1 //===- Detensorize.cpp - Linalg transformations as patterns ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "PassDetail.h" 10 #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 11 #include "mlir/Dialect/Linalg/IR/LinalgTypes.h" 12 #include "mlir/Dialect/Linalg/Passes.h" 13 #include "mlir/Dialect/StandardOps/Transforms/FuncConversions.h" 14 #include "mlir/Dialect/Tensor/IR/Tensor.h" 15 #include "mlir/IR/OpDefinition.h" 16 #include "mlir/Transforms/DialectConversion.h" 17 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 18 #include <iterator> 19 #include <memory> 20 21 using namespace mlir; 22 using namespace mlir::linalg; 23 24 static Value sourceMaterializationCallback(OpBuilder &builder, Type type, 25 ValueRange inputs, Location loc) { 26 assert(inputs.size() == 1); 27 // A detensored value is converted back by creating a new tensor from its 28 // element(s). 29 auto createNewTensorOp = builder.create<tensor::FromElementsOp>( 30 loc, inputs[0].getType(), inputs[0]); 31 32 // FromElementsOp results in a tensor<1xdtype>, we need to reshape that to 33 // a tensor<dtype> instead. 34 return builder.create<linalg::TensorReshapeOp>( 35 loc, type, createNewTensorOp, ArrayRef<ReassociationExprs>{}); 36 } 37 38 namespace { 39 /// Defines the criteria a TensorType must follow in order to be considered 40 /// "detensorable". 41 /// 42 /// NOTE: For now, only 0-D tensors are supported. 43 /// 44 /// Returns true if tensorType can be detensored. 45 bool canBeDetensored(TensorType tensorType) { 46 return tensorType.hasRank() && tensorType.getRank() == 0; 47 } 48 49 bool shouldBeDetensored(Operation *op, TypeConverter typeConverter) { 50 GenericOp genericOp = dyn_cast_or_null<GenericOp>(op); 51 return genericOp && llvm::all_of(genericOp.getShapedOperandTypes(), 52 [&](ShapedType shapedType) { 53 return !typeConverter.isLegal(shapedType); 54 }); 55 } 56 57 /// A conversion patttern for detensoring `linalg.generic` ops. 58 class DetensorizeGenericOp : public OpConversionPattern<GenericOp> { 59 public: 60 using OpConversionPattern::OpConversionPattern; 61 LogicalResult 62 matchAndRewrite(GenericOp op, ArrayRef<Value> operands, 63 ConversionPatternRewriter &rewriter) const override { 64 Block *originalBlock = op->getBlock(); 65 66 // Gather some information about the op before inling its region. 67 Block *opEntryBlock = &*op.region().begin(); 68 YieldOp yieldOp = dyn_cast<YieldOp>(op.region().back().getTerminator()); 69 70 // Split the op's region before the op. This way, we have a clear insertion 71 // point in which the op can be inlined. 72 Block *newBlock = originalBlock->splitBlock(op); 73 rewriter.inlineRegionBefore(op.region(), newBlock); 74 // Now that op's region is inlined, the operands of its YieldOp are mapped 75 // to the materialized target values. Therefore, we can replace the op's 76 // uses with those of its YielOp's operands. 77 rewriter.replaceOp(op, yieldOp->getOperands()); 78 79 // No need for these intermediate blocks, merge them into 1. 80 rewriter.mergeBlocks(opEntryBlock, originalBlock, operands); 81 rewriter.mergeBlocks(newBlock, originalBlock, {}); 82 83 rewriter.eraseOp(&*Block::iterator(yieldOp)); 84 85 return success(); 86 } 87 }; 88 89 /// A conversion pattern for detensoring internal (non-entry) blocks within a 90 /// function. 91 struct FunctionNonEntryBlockConversion : public ConversionPattern { 92 FunctionNonEntryBlockConversion(StringRef functionLikeOpName, 93 MLIRContext *ctx, TypeConverter &converter, 94 DenseSet<BlockArgument> blockArgsToDetensor) 95 : ConversionPattern(converter, functionLikeOpName, /*benefit=*/1, ctx), 96 blockArgsToDetensor(blockArgsToDetensor) {} 97 98 LogicalResult 99 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 100 ConversionPatternRewriter &rewriter) const override { 101 rewriter.startRootUpdate(op); 102 Region ®ion = mlir::impl::getFunctionBody(op); 103 SmallVector<TypeConverter::SignatureConversion, 2> conversions; 104 105 for (Block &block : llvm::drop_begin(region, 1)) { 106 conversions.emplace_back(block.getNumArguments()); 107 TypeConverter::SignatureConversion &back = conversions.back(); 108 109 for (BlockArgument blockArgument : block.getArguments()) { 110 int idx = blockArgument.getArgNumber(); 111 112 if (blockArgsToDetensor.count(blockArgument)) 113 back.addInputs(idx, {getTypeConverter()->convertType( 114 block.getArgumentTypes()[idx])}); 115 else 116 back.addInputs(idx, {block.getArgumentTypes()[idx]}); 117 } 118 } 119 120 if (failed(rewriter.convertNonEntryRegionTypes(®ion, *typeConverter, 121 conversions))) { 122 rewriter.cancelRootUpdate(op); 123 return failure(); 124 } 125 126 rewriter.finalizeRootUpdate(op); 127 return success(); 128 } 129 130 private: 131 const DenseSet<BlockArgument> blockArgsToDetensor; 132 }; 133 134 class DetensorizeTypeConverter : public TypeConverter { 135 public: 136 DetensorizeTypeConverter() { 137 addConversion([](Type type) { return type; }); 138 139 // A TensorType that can be detensored, is converted to the underlying 140 // element type. 141 addConversion([](TensorType tensorType) -> Type { 142 if (canBeDetensored(tensorType)) 143 return tensorType.getElementType(); 144 145 return tensorType; 146 }); 147 148 // A tensor value is detensoried by extracting its element(s). 149 addTargetMaterialization([](OpBuilder &builder, Type type, 150 ValueRange inputs, Location loc) -> Value { 151 return builder.create<tensor::ExtractOp>(loc, inputs[0], ValueRange{}); 152 }); 153 154 addSourceMaterialization(sourceMaterializationCallback); 155 addArgumentMaterialization(sourceMaterializationCallback); 156 } 157 }; 158 159 /// Canonicalizes the pattern of the form 160 /// 161 /// %tensor = tensor.from_elements(%element) : (i32) -> tensor<1xi32> 162 /// %reshaped_tensor = linalg.tensor_reshape %tensor [] : tensor<1xi32> into 163 /// tensor<i32> 164 /// %extracted_element = tensor.extract %reshaped_tensor[] : tensor<i32> 165 /// 166 /// to just %element. 167 struct ExtractFromReshapeFromElements 168 : public OpRewritePattern<tensor::ExtractOp> { 169 using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern; 170 171 LogicalResult matchAndRewrite(tensor::ExtractOp extract, 172 PatternRewriter &rewriter) const final { 173 if (extract.indices().size() != 0) 174 return failure(); 175 176 auto tensorReshape = extract.tensor().getDefiningOp<TensorReshapeOp>(); 177 if (tensorReshape == nullptr) 178 return failure(); 179 180 auto tensorFromElements = 181 tensorReshape.getOperand() 182 .getDefiningOp<mlir::tensor::FromElementsOp>(); 183 if (tensorFromElements == nullptr) 184 return failure(); 185 186 rewriter.replaceOp(extract, tensorFromElements.getOperand(0)); 187 return success(); 188 } 189 }; 190 191 /// @see LinalgDetensorize in Linalg/Passes.td for more details. 192 struct LinalgDetensorize : public LinalgDetensorizeBase<LinalgDetensorize> { 193 LinalgDetensorize() = default; 194 LinalgDetensorize(const LinalgDetensorize &pass) {} 195 196 class CostModel { 197 public: 198 virtual ~CostModel() = default; 199 200 /// A cost model algorithm computes the following outputs: 201 /// 202 /// - opsToDetensor: the list of linalg ops that should be 203 /// detensored. 204 /// 205 /// - blockArgsToDetensor: since the operands and results of detensored 206 /// linalg ops can cross the BB boundary (e.g. a linalg op's input can come 207 /// from a BB argument and a linalg op's output can be passed to successor 208 /// BBs), we need to maintain the sub-set of arguments that should be 209 /// detensored (i.e. converted by typeConverter) for each affected BB. 210 /// 211 /// Example: 212 /// 213 /// For the following snippet: 214 /// ... 215 /// ^bb1(%6: tensor<i32>, %9: tensor<i32>): 216 /// %7 = linalg.init_tensor [] : tensor<i32> 217 /// %8 = linalg.generic #attrs 218 /// ins(%6, %6 : tensor<i32>, tensor<i32>) 219 /// outs(%7 : tensor<i32>) { 220 /// ^bb0(%arg0: i32, %arg1: i32, %arg2: i32): 221 /// %9 = addi %arg0, %arg1 : i32 222 /// linalg.yield %9 : i32 223 /// } -> tensor<i32> 224 /// %10 = "some.op"(%9) 225 /// br ^bb2(%8 : tensor<i32>) 226 /// ... 227 /// 228 /// if the cost model decides that the linalg.generic op should be 229 /// detensored, then: 230 /// - opsToDetensor should be = {linalg.generic{add}}. 231 /// - blockArgsToDetensor should be = {bb1 -> {0}, bb2 -> {0}}. 232 virtual void compute(FuncOp func, DetensorizeTypeConverter typeConverter, 233 DenseSet<Operation *> &opsToDetensor, 234 DenseSet<BlockArgument> &blockArgsToDetensor) = 0; 235 236 /// From the blockArgsToDetensor set computed by a CostModel 237 /// implementation, this method computes the corresponding branch op 238 /// detensoring. The result is a map from a branch op to a subset of indices 239 /// of its operands. The indices specify which of the branch op's operands 240 /// should be detensored. 241 /// 242 /// For the previous example, this method would compute: {bb2 -> {0}}. 243 static DenseMap<Operation *, DenseSet<int>> computeBranchOpDetensoring( 244 const DenseSet<BlockArgument> &blockArgsToDetensor) { 245 DenseMap<Operation *, DenseSet<int>> detensorableBranchOps; 246 247 for (auto blockArgumentElem : blockArgsToDetensor) { 248 Block *block = blockArgumentElem.getOwner(); 249 250 for (PredecessorIterator pred = block->pred_begin(); 251 pred != block->pred_end(); ++pred) { 252 BranchOpInterface terminator = 253 dyn_cast<BranchOpInterface>((*pred)->getTerminator()); 254 auto blockOperands = 255 terminator.getSuccessorOperands(pred.getSuccessorIndex()); 256 257 if (!blockOperands || blockOperands->empty()) 258 continue; 259 260 detensorableBranchOps[terminator].insert( 261 blockOperands->getBeginOperandIndex() + 262 blockArgumentElem.getArgNumber()); 263 } 264 } 265 266 return detensorableBranchOps; 267 } 268 }; 269 270 /// Detensorize linalg ops involved in control-flow within a function. 271 /// 272 /// This model starts from CondBranchOps within a function. For each cond_br, 273 /// the model then walks the use-def chain for the branch's condition 274 /// backwards in order to understand where the condition's value comes from. 275 /// If the condition value is (indirectly) computed by a linalg op that can be 276 /// detensored, the model then continues walking the use-def chain in order to 277 /// understand where the linalg op's operands come from. This leads to 278 /// discovering a "detensoring component". A detensoring component is the set 279 /// of operations + block arguments that are involved in control-flow AND can 280 /// be detensored. 281 /// 282 /// For examples where this model succeeds to discover a detensoring 283 /// component, see: 284 /// - test/Dialect/Linalg/detensorize_while.mlir 285 /// - test/Dialect/Linalg/detesorize_while_pure_cf.mlir. 286 /// 287 /// For an example where this model marks control-flow as "non-detensorable", 288 /// see: 289 /// - test/Dialect/Linalg/detensorize_while_failure.mlir 290 class PureControlFlowDetectionModel : public CostModel { 291 public: 292 void compute(FuncOp func, DetensorizeTypeConverter typeConverter, 293 DenseSet<Operation *> &opsToDetensor, 294 DenseSet<BlockArgument> &blockArgsToDetensor) override { 295 SmallVector<Value> workList; 296 297 func.walk( 298 [&](CondBranchOp condBr) { workList.push_back(condBr.condition()); }); 299 300 DenseSet<Value> visitedValues; 301 DenseSet<Operation *> visitedOps; 302 303 while (!workList.empty()) { 304 Value currentItem = workList.pop_back_val(); 305 306 if (!visitedValues.insert(currentItem).second) 307 continue; 308 309 // The current item is defined by a block argument. 310 if (auto bbarg = currentItem.dyn_cast<BlockArgument>()) { 311 BlockArgument currentItemBlockArgument = 312 currentItem.cast<BlockArgument>(); 313 Block *ownerBlock = currentItemBlockArgument.getOwner(); 314 315 // Function arguments are not detensored/converted. 316 if (&*ownerBlock->getParent()->begin() == ownerBlock) 317 continue; 318 319 // This inner-block argument is involved in control-flow, it should be 320 // detensored. 321 blockArgsToDetensor.insert(currentItemBlockArgument); 322 323 for (PredecessorIterator pred = ownerBlock->pred_begin(); 324 pred != ownerBlock->pred_end(); ++pred) { 325 BranchOpInterface terminator = 326 dyn_cast<BranchOpInterface>((*pred)->getTerminator()); 327 328 // TODO: For now, we give up if any of the control-flow components 329 // in a function is not detensorable. Fix that. 330 if (!terminator) { 331 opsToDetensor.clear(); 332 blockArgsToDetensor.clear(); 333 return; 334 } 335 336 auto ownerBlockOperands = 337 terminator.getSuccessorOperands(pred.getSuccessorIndex()); 338 339 if (!ownerBlockOperands || ownerBlockOperands->empty()) 340 continue; 341 342 // For each predecessor, add the value it passes to that argument to 343 // workList to find out how it's computed. 344 workList.push_back( 345 ownerBlockOperands 346 .getValue()[currentItemBlockArgument.getArgNumber()]); 347 } 348 349 continue; 350 } 351 352 Operation *currentItemDefiningOp = currentItem.getDefiningOp(); 353 354 if (!visitedOps.insert(currentItemDefiningOp).second) 355 continue; 356 357 // The current item is computed by a GenericOp. 358 if (auto genericOp = dyn_cast<GenericOp>(currentItemDefiningOp)) { 359 // The op was encountered already, no need to inspect it again. 360 if (opsToDetensor.count(genericOp)) 361 continue; 362 363 // TODO: For now, we give up if any of the control-flow components 364 // in a function is not detensorable. Fix that. 365 if (!shouldBeDetensored(genericOp, typeConverter)) { 366 opsToDetensor.clear(); 367 blockArgsToDetensor.clear(); 368 return; 369 } 370 371 opsToDetensor.insert(genericOp); 372 373 for (Value genericOpOperand : genericOp.inputs()) 374 workList.push_back(genericOpOperand); 375 376 continue; 377 } 378 379 // The current item is the result of a FromElemntsOp, it will be 380 // trivially detensored later as part of canonicalization patterns 381 // applied at the end of detensoring. 382 // 383 // Note: No need to check whether the result type of this op is 384 // detensorable since if it wasn't we wouldn't reach that point in the 385 // work list. 386 if (dyn_cast<tensor::FromElementsOp>(currentItemDefiningOp)) 387 continue; 388 389 // The current item is the result of a scalar op, add all its operands 390 // to the work list. 391 if (llvm::all_of( 392 currentItemDefiningOp->getResultTypes(), 393 [&](Type resultType) { return resultType.isIntOrFloat(); })) 394 for (Value scalarOpOperand : currentItemDefiningOp->getOperands()) 395 workList.push_back(scalarOpOperand); 396 } 397 } 398 }; 399 400 /// Detensorize everything that can detensored. 401 class AggressiveDetensoringModel : public CostModel { 402 public: 403 void compute(FuncOp func, DetensorizeTypeConverter typeConverter, 404 DenseSet<Operation *> &opsToDetensor, 405 DenseSet<BlockArgument> &blockArgsToDetensor) override { 406 func.walk([&](GenericOp genericOp) { 407 if (shouldBeDetensored(genericOp, typeConverter)) 408 opsToDetensor.insert(genericOp); 409 }); 410 411 for (Block &block : llvm::drop_begin(func.getBody(), 1)) 412 for (BlockArgument blockArgument : block.getArguments()) 413 blockArgsToDetensor.insert(blockArgument); 414 } 415 }; 416 417 void runOnFunction() override { 418 MLIRContext *context = &getContext(); 419 DetensorizeTypeConverter typeConverter; 420 RewritePatternSet patterns(context); 421 ConversionTarget target(*context); 422 DenseSet<Operation *> opsToDetensor; 423 DenseMap<Operation *, DenseSet<int>> detensorableBranchOps; 424 DenseSet<BlockArgument> blockArgsToDetensor; 425 426 if (aggressiveMode.getValue()) { 427 AggressiveDetensoringModel costModel; 428 costModel.compute(getFunction(), typeConverter, opsToDetensor, 429 blockArgsToDetensor); 430 431 } else { 432 PureControlFlowDetectionModel costModel; 433 costModel.compute(getFunction(), typeConverter, opsToDetensor, 434 blockArgsToDetensor); 435 } 436 437 detensorableBranchOps = 438 CostModel::computeBranchOpDetensoring(blockArgsToDetensor); 439 440 target.addDynamicallyLegalOp<GenericOp>( 441 [&](GenericOp op) { return !opsToDetensor.count(op); }); 442 443 target.addDynamicallyLegalOp<FuncOp>([&](FuncOp op) { 444 // A function is legal if all of its non-entry blocks are legal. We 445 // don't legalize the entry block (i.e. the function's signature) since 446 // detensoring can't happen along external calling convention 447 // boundaries, which we conservatively approximate as all function 448 // signatures. 449 return llvm::all_of(llvm::drop_begin(op.getBody(), 1), [&](Block &block) { 450 if (llvm::any_of(blockArgsToDetensor, [&](BlockArgument blockArgument) { 451 return blockArgument.getOwner() == &block && 452 !typeConverter.isLegal(blockArgument.getType()); 453 })) { 454 return false; 455 } 456 return true; 457 }); 458 }); 459 460 target.markUnknownOpDynamicallyLegal([&](Operation *op) { 461 if (isNotBranchOpInterfaceOrReturnLikeOp(op) || 462 isLegalForReturnOpTypeConversionPattern(op, typeConverter, 463 /*returnOpAlwaysLegal*/ true)) 464 return true; 465 466 if (auto branchOp = dyn_cast<BranchOpInterface>(op)) { 467 if (!detensorableBranchOps.count(branchOp)) 468 return true; 469 470 for (auto operandIdx : detensorableBranchOps[branchOp]) 471 if (!typeConverter.isLegal( 472 branchOp->getOperand(operandIdx).getType())) 473 return false; 474 475 return true; 476 } 477 478 return false; 479 }); 480 481 patterns.insert<DetensorizeGenericOp>(typeConverter, context); 482 patterns.insert<FunctionNonEntryBlockConversion>(FuncOp::getOperationName(), 483 context, typeConverter, 484 blockArgsToDetensor); 485 // Since non-entry block arguments get detensorized, we also need to 486 // update the control flow inside the function to reflect the correct 487 // types. 488 auto shouldConvertBranchOperand = [&](BranchOpInterface branchOp, 489 int operandIdx) -> bool { 490 return detensorableBranchOps.count(branchOp) && 491 detensorableBranchOps[branchOp].count(operandIdx); 492 }; 493 494 populateBranchOpInterfaceTypeConversionPattern(patterns, typeConverter, 495 shouldConvertBranchOperand); 496 497 if (failed(applyFullConversion(getFunction(), target, std::move(patterns)))) 498 signalPassFailure(); 499 500 RewritePatternSet canonPatterns(context); 501 canonPatterns.add<ExtractFromReshapeFromElements>(context); 502 if (failed(applyPatternsAndFoldGreedily(getFunction(), 503 std::move(canonPatterns)))) 504 signalPassFailure(); 505 } 506 507 Option<bool> aggressiveMode{ 508 *this, "aggressive-mode", 509 llvm::cl::desc("Detensorize all ops that qualify for detensoring along " 510 "with branch operands and basic-block arguments.")}; 511 }; 512 } // namespace 513 514 std::unique_ptr<Pass> mlir::createLinalgDetensorizePass() { 515 return std::make_unique<LinalgDetensorize>(); 516 } 517