1 //===- Bufferize.cpp - Bufferization of linalg ops ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Transforms/Bufferize.h"
10 #include "PassDetail.h"
11 #include "mlir/Dialect/Linalg/IR/LinalgOps.h"
12 #include "mlir/Dialect/Linalg/Passes.h"
13 #include "mlir/Dialect/Linalg/Transforms/Transforms.h"
14 #include "mlir/Dialect/Linalg/Utils/Utils.h"
15 #include "mlir/Dialect/Math/IR/Math.h"
16 #include "mlir/Dialect/StandardOps/Transforms/Passes.h"
17 #include "mlir/Dialect/StandardOps/Utils/Utils.h"
18 #include "mlir/Dialect/Vector/VectorOps.h"
19 #include "mlir/IR/BuiltinDialect.h"
20 #include "mlir/IR/Operation.h"
21 #include "mlir/Pass/Pass.h"
22 
23 using namespace ::mlir;
24 using namespace ::mlir::linalg;
25 
26 static Value cloneMemref(Location loc, Value memref, OpBuilder &b) {
27   auto memrefType = memref.getType().cast<MemRefType>();
28   auto alloc = b.create<memref::AllocOp>(loc, memrefType,
29                                          getDynOperands(loc, memref, b));
30   b.create<linalg::CopyOp>(loc, memref, alloc);
31   return alloc;
32 }
33 
34 static LogicalResult
35 allocateBuffersForResults(Location loc, LinalgOp linalgOp, ValueRange outputs,
36                           SmallVectorImpl<Value> &resultBuffers, OpBuilder &b) {
37   // Lazily compute loopRanges.
38   SmallVector<Range, 4> loopRanges;
39 
40   // Allocate a buffer for every tensor result.
41   assert(linalgOp.getNumOutputs() == linalgOp->getNumResults());
42   for (auto en : llvm::enumerate(linalgOp->getResultTypes())) {
43     size_t resultIndex = en.index();
44     Type resultType = en.value();
45 
46     auto tensorType = resultType.dyn_cast<RankedTensorType>();
47     if (tensorType == nullptr) {
48       linalgOp.emitOpError()
49           << "tensor to buffer conversion expects ranked tensor results";
50       return failure();
51     }
52     auto tensorShape = tensorType.getShape();
53     auto memrefType = MemRefType::get(tensorShape, tensorType.getElementType());
54     Value resultTensor = outputs[resultIndex];
55 
56     // Clone output buffers whose value is actually used.
57     if (linalgOp.payloadUsesValueFromOutputOperandIndex(resultIndex)) {
58       resultBuffers.push_back(cloneMemref(loc, resultTensor, b));
59       continue;
60     }
61 
62     // Allocate buffers for statically-shaped results.
63     if (memrefType.hasStaticShape()) {
64       resultBuffers.push_back(b.create<memref::AllocOp>(loc, memrefType));
65       continue;
66     }
67 
68     resultBuffers.push_back(b.create<memref::AllocOp>(
69         loc, memrefType, getDynOperands(loc, resultTensor, b)));
70   }
71   return success();
72 }
73 
74 /// Specialization for `linalg::GenericOp` and `linalg::IndexedGenericOp`.
75 /// A pattern to convert Generic Linalg operations which work on tensors to
76 /// use buffers. BufferPlacement pass should be later used to move
77 /// Alloc operations to the correct positions and insert the missing Dealloc
78 /// operations in the correct places.
79 template <typename GenericOpTy>
80 static void
81 finalizeBufferAllocationForGenericOp(ConversionPatternRewriter &rewriter,
82                                      GenericOpTy genericOp, ValueRange inputs,
83                                      ValueRange outputs) {
84   // Generate a new linalg operation that works on buffers.
85   auto newGenericOp = rewriter.create<GenericOpTy>(
86       genericOp.getLoc(),
87       /*resultTensorTypes=*/llvm::None,
88       /*inputs=*/inputs,
89       /*outputs=*/outputs, genericOp.indexing_maps(),
90       genericOp.iterator_types(), genericOp.docAttr(),
91       genericOp.library_callAttr(), genericOp.sparseAttr());
92 
93   // Create a new block in the region of the new Generic Op.
94   Block *oldBlock = genericOp.getBody();
95   Region &newRegion = newGenericOp.region();
96   Block *newBlock = rewriter.createBlock(&newRegion, newRegion.begin(),
97                                          oldBlock->getArgumentTypes());
98 
99   // Clone the body of the old block to the new block.
100   BlockAndValueMapping mapping;
101   mapping.map(oldBlock->getArguments(), newBlock->getArguments());
102 
103   OpBuilder::InsertionGuard guard(rewriter);
104   rewriter.setInsertionPointToEnd(newBlock);
105   for (auto &op : oldBlock->getOperations()) {
106     Operation *clonedOp = rewriter.clone(op, mapping);
107     mapping.map(op.getResults(), clonedOp->getResults());
108   }
109 
110   // Replace the results of the old op with the new output buffers.
111   rewriter.replaceOp(genericOp, outputs);
112 }
113 
114 /// Specialization for all other `linalg::LinalgOp`.
115 static void finalizeBufferAllocation(ConversionPatternRewriter &rewriter,
116                                      linalg::LinalgOp linalgOp,
117                                      ValueRange inputs, ValueRange outputs) {
118   assert(!isa<linalg::GenericOp>(linalgOp.getOperation()));
119   assert(!isa<linalg::IndexedGenericOp>(linalgOp.getOperation()));
120   SmallVector<Value, 8> newOperands = inputs;
121   newOperands.append(outputs.begin(), outputs.end());
122   auto otherOperands = linalgOp.getAssumedNonShapedOperands();
123   newOperands.append(otherOperands.begin(), otherOperands.end());
124   linalgOp.clone(rewriter, linalgOp.getLoc(),
125                  /*resultTypes=*/ArrayRef<Type>{}, newOperands);
126   // Replace the results of the old op with the new output buffers.
127   rewriter.replaceOp(linalgOp, outputs);
128 }
129 
130 //===----------------------------------------------------------------------===//
131 // Bufferization patterns.
132 //===----------------------------------------------------------------------===//
133 
134 namespace {
135 
136 /// Conversion pattern that replaces `linalg.init_tensor` with allocation.
137 class BufferizeInitTensorOp : public OpConversionPattern<InitTensorOp> {
138 public:
139   using OpConversionPattern<InitTensorOp>::OpConversionPattern;
140 
141   LogicalResult
142   matchAndRewrite(InitTensorOp op, ArrayRef<Value> operands,
143                   ConversionPatternRewriter &rewriter) const final {
144     linalg::InitTensorOpAdaptor adaptor(operands, op->getAttrDictionary());
145     rewriter.replaceOpWithNewOp<memref::AllocOp>(
146         op, getTypeConverter()->convertType(op.getType()).cast<MemRefType>(),
147         adaptor.sizes());
148     return success();
149   }
150 };
151 
152 /// Conversion pattern that bufferizes `linalg.fill` operation.
153 class BufferizeFillOp : public OpConversionPattern<FillOp> {
154 public:
155   using OpConversionPattern<FillOp>::OpConversionPattern;
156 
157   LogicalResult
158   matchAndRewrite(FillOp op, ArrayRef<Value> operands,
159                   ConversionPatternRewriter &rewriter) const final {
160     linalg::FillOpAdaptor adaptor(operands, op->getAttrDictionary());
161     if (!op.output().getType().isa<TensorType>())
162       return rewriter.notifyMatchFailure(op,
163                                          "operand must be of a tensor type");
164 
165     rewriter.create<FillOp>(op.getLoc(), adaptor.output(), adaptor.value());
166     rewriter.replaceOp(op, adaptor.output());
167 
168     return success();
169   }
170 };
171 
172 /// Generic conversion pattern that matches any LinalgOp. This avoids template
173 /// instantiating one pattern for each LinalgOp.
174 class BufferizeAnyLinalgOp : public OpInterfaceConversionPattern<LinalgOp> {
175 public:
176   using OpInterfaceConversionPattern<LinalgOp>::OpInterfaceConversionPattern;
177 
178   LogicalResult
179   matchAndRewrite(LinalgOp op, ArrayRef<Value> operands,
180                   ConversionPatternRewriter &rewriter) const final {
181     // GenericOpAdaptor below expects an `operand_segment_sizes` attribute.
182     if (!op->hasAttr("operand_segment_sizes"))
183       return failure();
184 
185     // We abuse the GenericOpAdaptor here.
186     // TODO: Manually create an Adaptor that captures inputs and outputs for all
187     // linalg::LinalgOp interface ops.
188     linalg::GenericOpAdaptor adaptor(operands, op->getAttrDictionary());
189 
190     Location loc = op.getLoc();
191     SmallVector<Value, 2> newOutputBuffers;
192 
193     if (failed(allocateBuffersForResults(loc, op, adaptor.outputs(),
194                                          newOutputBuffers, rewriter))) {
195       return op.emitOpError()
196              << "Failed to allocate buffers for tensor results.";
197     }
198 
199     // Delegate to the linalg generic pattern.
200     if (auto genericOp = dyn_cast<linalg::GenericOp>(*op)) {
201       finalizeBufferAllocationForGenericOp<GenericOp>(
202           rewriter, genericOp, adaptor.inputs(), newOutputBuffers);
203       return success();
204     }
205 
206     // Delegate to the linalg indexed generic pattern.
207     if (auto genericOp = dyn_cast<linalg::IndexedGenericOp>(*op)) {
208       finalizeBufferAllocationForGenericOp<IndexedGenericOp>(
209           rewriter, genericOp, adaptor.inputs(), newOutputBuffers);
210       return success();
211     }
212 
213     finalizeBufferAllocation(rewriter, op, adaptor.inputs(), newOutputBuffers);
214     return success();
215   }
216 };
217 
218 /// Convert `subtensor %t [offsets][sizes][strides] -> %st` to an alloc + copy
219 /// pattern.
220 /// ```
221 ///   %a = alloc(sizes)
222 ///   %sv = subview %source [offsets][sizes][strides]
223 ///   linalg_copy(%sv, %a)
224 /// ```
225 ///
226 /// This pattern is arguable a std pattern once linalg::CopyOp becomes
227 /// std::CopyOp.
228 class SubTensorOpConverter : public OpConversionPattern<SubTensorOp> {
229 public:
230   using OpConversionPattern<SubTensorOp>::OpConversionPattern;
231 
232   LogicalResult
233   matchAndRewrite(SubTensorOp op, ArrayRef<Value> operands,
234                   ConversionPatternRewriter &rewriter) const final {
235     SubTensorOpAdaptor adaptor(operands, op->getAttrDictionary());
236     Value sourceMemref = adaptor.source();
237     assert(sourceMemref.getType().isa<MemRefType>());
238 
239     MemRefType subviewMemRefType =
240         getTypeConverter()->convertType(op.getType()).cast<MemRefType>();
241     // op.sizes() capture exactly the dynamic alloc operands matching the
242     // subviewMemRefType thanks to subview/subtensor canonicalization and
243     // verification.
244     Value alloc = rewriter.create<memref::AllocOp>(
245         op.getLoc(), subviewMemRefType, op.sizes());
246     Value subView = rewriter.create<memref::SubViewOp>(
247         op.getLoc(), sourceMemref, op.getMixedOffsets(), op.getMixedSizes(),
248         op.getMixedStrides());
249     rewriter.create<linalg::CopyOp>(op.getLoc(), subView, alloc);
250     rewriter.replaceOp(op, alloc);
251     return success();
252   }
253 };
254 
255 /// Convert `subtensor_insert %source into %dest [offsets][sizes][strides] ->
256 /// %t` to an buffer_cast + subview + copy + tensor_load pattern.
257 /// buffer_cast and tensor_load are inserted automatically by the
258 /// conversion infra:
259 /// ```
260 ///   %sv = subview %dest [offsets][sizes][strides]
261 ///   linalg_copy(%source, %sv)
262 ///   // replace with %dest
263 /// ```
264 ///
265 /// This pattern is arguable a std pattern once linalg::CopyOp becomes
266 /// std::CopyOp.
267 class SubTensorInsertOpConverter
268     : public OpConversionPattern<SubTensorInsertOp> {
269 public:
270   using OpConversionPattern<SubTensorInsertOp>::OpConversionPattern;
271 
272   LogicalResult
273   matchAndRewrite(SubTensorInsertOp op, ArrayRef<Value> operands,
274                   ConversionPatternRewriter &rewriter) const final {
275     SubTensorInsertOpAdaptor adaptor(operands, op->getAttrDictionary());
276     Value sourceMemRef = adaptor.source();
277     assert(sourceMemRef.getType().isa<MemRefType>());
278 
279     // For now, be conservative and copy the converted input memref.
280     // In general, the converted input memref here could be aliased or could
281     // point into constant memory, so mutating it would lead to miscompilations.
282     Value destMemRef = cloneMemref(op.getLoc(), adaptor.dest(), rewriter);
283     assert(destMemRef.getType().isa<MemRefType>());
284 
285     // Take a subview to copy the small memref.
286     Value subview = rewriter.create<memref::SubViewOp>(
287         op.getLoc(), destMemRef, op.getMixedOffsets(), op.getMixedSizes(),
288         op.getMixedStrides());
289     // Copy the small memref.
290     rewriter.create<linalg::CopyOp>(op.getLoc(), sourceMemRef, subview);
291     rewriter.replaceOp(op, destMemRef);
292     return success();
293   }
294 };
295 } // namespace
296 
297 namespace {
298 /// Converts Linalg operations that work on tensor-type operands or results to
299 /// work on buffers.
300 struct LinalgBufferizePass : public LinalgBufferizeBase<LinalgBufferizePass> {
301   void runOnOperation() override {
302     MLIRContext &context = getContext();
303     ConversionTarget target(context);
304     BufferizeTypeConverter typeConverter;
305 
306     // Mark all Standard operations legal.
307     target.addLegalDialect<AffineDialect, math::MathDialect,
308                            memref::MemRefDialect, StandardOpsDialect>();
309     target.addIllegalOp<InitTensorOp, SubTensorOp, SubTensorInsertOp>();
310 
311     // Mark all Linalg operations illegal as long as they work on tensors.
312     auto isLegalOperation = [&](Operation *op) {
313       return typeConverter.isLegal(op);
314     };
315     target.addDynamicallyLegalDialect<linalg::LinalgDialect>(isLegalOperation);
316     target.addDynamicallyLegalOp<ConstantOp>(isLegalOperation);
317 
318     RewritePatternSet patterns(&context);
319     populateLinalgBufferizePatterns(typeConverter, patterns);
320     if (failed(applyPartialConversion(getOperation(), target,
321                                       std::move(patterns))))
322       signalPassFailure();
323   }
324 };
325 } // end anonymous namespace
326 
327 std::unique_ptr<OperationPass<FuncOp>> mlir::createLinalgBufferizePass() {
328   return std::make_unique<LinalgBufferizePass>();
329 }
330 
331 void mlir::linalg::populateLinalgBufferizePatterns(
332     BufferizeTypeConverter &typeConverter, RewritePatternSet &patterns) {
333   // TODO: Drop this once tensor constants work in standard.
334   // clang-format off
335   patterns.add<
336       BufferizeAnyLinalgOp,
337       BufferizeFillOp,
338       BufferizeInitTensorOp,
339       SubTensorOpConverter,
340       SubTensorInsertOpConverter
341     >(typeConverter, patterns.getContext());
342   // clang-format on
343 }
344