1 //===- Detensorize.cpp - Linalg transformations as patterns ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "PassDetail.h" 10 #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 11 #include "mlir/Dialect/Linalg/IR/LinalgTypes.h" 12 #include "mlir/Dialect/Linalg/Passes.h" 13 #include "mlir/Dialect/StandardOps/Transforms/FuncConversions.h" 14 #include "mlir/Dialect/Tensor/IR/Tensor.h" 15 #include "mlir/IR/OpDefinition.h" 16 #include "mlir/Transforms/DialectConversion.h" 17 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 18 #include <iterator> 19 #include <memory> 20 21 using namespace mlir; 22 using namespace mlir::linalg; 23 24 static Value sourceMaterializationCallback(OpBuilder &builder, Type type, 25 ValueRange inputs, Location loc) { 26 assert(inputs.size() == 1); 27 if (inputs[0].getType().isa<TensorType>()) 28 return nullptr; 29 30 // A detensored value is converted back by creating a new tensor from its 31 // element(s). 32 auto createNewTensorOp = builder.create<tensor::FromElementsOp>( 33 loc, inputs[0].getType(), inputs[0]); 34 35 // FromElementsOp results in a tensor<1xdtype>, we need to reshape that to 36 // a tensor<dtype> instead. 37 return builder.create<linalg::TensorCollapseShapeOp>( 38 loc, type, createNewTensorOp, ArrayRef<ReassociationExprs>{}); 39 } 40 41 namespace { 42 /// Defines the criteria a TensorType must follow in order to be considered 43 /// "detensorable". 44 /// 45 /// NOTE: For now, only 0-D tensors are supported. 46 /// 47 /// Returns true if tensorType can be detensored. 48 bool canBeDetensored(TensorType tensorType) { 49 return tensorType.hasRank() && tensorType.getRank() == 0; 50 } 51 52 bool shouldBeDetensored(Operation *op, TypeConverter typeConverter) { 53 GenericOp genericOp = dyn_cast_or_null<GenericOp>(op); 54 return genericOp && 55 llvm::all_of( 56 genericOp.getInputAndOutputOperands(), [&](OpOperand *opOperand) { 57 return !typeConverter.isLegal(opOperand->get().getType()); 58 }); 59 } 60 61 /// A conversion patttern for detensoring `linalg.generic` ops. 62 class DetensorizeGenericOp : public OpConversionPattern<GenericOp> { 63 public: 64 using OpConversionPattern::OpConversionPattern; 65 LogicalResult 66 matchAndRewrite(GenericOp op, OpAdaptor adaptor, 67 ConversionPatternRewriter &rewriter) const override { 68 Block *originalBlock = op->getBlock(); 69 70 // Gather some information about the op before inling its region. 71 Block *opEntryBlock = &*op.region().begin(); 72 YieldOp yieldOp = dyn_cast<YieldOp>(op.region().back().getTerminator()); 73 74 // Split the op's region before the op. This way, we have a clear insertion 75 // point in which the op can be inlined. 76 Block *newBlock = originalBlock->splitBlock(op); 77 rewriter.inlineRegionBefore(op.region(), newBlock); 78 // Now that op's region is inlined, the operands of its YieldOp are mapped 79 // to the materialized target values. Therefore, we can replace the op's 80 // uses with those of its YielOp's operands. 81 rewriter.replaceOp(op, yieldOp->getOperands()); 82 83 // No need for these intermediate blocks, merge them into 1. 84 rewriter.mergeBlocks(opEntryBlock, originalBlock, adaptor.getOperands()); 85 rewriter.mergeBlocks(newBlock, originalBlock, {}); 86 87 rewriter.eraseOp(&*Block::iterator(yieldOp)); 88 89 return success(); 90 } 91 }; 92 93 /// A conversion pattern for detensoring internal (non-entry) blocks within a 94 /// function. 95 struct FunctionNonEntryBlockConversion : public ConversionPattern { 96 FunctionNonEntryBlockConversion(StringRef functionLikeOpName, 97 MLIRContext *ctx, TypeConverter &converter, 98 DenseSet<BlockArgument> blockArgsToDetensor) 99 : ConversionPattern(converter, functionLikeOpName, /*benefit=*/1, ctx), 100 blockArgsToDetensor(blockArgsToDetensor) {} 101 102 LogicalResult 103 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 104 ConversionPatternRewriter &rewriter) const override { 105 rewriter.startRootUpdate(op); 106 Region ®ion = function_like_impl::getFunctionBody(op); 107 SmallVector<TypeConverter::SignatureConversion, 2> conversions; 108 109 for (Block &block : llvm::drop_begin(region, 1)) { 110 conversions.emplace_back(block.getNumArguments()); 111 TypeConverter::SignatureConversion &back = conversions.back(); 112 113 for (BlockArgument blockArgument : block.getArguments()) { 114 int idx = blockArgument.getArgNumber(); 115 116 if (blockArgsToDetensor.count(blockArgument)) 117 back.addInputs(idx, {getTypeConverter()->convertType( 118 block.getArgumentTypes()[idx])}); 119 else 120 back.addInputs(idx, {block.getArgumentTypes()[idx]}); 121 } 122 } 123 124 if (failed(rewriter.convertNonEntryRegionTypes(®ion, *typeConverter, 125 conversions))) { 126 rewriter.cancelRootUpdate(op); 127 return failure(); 128 } 129 130 rewriter.finalizeRootUpdate(op); 131 return success(); 132 } 133 134 private: 135 const DenseSet<BlockArgument> blockArgsToDetensor; 136 }; 137 138 class DetensorizeTypeConverter : public TypeConverter { 139 public: 140 DetensorizeTypeConverter() { 141 addConversion([](Type type) { return type; }); 142 143 // A TensorType that can be detensored, is converted to the underlying 144 // element type. 145 addConversion([](TensorType tensorType) -> Type { 146 if (canBeDetensored(tensorType)) 147 return tensorType.getElementType(); 148 149 return tensorType; 150 }); 151 152 // A tensor value is detensoried by extracting its element(s). 153 addTargetMaterialization([](OpBuilder &builder, Type type, 154 ValueRange inputs, Location loc) -> Value { 155 return builder.create<tensor::ExtractOp>(loc, inputs[0], ValueRange{}); 156 }); 157 158 addSourceMaterialization(sourceMaterializationCallback); 159 addArgumentMaterialization(sourceMaterializationCallback); 160 } 161 }; 162 163 /// Canonicalizes the pattern of the form 164 /// 165 /// %tensor = tensor.from_elements(%element) : (i32) -> tensor<1xi32> 166 /// %reshaped_tensor = linalg.tensor_collapse_shape %tensor [] 167 /// : tensor<1xi32> into tensor<i32> 168 /// %extracted_element = tensor.extract %reshaped_tensor[] : tensor<i32> 169 /// 170 /// to just %element. 171 struct ExtractFromReshapeFromElements 172 : public OpRewritePattern<tensor::ExtractOp> { 173 using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern; 174 175 LogicalResult matchAndRewrite(tensor::ExtractOp extract, 176 PatternRewriter &rewriter) const final { 177 if (!extract.indices().empty()) 178 return failure(); 179 180 auto tensorReshape = 181 extract.tensor().getDefiningOp<TensorCollapseShapeOp>(); 182 if (tensorReshape == nullptr) 183 return failure(); 184 185 auto tensorFromElements = 186 tensorReshape.getOperand() 187 .getDefiningOp<mlir::tensor::FromElementsOp>(); 188 if (tensorFromElements == nullptr) 189 return failure(); 190 191 rewriter.replaceOp(extract, tensorFromElements.getOperand(0)); 192 return success(); 193 } 194 }; 195 196 /// @see LinalgDetensorize in Linalg/Passes.td for more details. 197 struct LinalgDetensorize : public LinalgDetensorizeBase<LinalgDetensorize> { 198 LinalgDetensorize() = default; 199 LinalgDetensorize(const LinalgDetensorize &pass) 200 : LinalgDetensorizeBase<LinalgDetensorize>() {} 201 202 class CostModel { 203 public: 204 virtual ~CostModel() = default; 205 206 /// A cost model algorithm computes the following outputs: 207 /// 208 /// - opsToDetensor: the list of linalg ops that should be 209 /// detensored. 210 /// 211 /// - blockArgsToDetensor: since the operands and results of detensored 212 /// linalg ops can cross the BB boundary (e.g. a linalg op's input can come 213 /// from a BB argument and a linalg op's output can be passed to successor 214 /// BBs), we need to maintain the sub-set of arguments that should be 215 /// detensored (i.e. converted by typeConverter) for each affected BB. 216 /// 217 /// Example: 218 /// 219 /// For the following snippet: 220 /// ... 221 /// ^bb1(%6: tensor<i32>, %9: tensor<i32>): 222 /// %7 = linalg.init_tensor [] : tensor<i32> 223 /// %8 = linalg.generic #attrs 224 /// ins(%6, %6 : tensor<i32>, tensor<i32>) 225 /// outs(%7 : tensor<i32>) { 226 /// ^bb0(%arg0: i32, %arg1: i32, %arg2: i32): 227 /// %9 = arith.addi %arg0, %arg1 : i32 228 /// linalg.yield %9 : i32 229 /// } -> tensor<i32> 230 /// %10 = "some.op"(%9) 231 /// br ^bb2(%8 : tensor<i32>) 232 /// ... 233 /// 234 /// if the cost model decides that the linalg.generic op should be 235 /// detensored, then: 236 /// - opsToDetensor should be = {linalg.generic{add}}. 237 /// - blockArgsToDetensor should be = {bb1 -> {0}, bb2 -> {0}}. 238 virtual void compute(FuncOp func, DetensorizeTypeConverter typeConverter, 239 DenseSet<Operation *> &opsToDetensor, 240 DenseSet<BlockArgument> &blockArgsToDetensor) = 0; 241 242 /// From the blockArgsToDetensor set computed by a CostModel 243 /// implementation, this method computes the corresponding branch op 244 /// detensoring. The result is a map from a branch op to a subset of indices 245 /// of its operands. The indices specify which of the branch op's operands 246 /// should be detensored. 247 /// 248 /// For the previous example, this method would compute: {bb2 -> {0}}. 249 static DenseMap<Operation *, DenseSet<int>> computeBranchOpDetensoring( 250 const DenseSet<BlockArgument> &blockArgsToDetensor) { 251 DenseMap<Operation *, DenseSet<int>> detensorableBranchOps; 252 253 for (auto blockArgumentElem : blockArgsToDetensor) { 254 Block *block = blockArgumentElem.getOwner(); 255 256 for (PredecessorIterator pred = block->pred_begin(); 257 pred != block->pred_end(); ++pred) { 258 BranchOpInterface terminator = 259 dyn_cast<BranchOpInterface>((*pred)->getTerminator()); 260 auto blockOperands = 261 terminator.getSuccessorOperands(pred.getSuccessorIndex()); 262 263 if (!blockOperands || blockOperands->empty()) 264 continue; 265 266 detensorableBranchOps[terminator].insert( 267 blockOperands->getBeginOperandIndex() + 268 blockArgumentElem.getArgNumber()); 269 } 270 } 271 272 return detensorableBranchOps; 273 } 274 }; 275 276 /// Detensorize linalg ops involved in control-flow within a function. 277 /// 278 /// This model starts from BranchOps and CondBranchOps within a function. For 279 /// each such branch, the model then walks the use-def chain for the branch's 280 /// condition backwards in order to understand where the condition's value 281 /// comes from. If the condition value is (indirectly) computed by a linalg op 282 /// that can be detensored, the model then continues walking the use-def chain 283 /// in order to understand where the linalg op's operands come from. This 284 /// leads to discovering a "detensoring component". A detensoring component is 285 /// the set of operations + block arguments that are involved in control-flow 286 /// AND can be detensored. 287 class ControlFlowDetectionModel : public CostModel { 288 public: 289 void compute(FuncOp func, DetensorizeTypeConverter typeConverter, 290 DenseSet<Operation *> &opsToDetensor, 291 DenseSet<BlockArgument> &blockArgsToDetensor) override { 292 SmallVector<Value> workList; 293 294 func.walk([&](CondBranchOp condBr) { 295 for (auto operand : condBr.getOperands()) { 296 workList.push_back(operand); 297 } 298 }); 299 300 func.walk([&](BranchOp br) { 301 for (auto operand : br.getOperands()) { 302 workList.push_back(operand); 303 } 304 }); 305 306 DenseSet<Value> visitedValues; 307 DenseSet<Operation *> visitedOps; 308 309 // For a (to-be-detesored) value, check if it "escapes" the block by being 310 // passed to terminator. If it does, then workList is updated with the 311 // corresponding argument to the successor block. 312 auto updateWorkListWithSuccessorArguments = 313 [&](Value value, BranchOpInterface terminator) { 314 if (!terminator) 315 return; 316 317 for (auto operandIdx : 318 llvm::seq<unsigned>(0, terminator->getOperands().size())) { 319 Value operand = terminator->getOperand(operandIdx); 320 321 if (operand == value) { 322 auto succBlockArg = 323 terminator.getSuccessorBlockArgument(operandIdx); 324 325 if (succBlockArg && !blockArgsToDetensor.count(*succBlockArg)) 326 workList.push_back(*succBlockArg); 327 } 328 } 329 }; 330 331 while (!workList.empty()) { 332 Value currentItem = workList.pop_back_val(); 333 334 if (!visitedValues.insert(currentItem).second) 335 continue; 336 337 // 1 - Look forward: 338 // 1.1 - If currentItem escapes to one or more successors, add 339 // the corresponding successor arguments to workList. 340 updateWorkListWithSuccessorArguments( 341 currentItem, dyn_cast<BranchOpInterface>( 342 currentItem.getParentBlock()->getTerminator())); 343 344 // 1.2 - For each user of currentItem, add the defined values to 345 // workList. This way, the user ops can be inspected later if they are 346 // detensorable and if so, their operands will be added to workList to 347 // potentially discover other parts of the detensorable component. 348 for (auto *user : currentItem.getUsers()) 349 for (Value result : user->getResults()) 350 workList.push_back(result); 351 352 // 2 - Look backward: 353 // 2.1 - The current item is defined by a block argument. If the owner 354 // block is a non-entry one, then: 355 // * Add the argument to blockArgsToDetensor. 356 // * Walk the use-def chain backwards to add each predecessor's 357 // terminator-operands corresponding to currentItem to workList. 358 if (currentItem.dyn_cast<BlockArgument>()) { 359 BlockArgument currentItemBlockArgument = 360 currentItem.cast<BlockArgument>(); 361 Block *ownerBlock = currentItemBlockArgument.getOwner(); 362 363 // Function arguments are not detensored/converted. 364 if (&*ownerBlock->getParent()->begin() == ownerBlock) 365 continue; 366 367 // This inner-block argument is involved in control-flow, it should be 368 // detensored. 369 blockArgsToDetensor.insert(currentItemBlockArgument); 370 371 for (PredecessorIterator pred = ownerBlock->pred_begin(); 372 pred != ownerBlock->pred_end(); ++pred) { 373 BranchOpInterface predTerminator = 374 dyn_cast<BranchOpInterface>((*pred)->getTerminator()); 375 376 // TODO: For now, we give up if any of the control-flow components 377 // in a function is not detensorable. Fix that. 378 if (!predTerminator) { 379 opsToDetensor.clear(); 380 blockArgsToDetensor.clear(); 381 return; 382 } 383 384 auto ownerBlockOperands = 385 predTerminator.getSuccessorOperands(pred.getSuccessorIndex()); 386 387 if (!ownerBlockOperands || ownerBlockOperands->empty()) 388 continue; 389 390 // For each predecessor, add the value it passes to that argument to 391 // workList to find out how it's computed. 392 workList.push_back( 393 ownerBlockOperands 394 .getValue()[currentItemBlockArgument.getArgNumber()]); 395 } 396 397 continue; 398 } 399 400 Operation *currentItemDefiningOp = currentItem.getDefiningOp(); 401 402 if (!visitedOps.insert(currentItemDefiningOp).second) 403 continue; 404 405 // 2.2 - The current item is computed by a GenericOp. If the op should 406 // be detensored, then: 407 // * Add it to opsToDetensor. 408 // * Add its operands to workList to discover other parts of the 409 // potentially detensorable component. 410 if (auto genericOp = dyn_cast<GenericOp>(currentItemDefiningOp)) { 411 // The op was encountered already, no need to inspect it again. 412 if (opsToDetensor.count(genericOp)) 413 continue; 414 415 // The op should not be detensored, give up on it but continue with 416 // discovering the rest of the control-flow component. 417 if (!shouldBeDetensored(genericOp, typeConverter)) { 418 continue; 419 } 420 421 opsToDetensor.insert(genericOp); 422 423 for (Value genericOpOperand : genericOp.inputs()) 424 workList.push_back(genericOpOperand); 425 426 continue; 427 } 428 429 // 2.3 - The current item is the result of a FromElementsOp, it will be 430 // trivially detensored later as part of canonicalization patterns 431 // applied at the end of detensoring. 432 // 433 // Note: No need to check whether the result type of this op is 434 // detensorable since if it wasn't we wouldn't reach that point in the 435 // work list. 436 if (dyn_cast<tensor::FromElementsOp>(currentItemDefiningOp)) 437 continue; 438 439 // 2.4 - The current item is the result of a scalar op, add all its 440 // operands to the work list. 441 if (llvm::all_of( 442 currentItemDefiningOp->getResultTypes(), 443 [&](Type resultType) { return resultType.isIntOrFloat(); })) 444 for (Value scalarOpOperand : currentItemDefiningOp->getOperands()) 445 workList.push_back(scalarOpOperand); 446 } 447 448 // Since the cost model gives up on some ops (see the details of step 2.2 449 // above), block arguments that correspond to the values produced by those 450 // ops should not be detensored as well. 451 452 DenseSet<BlockArgument> blockArgsToRemove; 453 454 for (auto &blockArg : blockArgsToDetensor) { 455 Block *block = blockArg.getParentBlock(); 456 457 // For the potentially detensorable block argument, find the 458 // correpsonding operands in predecessor blocks. 459 for (PredecessorIterator pred = block->pred_begin(); 460 pred != block->pred_end(); ++pred) { 461 BranchOpInterface terminator = 462 dyn_cast<BranchOpInterface>((*pred)->getTerminator()); 463 auto blockOperands = 464 terminator.getSuccessorOperands(pred.getSuccessorIndex()); 465 466 if (!blockOperands || blockOperands->empty()) 467 continue; 468 469 Operation *definingOp = 470 terminator 471 ->getOperand(blockOperands->getBeginOperandIndex() + 472 blockArg.getArgNumber()) 473 .getDefiningOp(); 474 475 // If the operand is defined by a GenericOp that will not be 476 // detensored, then do not detensor the corresponding block argument. 477 if (dyn_cast_or_null<GenericOp>(definingOp) && 478 opsToDetensor.count(definingOp) == 0) { 479 blockArgsToRemove.insert(blockArg); 480 break; 481 } 482 } 483 } 484 485 for (auto &blockArg : blockArgsToRemove) { 486 blockArgsToDetensor.erase(blockArg); 487 } 488 } 489 }; 490 491 /// Detensorize everything that can detensored. 492 class AggressiveDetensoringModel : public CostModel { 493 public: 494 void compute(FuncOp func, DetensorizeTypeConverter typeConverter, 495 DenseSet<Operation *> &opsToDetensor, 496 DenseSet<BlockArgument> &blockArgsToDetensor) override { 497 func.walk([&](GenericOp genericOp) { 498 if (shouldBeDetensored(genericOp, typeConverter)) 499 opsToDetensor.insert(genericOp); 500 }); 501 502 for (Block &block : llvm::drop_begin(func.getBody(), 1)) 503 for (BlockArgument blockArgument : block.getArguments()) 504 blockArgsToDetensor.insert(blockArgument); 505 } 506 }; 507 508 void runOnFunction() override { 509 MLIRContext *context = &getContext(); 510 DetensorizeTypeConverter typeConverter; 511 RewritePatternSet patterns(context); 512 ConversionTarget target(*context); 513 DenseSet<Operation *> opsToDetensor; 514 DenseMap<Operation *, DenseSet<int>> detensorableBranchOps; 515 DenseSet<BlockArgument> blockArgsToDetensor; 516 517 if (aggressiveMode.getValue()) { 518 AggressiveDetensoringModel costModel; 519 costModel.compute(getFunction(), typeConverter, opsToDetensor, 520 blockArgsToDetensor); 521 522 } else { 523 ControlFlowDetectionModel costModel; 524 costModel.compute(getFunction(), typeConverter, opsToDetensor, 525 blockArgsToDetensor); 526 } 527 528 detensorableBranchOps = 529 CostModel::computeBranchOpDetensoring(blockArgsToDetensor); 530 531 target.addDynamicallyLegalOp<GenericOp>( 532 [&](GenericOp op) { return !opsToDetensor.count(op); }); 533 534 target.addDynamicallyLegalOp<FuncOp>([&](FuncOp op) { 535 // A function is legal if all of its non-entry blocks are legal. We 536 // don't legalize the entry block (i.e. the function's signature) 537 // since detensoring can't happen along external calling convention 538 // boundaries, which we conservatively approximate as all function 539 // signatures. 540 return llvm::all_of(llvm::drop_begin(op.getBody(), 1), [&](Block &block) { 541 if (llvm::any_of(blockArgsToDetensor, [&](BlockArgument blockArgument) { 542 return blockArgument.getOwner() == &block && 543 !typeConverter.isLegal(blockArgument.getType()); 544 })) { 545 return false; 546 } 547 return true; 548 }); 549 }); 550 551 target.markUnknownOpDynamicallyLegal([&](Operation *op) { 552 if (isNotBranchOpInterfaceOrReturnLikeOp(op) || 553 isLegalForReturnOpTypeConversionPattern(op, typeConverter, 554 /*returnOpAlwaysLegal*/ true)) 555 return true; 556 557 if (auto branchOp = dyn_cast<BranchOpInterface>(op)) { 558 if (!detensorableBranchOps.count(branchOp)) 559 return true; 560 561 for (auto operandIdx : detensorableBranchOps[branchOp]) 562 if (!typeConverter.isLegal( 563 branchOp->getOperand(operandIdx).getType())) 564 return false; 565 566 return true; 567 } 568 569 return false; 570 }); 571 572 patterns.insert<DetensorizeGenericOp>(typeConverter, context); 573 patterns.insert<FunctionNonEntryBlockConversion>(FuncOp::getOperationName(), 574 context, typeConverter, 575 blockArgsToDetensor); 576 // Since non-entry block arguments get detensorized, we also need to 577 // update the control flow inside the function to reflect the correct 578 // types. 579 auto shouldConvertBranchOperand = [&](BranchOpInterface branchOp, 580 int operandIdx) -> bool { 581 return detensorableBranchOps.count(branchOp) && 582 detensorableBranchOps[branchOp].count(operandIdx); 583 }; 584 585 populateBranchOpInterfaceTypeConversionPattern(patterns, typeConverter, 586 shouldConvertBranchOperand); 587 588 if (failed(applyFullConversion(getFunction(), target, std::move(patterns)))) 589 signalPassFailure(); 590 591 RewritePatternSet canonPatterns(context); 592 canonPatterns.add<ExtractFromReshapeFromElements>(context); 593 if (failed(applyPatternsAndFoldGreedily(getFunction(), 594 std::move(canonPatterns)))) 595 signalPassFailure(); 596 } 597 598 Option<bool> aggressiveMode{ 599 *this, "aggressive-mode", 600 llvm::cl::desc("Detensorize all ops that qualify for detensoring along " 601 "with branch operands and basic-block arguments.")}; 602 }; 603 } // namespace 604 605 std::unique_ptr<Pass> mlir::createLinalgDetensorizePass() { 606 return std::make_unique<LinalgDetensorize>(); 607 } 608