1 //===- Detensorize.cpp - Linalg transformations as patterns ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "PassDetail.h"
10 #include "mlir/Dialect/Linalg/IR/Linalg.h"
11 #include "mlir/Dialect/Linalg/Passes.h"
12 #include "mlir/Dialect/StandardOps/Transforms/FuncConversions.h"
13 #include "mlir/Dialect/Tensor/IR/Tensor.h"
14 #include "mlir/IR/OpDefinition.h"
15 #include "mlir/Transforms/DialectConversion.h"
16 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
17 #include <iterator>
18 #include <memory>
19 #include <utility>
20 
21 using namespace mlir;
22 using namespace mlir::linalg;
23 
24 static Value sourceMaterializationCallback(OpBuilder &builder, Type type,
25                                            ValueRange inputs, Location loc) {
26   assert(inputs.size() == 1);
27   auto inputType = inputs[0].getType();
28   if (inputType.isa<TensorType>())
29     return nullptr;
30 
31   // A detensored value is converted back by creating a new tensor from its
32   // element(s).
33   return builder.create<tensor::FromElementsOp>(
34       loc, RankedTensorType::get({}, inputType), inputs[0]);
35 }
36 
37 namespace {
38 /// Defines the criteria a TensorType must follow in order to be considered
39 /// "detensorable".
40 ///
41 /// NOTE: For now, only 0-D tensors are supported.
42 ///
43 /// Returns true if tensorType can be detensored.
44 bool canBeDetensored(TensorType tensorType) {
45   return tensorType.hasRank() && tensorType.getRank() == 0;
46 }
47 
48 bool shouldBeDetensored(Operation *op, TypeConverter typeConverter) {
49   GenericOp genericOp = dyn_cast_or_null<GenericOp>(op);
50   return genericOp &&
51          llvm::all_of(
52              genericOp.getInputAndOutputOperands(), [&](OpOperand *opOperand) {
53                return !typeConverter.isLegal(opOperand->get().getType());
54              });
55 }
56 
57 /// A conversion patttern for detensoring `linalg.generic` ops.
58 class DetensorizeGenericOp : public OpConversionPattern<GenericOp> {
59 public:
60   using OpConversionPattern::OpConversionPattern;
61   LogicalResult
62   matchAndRewrite(GenericOp op, OpAdaptor adaptor,
63                   ConversionPatternRewriter &rewriter) const override {
64     Block *originalBlock = op->getBlock();
65 
66     // Gather some information about the op before inling its region.
67     Block *opEntryBlock = &*op.region().begin();
68     YieldOp yieldOp = dyn_cast<YieldOp>(op.region().back().getTerminator());
69 
70     // Split the op's region before the op. This way, we have a clear insertion
71     // point in which the op can be inlined.
72     Block *newBlock = rewriter.splitBlock(originalBlock, Block::iterator(op));
73     rewriter.inlineRegionBefore(op.region(), newBlock);
74     // Now that op's region is inlined, the operands of its YieldOp are mapped
75     // to the materialized target values. Therefore, we can replace the op's
76     // uses with those of its YielOp's operands.
77     rewriter.replaceOp(op, yieldOp->getOperands());
78 
79     // No need for these intermediate blocks, merge them into 1.
80     rewriter.mergeBlocks(opEntryBlock, originalBlock, adaptor.getOperands());
81     rewriter.mergeBlocks(newBlock, originalBlock, {});
82 
83     rewriter.eraseOp(&*Block::iterator(yieldOp));
84 
85     return success();
86   }
87 };
88 
89 /// A conversion pattern for detensoring internal (non-entry) blocks within a
90 /// function.
91 struct FunctionNonEntryBlockConversion : public ConversionPattern {
92   FunctionNonEntryBlockConversion(MLIRContext *ctx, TypeConverter &converter,
93                                   DenseSet<BlockArgument> blockArgsToDetensor)
94       : ConversionPattern(converter, MatchTraitOpTypeTag(),
95                           TypeID::get<OpTrait::FunctionLike>(), /*benefit=*/1,
96                           ctx),
97         blockArgsToDetensor(std::move(blockArgsToDetensor)) {}
98 
99   LogicalResult
100   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
101                   ConversionPatternRewriter &rewriter) const override {
102     rewriter.startRootUpdate(op);
103     Region &region = function_like_impl::getFunctionBody(op);
104     SmallVector<TypeConverter::SignatureConversion, 2> conversions;
105 
106     for (Block &block : llvm::drop_begin(region, 1)) {
107       conversions.emplace_back(block.getNumArguments());
108       TypeConverter::SignatureConversion &back = conversions.back();
109 
110       for (BlockArgument blockArgument : block.getArguments()) {
111         int idx = blockArgument.getArgNumber();
112 
113         if (blockArgsToDetensor.count(blockArgument))
114           back.addInputs(idx, {getTypeConverter()->convertType(
115                                   block.getArgumentTypes()[idx])});
116         else
117           back.addInputs(idx, {block.getArgumentTypes()[idx]});
118       }
119     }
120 
121     if (failed(rewriter.convertNonEntryRegionTypes(&region, *typeConverter,
122                                                    conversions))) {
123       rewriter.cancelRootUpdate(op);
124       return failure();
125     }
126 
127     rewriter.finalizeRootUpdate(op);
128     return success();
129   }
130 
131 private:
132   const DenseSet<BlockArgument> blockArgsToDetensor;
133 };
134 
135 class DetensorizeTypeConverter : public TypeConverter {
136 public:
137   DetensorizeTypeConverter() {
138     addConversion([](Type type) { return type; });
139 
140     // A TensorType that can be detensored, is converted to the underlying
141     // element type.
142     addConversion([](TensorType tensorType) -> Type {
143       if (canBeDetensored(tensorType))
144         return tensorType.getElementType();
145 
146       return tensorType;
147     });
148 
149     // A tensor value is detensoried by extracting its element(s).
150     addTargetMaterialization([](OpBuilder &builder, Type type,
151                                 ValueRange inputs, Location loc) -> Value {
152       return builder.create<tensor::ExtractOp>(loc, inputs[0], ValueRange{});
153     });
154 
155     addSourceMaterialization(sourceMaterializationCallback);
156     addArgumentMaterialization(sourceMaterializationCallback);
157   }
158 };
159 
160 /// @see LinalgDetensorize in Linalg/Passes.td for more details.
161 struct LinalgDetensorize : public LinalgDetensorizeBase<LinalgDetensorize> {
162   LinalgDetensorize() = default;
163 
164   class CostModel {
165   public:
166     virtual ~CostModel() = default;
167 
168     /// A cost model algorithm computes the following outputs:
169     ///
170     /// - opsToDetensor: the list of linalg ops that should be
171     /// detensored.
172     ///
173     /// - blockArgsToDetensor: since the operands and results of detensored
174     /// linalg ops can cross the BB boundary (e.g. a linalg op's input can come
175     /// from a BB argument and a linalg op's output can be passed to successor
176     /// BBs), we need to maintain the sub-set of arguments that should be
177     /// detensored (i.e. converted by typeConverter) for each affected BB.
178     ///
179     /// Example:
180     ///
181     /// For the following snippet:
182     /// ...
183     /// ^bb1(%6: tensor<i32>, %9: tensor<i32>):
184     ///   %7 = linalg.init_tensor [] : tensor<i32>
185     ///   %8 = linalg.generic #attrs
186     ///     ins(%6, %6 : tensor<i32>, tensor<i32>)
187     ///     outs(%7 : tensor<i32>) {
188     ///     ^bb0(%arg0: i32, %arg1: i32, %arg2: i32):
189     ///       %9 = arith.addi %arg0, %arg1 : i32
190     ///       linalg.yield %9 : i32
191     ///   } -> tensor<i32>
192     ///   %10 = "some.op"(%9)
193     ///   br ^bb2(%8 : tensor<i32>)
194     /// ...
195     ///
196     /// if the cost model decides that the linalg.generic op should be
197     /// detensored, then:
198     /// - opsToDetensor should be = {linalg.generic{add}}.
199     /// - blockArgsToDetensor should be = {bb1 -> {0}, bb2 -> {0}}.
200     virtual void compute(Operation *func,
201                          DetensorizeTypeConverter typeConverter,
202                          DenseSet<Operation *> &opsToDetensor,
203                          DenseSet<BlockArgument> &blockArgsToDetensor) = 0;
204 
205     /// From the blockArgsToDetensor set computed by a CostModel
206     /// implementation, this method computes the corresponding branch op
207     /// detensoring. The result is a map from a branch op to a subset of indices
208     /// of its operands. The indices specify which of the branch op's operands
209     /// should be detensored.
210     ///
211     /// For the previous example, this method would compute: {bb2 -> {0}}.
212     static DenseMap<Operation *, DenseSet<int>> computeBranchOpDetensoring(
213         const DenseSet<BlockArgument> &blockArgsToDetensor) {
214       DenseMap<Operation *, DenseSet<int>> detensorableBranchOps;
215 
216       for (auto blockArgumentElem : blockArgsToDetensor) {
217         Block *block = blockArgumentElem.getOwner();
218 
219         for (PredecessorIterator pred = block->pred_begin();
220              pred != block->pred_end(); ++pred) {
221           BranchOpInterface terminator =
222               dyn_cast<BranchOpInterface>((*pred)->getTerminator());
223           auto blockOperands =
224               terminator.getSuccessorOperands(pred.getSuccessorIndex());
225 
226           if (!blockOperands || blockOperands->empty())
227             continue;
228 
229           detensorableBranchOps[terminator].insert(
230               blockOperands->getBeginOperandIndex() +
231               blockArgumentElem.getArgNumber());
232         }
233       }
234 
235       return detensorableBranchOps;
236     }
237   };
238 
239   /// Detensorize linalg ops involved in control-flow within a function.
240   ///
241   /// This model starts from BranchOps and CondBranchOps within a function. For
242   /// each such branch, the model then walks the use-def chain for the branch's
243   /// condition backwards in order to understand where the condition's value
244   /// comes from. If the condition value is (indirectly) computed by a linalg op
245   /// that can be detensored, the model then continues walking the use-def chain
246   /// in order to understand where the linalg op's operands come from. This
247   /// leads to discovering a "detensoring component". A detensoring component is
248   /// the set of operations + block arguments that are involved in control-flow
249   /// AND can be detensored.
250   class ControlFlowDetectionModel : public CostModel {
251   public:
252     void compute(Operation *func, DetensorizeTypeConverter typeConverter,
253                  DenseSet<Operation *> &opsToDetensor,
254                  DenseSet<BlockArgument> &blockArgsToDetensor) override {
255       SmallVector<Value> workList;
256 
257       func->walk([&](CondBranchOp condBr) {
258         for (auto operand : condBr.getOperands()) {
259           workList.push_back(operand);
260         }
261       });
262 
263       func->walk([&](BranchOp br) {
264         for (auto operand : br.getOperands()) {
265           workList.push_back(operand);
266         }
267       });
268 
269       DenseSet<Value> visitedValues;
270       DenseSet<Operation *> visitedOps;
271 
272       // For a (to-be-detesored) value, check if it "escapes" the block by being
273       // passed to terminator. If it does, then workList is updated with the
274       // corresponding argument to the successor block.
275       auto updateWorkListWithSuccessorArguments =
276           [&](Value value, BranchOpInterface terminator) {
277             if (!terminator)
278               return;
279 
280             for (auto operandIdx :
281                  llvm::seq<unsigned>(0, terminator->getOperands().size())) {
282               Value operand = terminator->getOperand(operandIdx);
283 
284               if (operand == value) {
285                 auto succBlockArg =
286                     terminator.getSuccessorBlockArgument(operandIdx);
287 
288                 if (succBlockArg && !blockArgsToDetensor.count(*succBlockArg))
289                   workList.push_back(*succBlockArg);
290               }
291             }
292           };
293 
294       while (!workList.empty()) {
295         Value currentItem = workList.pop_back_val();
296 
297         if (!visitedValues.insert(currentItem).second)
298           continue;
299 
300         // 1   - Look forward:
301         // 1.1 - If currentItem escapes to one or more successors, add
302         // the corresponding successor arguments to workList.
303         updateWorkListWithSuccessorArguments(
304             currentItem, dyn_cast<BranchOpInterface>(
305                              currentItem.getParentBlock()->getTerminator()));
306 
307         // 1.2 - For each user of currentItem, add the defined values to
308         // workList. This way, the user ops can be inspected later if they are
309         // detensorable and if so, their operands will be added to workList to
310         // potentially discover other parts of the detensorable component.
311         for (auto *user : currentItem.getUsers())
312           for (Value result : user->getResults())
313             workList.push_back(result);
314 
315         // 2   - Look backward:
316         // 2.1 - The current item is defined by a block argument. If the owner
317         // block is a non-entry one, then:
318         //       * Add the argument to blockArgsToDetensor.
319         //       * Walk the use-def chain backwards to add each predecessor's
320         //       terminator-operands corresponding to currentItem to workList.
321         if (currentItem.dyn_cast<BlockArgument>()) {
322           BlockArgument currentItemBlockArgument =
323               currentItem.cast<BlockArgument>();
324           Block *ownerBlock = currentItemBlockArgument.getOwner();
325 
326           // Function arguments are not detensored/converted.
327           if (&*ownerBlock->getParent()->begin() == ownerBlock)
328             continue;
329 
330           // This inner-block argument is involved in control-flow, it should be
331           // detensored.
332           blockArgsToDetensor.insert(currentItemBlockArgument);
333 
334           for (PredecessorIterator pred = ownerBlock->pred_begin();
335                pred != ownerBlock->pred_end(); ++pred) {
336             BranchOpInterface predTerminator =
337                 dyn_cast<BranchOpInterface>((*pred)->getTerminator());
338 
339             // TODO: For now, we give up if any of the control-flow components
340             // in a function is not detensorable. Fix that.
341             if (!predTerminator) {
342               opsToDetensor.clear();
343               blockArgsToDetensor.clear();
344               return;
345             }
346 
347             auto ownerBlockOperands =
348                 predTerminator.getSuccessorOperands(pred.getSuccessorIndex());
349 
350             if (!ownerBlockOperands || ownerBlockOperands->empty())
351               continue;
352 
353             // For each predecessor, add the value it passes to that argument to
354             // workList to find out how it's computed.
355             workList.push_back(
356                 ownerBlockOperands
357                     .getValue()[currentItemBlockArgument.getArgNumber()]);
358           }
359 
360           continue;
361         }
362 
363         Operation *currentItemDefiningOp = currentItem.getDefiningOp();
364 
365         if (!visitedOps.insert(currentItemDefiningOp).second)
366           continue;
367 
368         // 2.2 - The current item is computed by a GenericOp. If the op should
369         // be detensored, then:
370         //       * Add it to opsToDetensor.
371         //       * Add its operands to workList to discover other parts of the
372         //       potentially detensorable component.
373         if (auto genericOp = dyn_cast<GenericOp>(currentItemDefiningOp)) {
374           // The op was encountered already, no need to inspect it again.
375           if (opsToDetensor.count(genericOp))
376             continue;
377 
378           // The op should not be detensored, give up on it but continue with
379           // discovering the rest of the control-flow component.
380           if (!shouldBeDetensored(genericOp, typeConverter)) {
381             continue;
382           }
383 
384           opsToDetensor.insert(genericOp);
385 
386           for (Value genericOpOperand : genericOp.inputs())
387             workList.push_back(genericOpOperand);
388 
389           continue;
390         }
391 
392         // 2.3 - The current item is the result of a FromElementsOp, it will be
393         // trivially detensored later as part of canonicalization patterns
394         // applied at the end of detensoring.
395         //
396         // Note: No need to check whether the result type of this op is
397         // detensorable since if it wasn't we wouldn't reach that point in the
398         // work list.
399         if (dyn_cast<tensor::FromElementsOp>(currentItemDefiningOp))
400           continue;
401 
402         // 2.4 - The current item is the result of a scalar op, add all its
403         // operands to the work list.
404         if (llvm::all_of(
405                 currentItemDefiningOp->getResultTypes(),
406                 [&](Type resultType) { return resultType.isIntOrFloat(); }))
407           for (Value scalarOpOperand : currentItemDefiningOp->getOperands())
408             workList.push_back(scalarOpOperand);
409       }
410 
411       // Since the cost model gives up on some ops (see the details of step 2.2
412       // above), block arguments that correspond to the values produced by those
413       // ops should not be detensored as well.
414 
415       DenseSet<BlockArgument> blockArgsToRemove;
416 
417       for (auto &blockArg : blockArgsToDetensor) {
418         Block *block = blockArg.getParentBlock();
419 
420         // For the potentially detensorable block argument, find the
421         // correpsonding operands in predecessor blocks.
422         for (PredecessorIterator pred = block->pred_begin();
423              pred != block->pred_end(); ++pred) {
424           BranchOpInterface terminator =
425               dyn_cast<BranchOpInterface>((*pred)->getTerminator());
426           auto blockOperands =
427               terminator.getSuccessorOperands(pred.getSuccessorIndex());
428 
429           if (!blockOperands || blockOperands->empty())
430             continue;
431 
432           Operation *definingOp =
433               terminator
434                   ->getOperand(blockOperands->getBeginOperandIndex() +
435                                blockArg.getArgNumber())
436                   .getDefiningOp();
437 
438           // If the operand is defined by a GenericOp that will not be
439           // detensored, then do not detensor the corresponding block argument.
440           if (dyn_cast_or_null<GenericOp>(definingOp) &&
441               opsToDetensor.count(definingOp) == 0) {
442             blockArgsToRemove.insert(blockArg);
443             break;
444           }
445         }
446       }
447 
448       for (auto &blockArg : blockArgsToRemove) {
449         blockArgsToDetensor.erase(blockArg);
450       }
451     }
452   };
453 
454   /// Detensorize everything that can detensored.
455   class AggressiveDetensoringModel : public CostModel {
456   public:
457     void compute(Operation *func, DetensorizeTypeConverter typeConverter,
458                  DenseSet<Operation *> &opsToDetensor,
459                  DenseSet<BlockArgument> &blockArgsToDetensor) override {
460       func->walk([&](GenericOp genericOp) {
461         if (shouldBeDetensored(genericOp, typeConverter))
462           opsToDetensor.insert(genericOp);
463       });
464 
465       for (Block &block :
466            llvm::drop_begin(function_like_impl::getFunctionBody(func), 1))
467         for (BlockArgument blockArgument : block.getArguments())
468           blockArgsToDetensor.insert(blockArgument);
469     }
470   };
471 
472   void runOnOperation() override {
473     assert(getOperation()->hasTrait<OpTrait::FunctionLike>() &&
474            "DetensorizePass can only be run on FunctionLike operations");
475     MLIRContext *context = &getContext();
476     DetensorizeTypeConverter typeConverter;
477     RewritePatternSet patterns(context);
478     ConversionTarget target(*context);
479     DenseSet<Operation *> opsToDetensor;
480     DenseMap<Operation *, DenseSet<int>> detensorableBranchOps;
481     DenseSet<BlockArgument> blockArgsToDetensor;
482 
483     if (aggressiveMode.getValue()) {
484       AggressiveDetensoringModel costModel;
485       costModel.compute(getOperation(), typeConverter, opsToDetensor,
486                         blockArgsToDetensor);
487 
488     } else {
489       ControlFlowDetectionModel costModel;
490       costModel.compute(getOperation(), typeConverter, opsToDetensor,
491                         blockArgsToDetensor);
492     }
493 
494     detensorableBranchOps =
495         CostModel::computeBranchOpDetensoring(blockArgsToDetensor);
496 
497     target.addDynamicallyLegalOp<GenericOp>(
498         [&](GenericOp op) { return !opsToDetensor.count(op); });
499 
500     target.markUnknownOpDynamicallyLegal([&](Operation *op) {
501       // A function is legal if all of its non-entry blocks are legal. We
502       // don't legalize the entry block (i.e. the function's signature)
503       // since detensoring can't happen along external calling convention
504       // boundaries, which we conservatively approximate as all function
505       // signatures.
506       if (op->hasTrait<OpTrait::FunctionLike>()) {
507         auto &body = function_like_impl::getFunctionBody(op);
508         return llvm::all_of(llvm::drop_begin(body, 1), [&](Block &block) {
509           return !llvm::any_of(
510               blockArgsToDetensor, [&](BlockArgument blockArgument) {
511                 return blockArgument.getOwner() == &block &&
512                        !typeConverter.isLegal(blockArgument.getType());
513               });
514         });
515       }
516 
517       if (isNotBranchOpInterfaceOrReturnLikeOp(op) ||
518           isLegalForReturnOpTypeConversionPattern(op, typeConverter,
519                                                   /*returnOpAlwaysLegal*/ true))
520         return true;
521 
522       if (auto branchOp = dyn_cast<BranchOpInterface>(op)) {
523         if (!detensorableBranchOps.count(branchOp))
524           return true;
525 
526         for (auto operandIdx : detensorableBranchOps[branchOp])
527           if (!typeConverter.isLegal(
528                   branchOp->getOperand(operandIdx).getType()))
529             return false;
530 
531         return true;
532       }
533 
534       return false;
535     });
536 
537     patterns.insert<DetensorizeGenericOp>(typeConverter, context);
538     patterns.insert<FunctionNonEntryBlockConversion>(context, typeConverter,
539                                                      blockArgsToDetensor);
540     // Since non-entry block arguments get detensorized, we also need to
541     // update the control flow inside the function to reflect the correct
542     // types.
543     auto shouldConvertBranchOperand = [&](BranchOpInterface branchOp,
544                                           int operandIdx) -> bool {
545       return detensorableBranchOps.count(branchOp) &&
546              detensorableBranchOps[branchOp].count(operandIdx);
547     };
548 
549     populateBranchOpInterfaceTypeConversionPattern(patterns, typeConverter,
550                                                    shouldConvertBranchOperand);
551 
552     if (failed(
553             applyFullConversion(getOperation(), target, std::move(patterns))))
554       signalPassFailure();
555 
556     RewritePatternSet canonPatterns(context);
557     tensor::FromElementsOp::getCanonicalizationPatterns(canonPatterns, context);
558     if (failed(applyPatternsAndFoldGreedily(getOperation(),
559                                             std::move(canonPatterns))))
560       signalPassFailure();
561   }
562 };
563 } // namespace
564 
565 std::unique_ptr<Pass> mlir::createLinalgDetensorizePass() {
566   return std::make_unique<LinalgDetensorize>();
567 }
568