1 //===- Detensorize.cpp - Linalg transformations as patterns ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "PassDetail.h" 10 #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 11 #include "mlir/Dialect/Linalg/IR/LinalgTypes.h" 12 #include "mlir/Dialect/Linalg/Passes.h" 13 #include "mlir/Dialect/StandardOps/Transforms/FuncConversions.h" 14 #include "mlir/Dialect/Tensor/IR/Tensor.h" 15 #include "mlir/IR/OpDefinition.h" 16 #include "mlir/Transforms/DialectConversion.h" 17 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 18 #include <iterator> 19 #include <memory> 20 21 using namespace mlir; 22 using namespace mlir::linalg; 23 24 static Value sourceMaterializationCallback(OpBuilder &builder, Type type, 25 ValueRange inputs, Location loc) { 26 assert(inputs.size() == 1); 27 // A detensored value is converted back by creating a new tensor from its 28 // element(s). 29 auto createNewTensorOp = builder.create<tensor::FromElementsOp>( 30 loc, inputs[0].getType(), inputs[0]); 31 32 // FromElementsOp results in a tensor<1xdtype>, we need to reshape that to 33 // a tensor<dtype> instead. 34 return builder.create<linalg::TensorCollapseShapeOp>( 35 loc, type, createNewTensorOp, ArrayRef<ReassociationExprs>{}); 36 } 37 38 namespace { 39 /// Defines the criteria a TensorType must follow in order to be considered 40 /// "detensorable". 41 /// 42 /// NOTE: For now, only 0-D tensors are supported. 43 /// 44 /// Returns true if tensorType can be detensored. 45 bool canBeDetensored(TensorType tensorType) { 46 return tensorType.hasRank() && tensorType.getRank() == 0; 47 } 48 49 bool shouldBeDetensored(Operation *op, TypeConverter typeConverter) { 50 GenericOp genericOp = dyn_cast_or_null<GenericOp>(op); 51 return genericOp && 52 llvm::all_of( 53 genericOp.getInputAndOutputOperands(), [&](OpOperand *opOperand) { 54 return !typeConverter.isLegal(opOperand->get().getType()); 55 }); 56 } 57 58 /// A conversion patttern for detensoring `linalg.generic` ops. 59 class DetensorizeGenericOp : public OpConversionPattern<GenericOp> { 60 public: 61 using OpConversionPattern::OpConversionPattern; 62 LogicalResult 63 matchAndRewrite(GenericOp op, ArrayRef<Value> operands, 64 ConversionPatternRewriter &rewriter) const override { 65 Block *originalBlock = op->getBlock(); 66 67 // Gather some information about the op before inling its region. 68 Block *opEntryBlock = &*op.region().begin(); 69 YieldOp yieldOp = dyn_cast<YieldOp>(op.region().back().getTerminator()); 70 71 // Split the op's region before the op. This way, we have a clear insertion 72 // point in which the op can be inlined. 73 Block *newBlock = originalBlock->splitBlock(op); 74 rewriter.inlineRegionBefore(op.region(), newBlock); 75 // Now that op's region is inlined, the operands of its YieldOp are mapped 76 // to the materialized target values. Therefore, we can replace the op's 77 // uses with those of its YielOp's operands. 78 rewriter.replaceOp(op, yieldOp->getOperands()); 79 80 // No need for these intermediate blocks, merge them into 1. 81 rewriter.mergeBlocks(opEntryBlock, originalBlock, operands); 82 rewriter.mergeBlocks(newBlock, originalBlock, {}); 83 84 rewriter.eraseOp(&*Block::iterator(yieldOp)); 85 86 return success(); 87 } 88 }; 89 90 /// A conversion pattern for detensoring internal (non-entry) blocks within a 91 /// function. 92 struct FunctionNonEntryBlockConversion : public ConversionPattern { 93 FunctionNonEntryBlockConversion(StringRef functionLikeOpName, 94 MLIRContext *ctx, TypeConverter &converter, 95 DenseSet<BlockArgument> blockArgsToDetensor) 96 : ConversionPattern(converter, functionLikeOpName, /*benefit=*/1, ctx), 97 blockArgsToDetensor(blockArgsToDetensor) {} 98 99 LogicalResult 100 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 101 ConversionPatternRewriter &rewriter) const override { 102 rewriter.startRootUpdate(op); 103 Region ®ion = function_like_impl::getFunctionBody(op); 104 SmallVector<TypeConverter::SignatureConversion, 2> conversions; 105 106 for (Block &block : llvm::drop_begin(region, 1)) { 107 conversions.emplace_back(block.getNumArguments()); 108 TypeConverter::SignatureConversion &back = conversions.back(); 109 110 for (BlockArgument blockArgument : block.getArguments()) { 111 int idx = blockArgument.getArgNumber(); 112 113 if (blockArgsToDetensor.count(blockArgument)) 114 back.addInputs(idx, {getTypeConverter()->convertType( 115 block.getArgumentTypes()[idx])}); 116 else 117 back.addInputs(idx, {block.getArgumentTypes()[idx]}); 118 } 119 } 120 121 if (failed(rewriter.convertNonEntryRegionTypes(®ion, *typeConverter, 122 conversions))) { 123 rewriter.cancelRootUpdate(op); 124 return failure(); 125 } 126 127 rewriter.finalizeRootUpdate(op); 128 return success(); 129 } 130 131 private: 132 const DenseSet<BlockArgument> blockArgsToDetensor; 133 }; 134 135 class DetensorizeTypeConverter : public TypeConverter { 136 public: 137 DetensorizeTypeConverter() { 138 addConversion([](Type type) { return type; }); 139 140 // A TensorType that can be detensored, is converted to the underlying 141 // element type. 142 addConversion([](TensorType tensorType) -> Type { 143 if (canBeDetensored(tensorType)) 144 return tensorType.getElementType(); 145 146 return tensorType; 147 }); 148 149 // A tensor value is detensoried by extracting its element(s). 150 addTargetMaterialization([](OpBuilder &builder, Type type, 151 ValueRange inputs, Location loc) -> Value { 152 return builder.create<tensor::ExtractOp>(loc, inputs[0], ValueRange{}); 153 }); 154 155 addSourceMaterialization(sourceMaterializationCallback); 156 addArgumentMaterialization(sourceMaterializationCallback); 157 } 158 }; 159 160 /// Canonicalizes the pattern of the form 161 /// 162 /// %tensor = tensor.from_elements(%element) : (i32) -> tensor<1xi32> 163 /// %reshaped_tensor = linalg.tensor_collapse_shape %tensor [] 164 /// : tensor<1xi32> into tensor<i32> 165 /// %extracted_element = tensor.extract %reshaped_tensor[] : tensor<i32> 166 /// 167 /// to just %element. 168 struct ExtractFromReshapeFromElements 169 : public OpRewritePattern<tensor::ExtractOp> { 170 using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern; 171 172 LogicalResult matchAndRewrite(tensor::ExtractOp extract, 173 PatternRewriter &rewriter) const final { 174 if (!extract.indices().empty()) 175 return failure(); 176 177 auto tensorReshape = 178 extract.tensor().getDefiningOp<TensorCollapseShapeOp>(); 179 if (tensorReshape == nullptr) 180 return failure(); 181 182 auto tensorFromElements = 183 tensorReshape.getOperand() 184 .getDefiningOp<mlir::tensor::FromElementsOp>(); 185 if (tensorFromElements == nullptr) 186 return failure(); 187 188 rewriter.replaceOp(extract, tensorFromElements.getOperand(0)); 189 return success(); 190 } 191 }; 192 193 /// @see LinalgDetensorize in Linalg/Passes.td for more details. 194 struct LinalgDetensorize : public LinalgDetensorizeBase<LinalgDetensorize> { 195 LinalgDetensorize() = default; 196 LinalgDetensorize(const LinalgDetensorize &pass) 197 : LinalgDetensorizeBase<LinalgDetensorize>() {} 198 199 class CostModel { 200 public: 201 virtual ~CostModel() = default; 202 203 /// A cost model algorithm computes the following outputs: 204 /// 205 /// - opsToDetensor: the list of linalg ops that should be 206 /// detensored. 207 /// 208 /// - blockArgsToDetensor: since the operands and results of detensored 209 /// linalg ops can cross the BB boundary (e.g. a linalg op's input can come 210 /// from a BB argument and a linalg op's output can be passed to successor 211 /// BBs), we need to maintain the sub-set of arguments that should be 212 /// detensored (i.e. converted by typeConverter) for each affected BB. 213 /// 214 /// Example: 215 /// 216 /// For the following snippet: 217 /// ... 218 /// ^bb1(%6: tensor<i32>, %9: tensor<i32>): 219 /// %7 = linalg.init_tensor [] : tensor<i32> 220 /// %8 = linalg.generic #attrs 221 /// ins(%6, %6 : tensor<i32>, tensor<i32>) 222 /// outs(%7 : tensor<i32>) { 223 /// ^bb0(%arg0: i32, %arg1: i32, %arg2: i32): 224 /// %9 = addi %arg0, %arg1 : i32 225 /// linalg.yield %9 : i32 226 /// } -> tensor<i32> 227 /// %10 = "some.op"(%9) 228 /// br ^bb2(%8 : tensor<i32>) 229 /// ... 230 /// 231 /// if the cost model decides that the linalg.generic op should be 232 /// detensored, then: 233 /// - opsToDetensor should be = {linalg.generic{add}}. 234 /// - blockArgsToDetensor should be = {bb1 -> {0}, bb2 -> {0}}. 235 virtual void compute(FuncOp func, DetensorizeTypeConverter typeConverter, 236 DenseSet<Operation *> &opsToDetensor, 237 DenseSet<BlockArgument> &blockArgsToDetensor) = 0; 238 239 /// From the blockArgsToDetensor set computed by a CostModel 240 /// implementation, this method computes the corresponding branch op 241 /// detensoring. The result is a map from a branch op to a subset of indices 242 /// of its operands. The indices specify which of the branch op's operands 243 /// should be detensored. 244 /// 245 /// For the previous example, this method would compute: {bb2 -> {0}}. 246 static DenseMap<Operation *, DenseSet<int>> computeBranchOpDetensoring( 247 const DenseSet<BlockArgument> &blockArgsToDetensor) { 248 DenseMap<Operation *, DenseSet<int>> detensorableBranchOps; 249 250 for (auto blockArgumentElem : blockArgsToDetensor) { 251 Block *block = blockArgumentElem.getOwner(); 252 253 for (PredecessorIterator pred = block->pred_begin(); 254 pred != block->pred_end(); ++pred) { 255 BranchOpInterface terminator = 256 dyn_cast<BranchOpInterface>((*pred)->getTerminator()); 257 auto blockOperands = 258 terminator.getSuccessorOperands(pred.getSuccessorIndex()); 259 260 if (!blockOperands || blockOperands->empty()) 261 continue; 262 263 detensorableBranchOps[terminator].insert( 264 blockOperands->getBeginOperandIndex() + 265 blockArgumentElem.getArgNumber()); 266 } 267 } 268 269 return detensorableBranchOps; 270 } 271 }; 272 273 /// Detensorize linalg ops involved in control-flow within a function. 274 /// 275 /// This model starts from CondBranchOps within a function. For each cond_br, 276 /// the model then walks the use-def chain for the branch's condition 277 /// backwards in order to understand where the condition's value comes from. 278 /// If the condition value is (indirectly) computed by a linalg op that can be 279 /// detensored, the model then continues walking the use-def chain in order to 280 /// understand where the linalg op's operands come from. This leads to 281 /// discovering a "detensoring component". A detensoring component is the set 282 /// of operations + block arguments that are involved in control-flow AND can 283 /// be detensored. 284 /// 285 /// For examples where this model succeeds to discover a detensoring 286 /// component, see: 287 /// - test/Dialect/Linalg/detensorize_while.mlir 288 /// - test/Dialect/Linalg/detesorize_while_pure_cf.mlir. 289 /// 290 /// For an example where this model marks control-flow as "non-detensorable", 291 /// see: 292 /// - test/Dialect/Linalg/detensorize_while_failure.mlir 293 class PureControlFlowDetectionModel : public CostModel { 294 public: 295 void compute(FuncOp func, DetensorizeTypeConverter typeConverter, 296 DenseSet<Operation *> &opsToDetensor, 297 DenseSet<BlockArgument> &blockArgsToDetensor) override { 298 SmallVector<Value> workList; 299 300 func.walk([&](CondBranchOp condBr) { 301 for (auto operand : condBr.getOperands()) { 302 workList.push_back(operand); 303 } 304 }); 305 306 func.walk([&](BranchOp br) { 307 for (auto operand : br.getOperands()) { 308 workList.push_back(operand); 309 } 310 }); 311 312 DenseSet<Value> visitedValues; 313 DenseSet<Operation *> visitedOps; 314 315 // For a (to-be-detesored) value, check if it "escapes" the block by being 316 // passed to terminator. If it does, then workList is updated with the 317 // corresponding argument to the successor block. 318 auto updateWorkListWithSuccessorArguments = 319 [&](Value value, BranchOpInterface terminator) { 320 if (!terminator) 321 return; 322 323 for (auto operandIdx : 324 llvm::seq<unsigned>(0, terminator->getOperands().size())) { 325 Value operand = terminator->getOperand(operandIdx); 326 327 if (operand == value) { 328 auto succBlockArg = 329 terminator.getSuccessorBlockArgument(operandIdx); 330 331 if (succBlockArg && !blockArgsToDetensor.count(*succBlockArg)) 332 workList.push_back(*succBlockArg); 333 } 334 } 335 }; 336 337 while (!workList.empty()) { 338 Value currentItem = workList.pop_back_val(); 339 340 if (!visitedValues.insert(currentItem).second) 341 continue; 342 343 // 1 - Look forward: 344 // 1.1 - If currentItem escapes to one or more successors, add 345 // the corresponding successor arguments to workList. 346 updateWorkListWithSuccessorArguments( 347 currentItem, dyn_cast<BranchOpInterface>( 348 currentItem.getParentBlock()->getTerminator())); 349 350 // 1.2 - For each user of currentItem, add the defined values to 351 // workList. This way, the user ops can be inspected later if they are 352 // detensorable and if so, their operands will be added to workList to 353 // potentially discover other parts of the detensorable component. 354 for (auto *user : currentItem.getUsers()) 355 for (Value result : user->getResults()) 356 workList.push_back(result); 357 358 // 2 - Look backward: 359 // 2.1 - The current item is defined by a block argument. If the owner 360 // block is a non-entry one, then: 361 // * Add the argument to blockArgsToDetensor. 362 // * Walk the use-def chain backwards to add each predecessor's 363 // terminator-operands corresponding to currentItem to workList. 364 if (currentItem.dyn_cast<BlockArgument>()) { 365 BlockArgument currentItemBlockArgument = 366 currentItem.cast<BlockArgument>(); 367 Block *ownerBlock = currentItemBlockArgument.getOwner(); 368 369 // Function arguments are not detensored/converted. 370 if (&*ownerBlock->getParent()->begin() == ownerBlock) 371 continue; 372 373 // This inner-block argument is involved in control-flow, it should be 374 // detensored. 375 blockArgsToDetensor.insert(currentItemBlockArgument); 376 377 for (PredecessorIterator pred = ownerBlock->pred_begin(); 378 pred != ownerBlock->pred_end(); ++pred) { 379 BranchOpInterface terminator = 380 dyn_cast<BranchOpInterface>((*pred)->getTerminator()); 381 382 // TODO: For now, we give up if any of the control-flow components 383 // in a function is not detensorable. Fix that. 384 if (!terminator) { 385 opsToDetensor.clear(); 386 blockArgsToDetensor.clear(); 387 return; 388 } 389 390 auto ownerBlockOperands = 391 terminator.getSuccessorOperands(pred.getSuccessorIndex()); 392 393 if (!ownerBlockOperands || ownerBlockOperands->empty()) 394 continue; 395 396 // For each predecessor, add the value it passes to that argument to 397 // workList to find out how it's computed. 398 workList.push_back( 399 ownerBlockOperands 400 .getValue()[currentItemBlockArgument.getArgNumber()]); 401 } 402 403 continue; 404 } 405 406 Operation *currentItemDefiningOp = currentItem.getDefiningOp(); 407 408 if (!visitedOps.insert(currentItemDefiningOp).second) 409 continue; 410 411 // 2.2 - The current item is computed by a GenericOp. If the op should 412 // be detensored, then: 413 // * Add it to opsToDetensor. 414 // * Add its operands to workList to discover other parts of the 415 // potentially detensorable component. 416 if (auto genericOp = dyn_cast<GenericOp>(currentItemDefiningOp)) { 417 // The op was encountered already, no need to inspect it again. 418 if (opsToDetensor.count(genericOp)) 419 continue; 420 421 // TODO: For now, we give up if any of the control-flow components 422 // in a function is not detensorable. Fix that. 423 if (!shouldBeDetensored(genericOp, typeConverter)) { 424 opsToDetensor.clear(); 425 blockArgsToDetensor.clear(); 426 return; 427 } 428 429 opsToDetensor.insert(genericOp); 430 431 for (Value genericOpOperand : genericOp.inputs()) 432 workList.push_back(genericOpOperand); 433 434 continue; 435 } 436 437 // 2.3 - The current item is the result of a FromElementsOp, it will be 438 // trivially detensored later as part of canonicalization patterns 439 // applied at the end of detensoring. 440 // 441 // Note: No need to check whether the result type of this op is 442 // detensorable since if it wasn't we wouldn't reach that point in the 443 // work list. 444 if (dyn_cast<tensor::FromElementsOp>(currentItemDefiningOp)) 445 continue; 446 447 // 2.4 - The current item is the result of a scalar op, add all its 448 // operands to the work list. 449 if (llvm::all_of( 450 currentItemDefiningOp->getResultTypes(), 451 [&](Type resultType) { return resultType.isIntOrFloat(); })) 452 for (Value scalarOpOperand : currentItemDefiningOp->getOperands()) 453 workList.push_back(scalarOpOperand); 454 } 455 } 456 }; 457 458 /// Detensorize everything that can detensored. 459 class AggressiveDetensoringModel : public CostModel { 460 public: 461 void compute(FuncOp func, DetensorizeTypeConverter typeConverter, 462 DenseSet<Operation *> &opsToDetensor, 463 DenseSet<BlockArgument> &blockArgsToDetensor) override { 464 func.walk([&](GenericOp genericOp) { 465 if (shouldBeDetensored(genericOp, typeConverter)) 466 opsToDetensor.insert(genericOp); 467 }); 468 469 for (Block &block : llvm::drop_begin(func.getBody(), 1)) 470 for (BlockArgument blockArgument : block.getArguments()) 471 blockArgsToDetensor.insert(blockArgument); 472 } 473 }; 474 475 void runOnFunction() override { 476 MLIRContext *context = &getContext(); 477 DetensorizeTypeConverter typeConverter; 478 RewritePatternSet patterns(context); 479 ConversionTarget target(*context); 480 DenseSet<Operation *> opsToDetensor; 481 DenseMap<Operation *, DenseSet<int>> detensorableBranchOps; 482 DenseSet<BlockArgument> blockArgsToDetensor; 483 484 if (aggressiveMode.getValue()) { 485 AggressiveDetensoringModel costModel; 486 costModel.compute(getFunction(), typeConverter, opsToDetensor, 487 blockArgsToDetensor); 488 489 } else { 490 PureControlFlowDetectionModel costModel; 491 costModel.compute(getFunction(), typeConverter, opsToDetensor, 492 blockArgsToDetensor); 493 } 494 495 detensorableBranchOps = 496 CostModel::computeBranchOpDetensoring(blockArgsToDetensor); 497 498 target.addDynamicallyLegalOp<GenericOp>( 499 [&](GenericOp op) { return !opsToDetensor.count(op); }); 500 501 target.addDynamicallyLegalOp<FuncOp>([&](FuncOp op) { 502 // A function is legal if all of its non-entry blocks are legal. We 503 // don't legalize the entry block (i.e. the function's signature) 504 // since detensoring can't happen along external calling convention 505 // boundaries, which we conservatively approximate as all function 506 // signatures. 507 return llvm::all_of(llvm::drop_begin(op.getBody(), 1), [&](Block &block) { 508 if (llvm::any_of(blockArgsToDetensor, [&](BlockArgument blockArgument) { 509 return blockArgument.getOwner() == &block && 510 !typeConverter.isLegal(blockArgument.getType()); 511 })) { 512 return false; 513 } 514 return true; 515 }); 516 }); 517 518 target.markUnknownOpDynamicallyLegal([&](Operation *op) { 519 if (isNotBranchOpInterfaceOrReturnLikeOp(op) || 520 isLegalForReturnOpTypeConversionPattern(op, typeConverter, 521 /*returnOpAlwaysLegal*/ true)) 522 return true; 523 524 if (auto branchOp = dyn_cast<BranchOpInterface>(op)) { 525 if (!detensorableBranchOps.count(branchOp)) 526 return true; 527 528 for (auto operandIdx : detensorableBranchOps[branchOp]) 529 if (!typeConverter.isLegal( 530 branchOp->getOperand(operandIdx).getType())) 531 return false; 532 533 return true; 534 } 535 536 return false; 537 }); 538 539 patterns.insert<DetensorizeGenericOp>(typeConverter, context); 540 patterns.insert<FunctionNonEntryBlockConversion>(FuncOp::getOperationName(), 541 context, typeConverter, 542 blockArgsToDetensor); 543 // Since non-entry block arguments get detensorized, we also need to 544 // update the control flow inside the function to reflect the correct 545 // types. 546 auto shouldConvertBranchOperand = [&](BranchOpInterface branchOp, 547 int operandIdx) -> bool { 548 return detensorableBranchOps.count(branchOp) && 549 detensorableBranchOps[branchOp].count(operandIdx); 550 }; 551 552 populateBranchOpInterfaceTypeConversionPattern(patterns, typeConverter, 553 shouldConvertBranchOperand); 554 555 if (failed(applyFullConversion(getFunction(), target, std::move(patterns)))) 556 signalPassFailure(); 557 558 RewritePatternSet canonPatterns(context); 559 canonPatterns.add<ExtractFromReshapeFromElements>(context); 560 if (failed(applyPatternsAndFoldGreedily(getFunction(), 561 std::move(canonPatterns)))) 562 signalPassFailure(); 563 } 564 565 Option<bool> aggressiveMode{ 566 *this, "aggressive-mode", 567 llvm::cl::desc("Detensorize all ops that qualify for detensoring along " 568 "with branch operands and basic-block arguments.")}; 569 }; 570 } // namespace 571 572 std::unique_ptr<Pass> mlir::createLinalgDetensorizePass() { 573 return std::make_unique<LinalgDetensorize>(); 574 } 575