
312 
313 /// Pattern to replace tensor/buffer operands/results that are unit extents.
314 struct ReplaceUnitExtents : public OpRewritePattern<GenericOp> {
315   using OpRewritePattern<GenericOp>::OpRewritePattern;
316 
317   // Return the original value if the type is unchanged, or reshape it. Return a
318   // nullptr if this is an unsupported type.
319   Value maybeExpand(Value result, Type origResultType,
320                     ArrayAttr reassociationMap, Location loc,
321                     PatternRewriter &rewriter) const {
322     if (origResultType == result.getType())
323       return result;
324     if (origResultType.isa<RankedTensorType>()) {
325       return rewriter.create<tensor::ExpandShapeOp>(
326           loc, origResultType, result,
327           convertAffineMapArrayToExprs(reassociationMap));
328     }
329     if (origResultType.isa<MemRefType>()) {
330       return rewriter.create<memref::ExpandShapeOp>(
331           loc, origResultType, result,
332           convertAffineMapArrayToExprs(reassociationMap));
333     }
334     return nullptr;
335   };
336 
337   // Return the original value if the type is unchanged, or reshape it. Return a
338   // nullptr if this is an unsupported type.
339   Value maybeCollapse(Value operand, Type newInputOutputType,
340                       ArrayAttr reassociationMap, Location loc,
341                       PatternRewriter &rewriter) const {
342     auto operandType = operand.getType();
343     if (operandType == newInputOutputType)
344       return operand;
345     if (operandType.isa<MemRefType>()) {
346       return rewriter.create<memref::CollapseShapeOp>(
347           loc, newInputOutputType, operand,
348           convertAffineMapArrayToExprs(reassociationMap));
349     }
350     if (operandType.isa<RankedTensorType>()) {
351       return rewriter.create<tensor::CollapseShapeOp>(
352           loc, newInputOutputType, operand,
353           convertAffineMapArrayToExprs(reassociationMap));
354     }
355     return nullptr;
356   };
357 
358   LogicalResult matchAndRewrite(GenericOp genericOp,
359                                 PatternRewriter &rewriter) const override {
360     // Skip the pattern if the op has any tensor with special encoding.
361     if (llvm::any_of(genericOp->getOperandTypes(), [](Type type) {
362           auto tensorType = type.dyn_cast<RankedTensorType>();
363           return tensorType && tensorType.getEncoding() != nullptr;
364         }))
365       return failure();
366     MLIRContext *context = rewriter.getContext();
367     Location loc = genericOp.getLoc();
368 
369     SmallVector<AffineMap> newIndexingMaps;
370     SmallVector<ArrayAttr> reassociationMaps;
371     SmallVector<Type> newInputOutputTypes;
372     bool doCanonicalization = false;
373     for (OpOperand *opOperand : genericOp.getInputAndOutputOperands()) {
374       auto replacementInfo = replaceUnitExtents(genericOp, opOperand, context);
375       if (replacementInfo) {
376         reassociationMaps.push_back(replacementInfo->reassociation);
377         newIndexingMaps.push_back(replacementInfo->indexMap);
378         newInputOutputTypes.push_back(replacementInfo->type);
379         doCanonicalization |=
380             replacementInfo->type != opOperand->get().getType();
381       } else {
382         // If replaceUnitExtents cannot handle this case, maintain the same
383         // type, indexing map, and create a set of mappings representing an
384         // identity matrix.
385         newInputOutputTypes.push_back(opOperand->get().getType());
386         newIndexingMaps.push_back(genericOp.getTiedIndexingMap(opOperand));
387         int64_t origRank = genericOp.getRank(opOperand);
388         auto maps = llvm::to_vector<8>(llvm::map_range(
389             llvm::seq<int64_t>(0, origRank), [&](int64_t dim) -> Attribute {
390               return AffineMapAttr::get(
391                   AffineMap::get(origRank, /*symbolCount = */ 0,
392                                  getAffineDimExpr(dim, context), context));
393             }));
394         reassociationMaps.push_back(ArrayAttr::get(context, maps));
395       }
396     }
397 
398     // If the indexing maps of the result operation are not invertible (i.e. not
399     // legal), abort.
400     if (!doCanonicalization ||
401         !inversePermutation(concatAffineMaps(newIndexingMaps)))
402       return failure();
403 
404     // If any operand type change, insert a reshape to convert from the original
405     // type to the new type.
406     // TODO: get rid of flattenedIdx which assumes operand order and contiguity.
407     unsigned flattenedIdx = 0;
408     auto insertReshapes = [&](ValueRange values) {
409       SmallVector<Value, 4> res;
410       res.reserve(values.size());
411       for (auto operand : values) {
412         auto reshapedValue =
413             maybeCollapse(operand, newInputOutputTypes[flattenedIdx],
414                           reassociationMaps[flattenedIdx], loc, rewriter);
415         assert(reshapedValue &&
416                "expected ranked MemRef or Tensor operand type");
417         res.push_back(reshapedValue);
418         ++flattenedIdx;
419       }
420       return res;
421     };
422 
423     SmallVector<Value, 4> newInputs = insertReshapes(genericOp.inputs());
424     SmallVector<Value, 4> newOutputs = insertReshapes(genericOp.outputs());
425 
426     // If any result type changes, insert a reshape to convert from the original
427     // type to the new type.
428     SmallVector<Type, 4> resultTypes;
429     resultTypes.reserve(genericOp.getNumResults());
430     for (unsigned i : llvm::seq<unsigned>(0, genericOp.getNumResults()))
431       resultTypes.push_back(newInputOutputTypes[i + genericOp.getNumInputs()]);
432     GenericOp replacementOp = rewriter.create<GenericOp>(
433         loc, resultTypes, newInputs, newOutputs, newIndexingMaps,
434         llvm::to_vector<4>(
435             genericOp.iterator_types().template getAsValueRange<StringAttr>()));
436     rewriter.inlineRegionBefore(genericOp.region(), replacementOp.region(),
437                                 replacementOp.region().begin());
438 
439     // If any result tensor has a modified shape, then add reshape to recover
440     // the original shape.
441     SmallVector<Value, 4> resultReplacements;
442     for (const auto &result : llvm::enumerate(replacementOp.getResults())) {
443       unsigned index = result.index() + replacementOp.getNumInputs();
444       auto origResultType = genericOp.getResult(result.index()).getType();
445 
446       auto newResult = maybeExpand(result.value(), origResultType,
447                                    reassociationMaps[index], loc, rewriter);
448       assert(newResult &&
449              "unexpected output type other than ranked MemRef or Tensor");
450       resultReplacements.push_back(newResult);
451     }
452     rewriter.replaceOp(genericOp, resultReplacements);
453     return success();
454   }
455 };
456 } // namespace
457 
458 namespace {
459 /// Convert `extract_slice` operations to rank-reduced versions.
460 struct RankReducedExtractSliceOp
461     : public OpRewritePattern<tensor::ExtractSliceOp> {
462   using OpRewritePattern<tensor::ExtractSliceOp>::OpRewritePattern;
463 
464   LogicalResult matchAndRewrite(tensor::ExtractSliceOp sliceOp,
465                                 PatternRewriter &rewriter) const override {
466     RankedTensorType resultType = sliceOp.getType();
467     SmallVector<OpFoldResult> offsets = sliceOp.getMixedOffsets();
468     SmallVector<OpFoldResult> sizes = sliceOp.getMixedSizes();
469     SmallVector<OpFoldResult> strides = sliceOp.getMixedStrides();
470     auto reassociation = getReassociationMapForFoldingUnitDims(sizes);
471     if (!reassociation ||
472         reassociation->size() == static_cast<size_t>(resultType.getRank()))
473       return failure();
474     auto rankReducedType =
475         tensor::ExtractSliceOp::inferCanonicalRankReducedResultType(
476             reassociation->size(), sliceOp.getSourceType(), offsets, sizes,
477             strides)
478             .cast<RankedTensorType>();
479 
480     Location loc = sliceOp.getLoc();
481     Value newSlice = rewriter.create<tensor::ExtractSliceOp>(
482         loc, rankReducedType, sliceOp.getSource(), offsets, sizes, strides);
483     rewriter.replaceOpWithNewOp<tensor::ExpandShapeOp>(
484         sliceOp, resultType, newSlice, *reassociation);
485     return success();
486   }
487 };
488 
489 /// Convert `insert_slice` operations to rank-reduced versions.
490 /// This patterns works with both InsertSliceOp and ParallelInsertSliceOp.
491 template <typename InsertOpTy>
492 struct RankReducedInsertSliceOp : public OpRewritePattern<InsertOpTy> {
493   using OpRewritePattern<InsertOpTy>::OpRewritePattern;
494 
495   LogicalResult matchAndRewrite(InsertOpTy insertSliceOp,
496                                 PatternRewriter &rewriter) const override {
497     RankedTensorType sourceType = insertSliceOp.getSourceType();
498     SmallVector<OpFoldResult> offsets = insertSliceOp.getMixedOffsets();
499     SmallVector<OpFoldResult> sizes = insertSliceOp.getMixedSizes();
500     SmallVector<OpFoldResult> strides = insertSliceOp.getMixedStrides();
501     auto reassociation = getReassociationMapForFoldingUnitDims(sizes);
502     if (!reassociation ||
503         reassociation->size() == static_cast<size_t>(sourceType.getRank()))
504       return failure();
505     Location loc = insertSliceOp.getLoc();
506     tensor::CollapseShapeOp reshapedSource;
507     {
508       OpBuilder::InsertionGuard g(rewriter);
509       // The only difference between InsertSliceOp and ParallelInsertSliceOp is
510       // the the insertion point is just before the ParallelCombiningOp in the
511       // parallel case.
512       if (std::is_same<InsertOpTy, tensor::ParallelInsertSliceOp>::value)
513         rewriter.setInsertionPoint(insertSliceOp->getParentOp());
514       reshapedSource = rewriter.create<tensor::CollapseShapeOp>(
515           loc, insertSliceOp.getSource(), *reassociation);
516     }
517     rewriter.replaceOpWithNewOp<InsertOpTy>(
518         insertSliceOp, reshapedSource, insertSliceOp.getDest(),
519         insertSliceOp.getMixedOffsets(), insertSliceOp.getMixedSizes(),
520         insertSliceOp.getMixedStrides());
521     return success();
522   }
523 };
524 } // namespace
525 
526 /// Patterns that are used to canonicalize the use of unit-extent dims for
527 /// broadcasting.
528 void mlir::linalg::populateFoldUnitExtentDimsPatterns(
529     RewritePatternSet &patterns) {
530   auto *context = patterns.getContext();
531   patterns.add<FoldUnitDimLoops, ReplaceUnitExtents, RankReducedExtractSliceOp,
532                RankReducedInsertSliceOp<tensor::InsertSliceOp>,
533                RankReducedInsertSliceOp<tensor::ParallelInsertSliceOp>>(
534       context);
535   linalg::FillOp::getCanonicalizationPatterns(patterns, context);
536   linalg::InitTensorOp::getCanonicalizationPatterns(patterns, context);
537   tensor::CollapseShapeOp::getCanonicalizationPatterns(patterns, context);
538   tensor::ExpandShapeOp::getCanonicalizationPatterns(patterns, context);
539 }
540 
541 namespace {
542 /// Pass that removes unit-extent dims within generic ops.
543 struct LinalgFoldUnitExtentDimsPass
544     : public LinalgFoldUnitExtentDimsBase<LinalgFoldUnitExtentDimsPass> {
545   void runOnOperation() override {
546     Operation *op = getOperation();
547     MLIRContext *context = op->getContext();
548     RewritePatternSet patterns(context);
549     if (foldOneTripLoopsOnly)
550       patterns.add<FoldUnitDimLoops>(context);
551     else
552       populateFoldUnitExtentDimsPatterns(patterns);
553     (void)applyPatternsAndFoldGreedily(op, std::move(patterns));
554   }
555 };
556 } // namespace
557 
558 std::unique_ptr<Pass> mlir::createLinalgFoldUnitExtentDimsPass() {
559   return std::make_unique<LinalgFoldUnitExtentDimsPass>();
560 }
561