1 //===- Bufferize.cpp - Bufferization of linalg ops ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Transforms/Bufferize.h"
10 #include "PassDetail.h"
11 #include "mlir/Dialect/Linalg/IR/LinalgOps.h"
12 #include "mlir/Dialect/Linalg/Passes.h"
13 #include "mlir/Dialect/Linalg/Transforms/Transforms.h"
14 #include "mlir/Dialect/Linalg/Utils/Utils.h"
15 #include "mlir/Dialect/Math/IR/Math.h"
16 #include "mlir/Dialect/StandardOps/Transforms/Passes.h"
17 #include "mlir/Dialect/StandardOps/Utils/Utils.h"
18 #include "mlir/Dialect/Vector/VectorOps.h"
19 #include "mlir/IR/BuiltinDialect.h"
20 #include "mlir/IR/Operation.h"
21 #include "mlir/Pass/Pass.h"
22 
23 using namespace ::mlir;
24 using namespace ::mlir::linalg;
25 
26 static Value cloneMemref(Location loc, Value memref, OpBuilder &b) {
27   auto memrefType = memref.getType().cast<MemRefType>();
28   auto alloc = b.create<memref::AllocOp>(loc, memrefType,
29                                          getDynOperands(loc, memref, b));
30   b.create<linalg::CopyOp>(loc, memref, alloc);
31   return alloc;
32 }
33 
34 static LogicalResult
35 allocateBuffersForResults(Location loc, LinalgOp linalgOp, ValueRange outputs,
36                           SmallVectorImpl<Value> &resultBuffers, OpBuilder &b) {
37   // Lazily compute loopRanges.
38   SmallVector<Range, 4> loopRanges;
39 
40   // Allocate a buffer for every tensor result.
41   assert(linalgOp.getNumOutputs() == linalgOp->getNumResults());
42   for (auto en : llvm::enumerate(linalgOp->getResultTypes())) {
43     size_t resultIndex = en.index();
44     Type resultType = en.value();
45 
46     auto tensorType = resultType.dyn_cast<RankedTensorType>();
47     if (tensorType == nullptr) {
48       linalgOp.emitOpError()
49           << "tensor to buffer conversion expects ranked tensor results";
50       return failure();
51     }
52     auto tensorShape = tensorType.getShape();
53     auto memrefType = MemRefType::get(tensorShape, tensorType.getElementType());
54     Value resultTensor = outputs[resultIndex];
55 
56     // Clone output buffers whose value is actually used.
57     if (linalgOp.payloadUsesValueFromOutputOperandIndex(resultIndex)) {
58       resultBuffers.push_back(cloneMemref(loc, resultTensor, b));
59       continue;
60     }
61 
62     if (auto alloc = resultTensor.getDefiningOp<memref::AllocOp>()) {
63       resultBuffers.push_back(resultTensor);
64       continue;
65     }
66     // Allocate buffers for statically-shaped results.
67     if (memrefType.hasStaticShape()) {
68       resultBuffers.push_back(b.create<memref::AllocOp>(loc, memrefType));
69       continue;
70     }
71 
72     resultBuffers.push_back(b.create<memref::AllocOp>(
73         loc, memrefType, getDynOperands(loc, resultTensor, b)));
74   }
75   return success();
76 }
77 
78 /// Specialization for `linalg::GenericOp` and `linalg::IndexedGenericOp`.
79 /// A pattern to convert Generic Linalg operations which work on tensors to
80 /// use buffers. BufferPlacement pass should be later used to move
81 /// Alloc operations to the correct positions and insert the missing Dealloc
82 /// operations in the correct places.
83 template <typename GenericOpTy>
84 static void
85 finalizeBufferAllocationForGenericOp(ConversionPatternRewriter &rewriter,
86                                      GenericOpTy genericOp, ValueRange inputs,
87                                      ValueRange outputs) {
88   // Generate a new linalg operation that works on buffers.
89   auto newGenericOp = rewriter.create<GenericOpTy>(
90       genericOp.getLoc(),
91       /*resultTensorTypes=*/llvm::None,
92       /*inputs=*/inputs,
93       /*outputs=*/outputs, genericOp.indexing_maps(),
94       genericOp.iterator_types(), genericOp.docAttr(),
95       genericOp.library_callAttr(), genericOp.sparseAttr());
96 
97   // Create a new block in the region of the new Generic Op.
98   Block *oldBlock = genericOp.getBody();
99   Region &newRegion = newGenericOp.region();
100   Block *newBlock = rewriter.createBlock(&newRegion, newRegion.begin(),
101                                          oldBlock->getArgumentTypes());
102 
103   // Clone the body of the old block to the new block.
104   BlockAndValueMapping mapping;
105   mapping.map(oldBlock->getArguments(), newBlock->getArguments());
106 
107   OpBuilder::InsertionGuard guard(rewriter);
108   rewriter.setInsertionPointToEnd(newBlock);
109   for (auto &op : oldBlock->getOperations()) {
110     Operation *clonedOp = rewriter.clone(op, mapping);
111     mapping.map(op.getResults(), clonedOp->getResults());
112   }
113 
114   // Replace the results of the old op with the new output buffers.
115   rewriter.replaceOp(genericOp, outputs);
116 }
117 
118 /// Specialization for all other `linalg::LinalgOp`.
119 static void finalizeBufferAllocation(ConversionPatternRewriter &rewriter,
120                                      linalg::LinalgOp linalgOp,
121                                      ValueRange inputs, ValueRange outputs) {
122   assert(!isa<linalg::GenericOp>(linalgOp.getOperation()));
123   assert(!isa<linalg::IndexedGenericOp>(linalgOp.getOperation()));
124   SmallVector<Value, 8> newOperands = inputs;
125   newOperands.append(outputs.begin(), outputs.end());
126   auto otherOperands = linalgOp.getAssumedNonShapedOperands();
127   newOperands.append(otherOperands.begin(), otherOperands.end());
128   linalgOp.clone(rewriter, linalgOp.getLoc(),
129                  /*resultTypes=*/ArrayRef<Type>{}, newOperands);
130   // Replace the results of the old op with the new output buffers.
131   rewriter.replaceOp(linalgOp, outputs);
132 }
133 
134 //===----------------------------------------------------------------------===//
135 // Bufferization patterns.
136 //===----------------------------------------------------------------------===//
137 
138 namespace {
139 
140 /// Conversion pattern that replaces `linalg.init_tensor` with allocation.
141 class BufferizeInitTensorOp : public OpConversionPattern<InitTensorOp> {
142 public:
143   using OpConversionPattern<InitTensorOp>::OpConversionPattern;
144 
145   LogicalResult
146   matchAndRewrite(InitTensorOp op, ArrayRef<Value> operands,
147                   ConversionPatternRewriter &rewriter) const final {
148     linalg::InitTensorOpAdaptor adaptor(operands, op->getAttrDictionary());
149     rewriter.replaceOpWithNewOp<memref::AllocOp>(
150         op, getTypeConverter()->convertType(op.getType()).cast<MemRefType>(),
151         adaptor.sizes());
152     return success();
153   }
154 };
155 
156 /// Conversion pattern that bufferizes `linalg.fill` operation.
157 class BufferizeFillOp : public OpConversionPattern<FillOp> {
158 public:
159   using OpConversionPattern<FillOp>::OpConversionPattern;
160 
161   LogicalResult
162   matchAndRewrite(FillOp op, ArrayRef<Value> operands,
163                   ConversionPatternRewriter &rewriter) const final {
164     linalg::FillOpAdaptor adaptor(operands, op->getAttrDictionary());
165     if (!op.output().getType().isa<TensorType>())
166       return rewriter.notifyMatchFailure(op,
167                                          "operand must be of a tensor type");
168 
169     rewriter.create<FillOp>(op.getLoc(), adaptor.output(), adaptor.value());
170     rewriter.replaceOp(op, adaptor.output());
171 
172     return success();
173   }
174 };
175 
176 /// Generic conversion pattern that matches any LinalgOp. This avoids template
177 /// instantiating one pattern for each LinalgOp.
178 class BufferizeAnyLinalgOp : public OpInterfaceConversionPattern<LinalgOp> {
179 public:
180   using OpInterfaceConversionPattern<LinalgOp>::OpInterfaceConversionPattern;
181 
182   LogicalResult
183   matchAndRewrite(LinalgOp op, ArrayRef<Value> operands,
184                   ConversionPatternRewriter &rewriter) const final {
185     // GenericOpAdaptor below expects an `operand_segment_sizes` attribute.
186     if (!op->hasAttr("operand_segment_sizes"))
187       return failure();
188 
189     // We abuse the GenericOpAdaptor here.
190     // TODO: Manually create an Adaptor that captures inputs and outputs for all
191     // linalg::LinalgOp interface ops.
192     linalg::GenericOpAdaptor adaptor(operands, op->getAttrDictionary());
193 
194     Location loc = op.getLoc();
195     SmallVector<Value, 2> newOutputBuffers;
196 
197     if (failed(allocateBuffersForResults(loc, op, adaptor.outputs(),
198                                          newOutputBuffers, rewriter))) {
199       return op.emitOpError()
200              << "Failed to allocate buffers for tensor results.";
201     }
202 
203     // Delegate to the linalg generic pattern.
204     if (auto genericOp = dyn_cast<linalg::GenericOp>(*op)) {
205       finalizeBufferAllocationForGenericOp<GenericOp>(
206           rewriter, genericOp, adaptor.inputs(), newOutputBuffers);
207       return success();
208     }
209 
210     // Delegate to the linalg indexed generic pattern.
211     if (auto genericOp = dyn_cast<linalg::IndexedGenericOp>(*op)) {
212       finalizeBufferAllocationForGenericOp<IndexedGenericOp>(
213           rewriter, genericOp, adaptor.inputs(), newOutputBuffers);
214       return success();
215     }
216 
217     finalizeBufferAllocation(rewriter, op, adaptor.inputs(), newOutputBuffers);
218     return success();
219   }
220 };
221 
222 /// Convert `subtensor %t [offsets][sizes][strides] -> %st` to an alloc + copy
223 /// pattern.
224 /// ```
225 ///   %a = alloc(sizes)
226 ///   %sv = subview %source [offsets][sizes][strides]
227 ///   linalg_copy(%sv, %a)
228 /// ```
229 ///
230 /// This pattern is arguable a std pattern once linalg::CopyOp becomes
231 /// std::CopyOp.
232 class SubTensorOpConverter : public OpConversionPattern<SubTensorOp> {
233 public:
234   using OpConversionPattern<SubTensorOp>::OpConversionPattern;
235 
236   LogicalResult
237   matchAndRewrite(SubTensorOp op, ArrayRef<Value> operands,
238                   ConversionPatternRewriter &rewriter) const final {
239     SubTensorOpAdaptor adaptor(operands, op->getAttrDictionary());
240     Value sourceMemref = adaptor.source();
241     assert(sourceMemref.getType().isa<MemRefType>());
242 
243     MemRefType subviewMemRefType =
244         getTypeConverter()->convertType(op.getType()).cast<MemRefType>();
245     // op.sizes() capture exactly the dynamic alloc operands matching the
246     // subviewMemRefType thanks to subview/subtensor canonicalization and
247     // verification.
248     Value alloc = rewriter.create<memref::AllocOp>(
249         op.getLoc(), subviewMemRefType, op.sizes());
250     Value subView = rewriter.create<memref::SubViewOp>(
251         op.getLoc(), sourceMemref, op.getMixedOffsets(), op.getMixedSizes(),
252         op.getMixedStrides());
253     rewriter.create<linalg::CopyOp>(op.getLoc(), subView, alloc);
254     rewriter.replaceOp(op, alloc);
255     return success();
256   }
257 };
258 
259 /// Convert `subtensor_insert %source into %dest [offsets][sizes][strides] ->
260 /// %t` to an buffer_cast + subview + copy + tensor_load pattern.
261 /// buffer_cast and tensor_load are inserted automatically by the
262 /// conversion infra:
263 /// ```
264 ///   %sv = subview %dest [offsets][sizes][strides]
265 ///   linalg_copy(%source, %sv)
266 ///   // replace with %dest
267 /// ```
268 ///
269 /// This pattern is arguable a std pattern once linalg::CopyOp becomes
270 /// std::CopyOp.
271 class SubTensorInsertOpConverter
272     : public OpConversionPattern<SubTensorInsertOp> {
273 public:
274   using OpConversionPattern<SubTensorInsertOp>::OpConversionPattern;
275 
276   LogicalResult
277   matchAndRewrite(SubTensorInsertOp op, ArrayRef<Value> operands,
278                   ConversionPatternRewriter &rewriter) const final {
279     SubTensorInsertOpAdaptor adaptor(operands, op->getAttrDictionary());
280     Value sourceMemRef = adaptor.source();
281     assert(sourceMemRef.getType().isa<MemRefType>());
282 
283     // For now, be conservative and copy the converted input memref.
284     // In general, the converted input memref here could be aliased or could
285     // point into constant memory, so mutating it would lead to miscompilations.
286     Value destMemRef = cloneMemref(op.getLoc(), adaptor.dest(), rewriter);
287     assert(destMemRef.getType().isa<MemRefType>());
288 
289     // Take a subview to copy the small memref.
290     Value subview = rewriter.create<memref::SubViewOp>(
291         op.getLoc(), destMemRef, op.getMixedOffsets(), op.getMixedSizes(),
292         op.getMixedStrides());
293     // Copy the small memref.
294     rewriter.create<linalg::CopyOp>(op.getLoc(), sourceMemRef, subview);
295     rewriter.replaceOp(op, destMemRef);
296     return success();
297   }
298 };
299 } // namespace
300 
301 namespace {
302 /// Converts Linalg operations that work on tensor-type operands or results to
303 /// work on buffers.
304 struct LinalgBufferizePass : public LinalgBufferizeBase<LinalgBufferizePass> {
305   void runOnOperation() override {
306     MLIRContext &context = getContext();
307     ConversionTarget target(context);
308     BufferizeTypeConverter typeConverter;
309 
310     // Mark all Standard operations legal.
311     target.addLegalDialect<AffineDialect, math::MathDialect,
312                            memref::MemRefDialect, StandardOpsDialect>();
313     target.addIllegalOp<InitTensorOp, SubTensorOp, SubTensorInsertOp>();
314 
315     // Mark all Linalg operations illegal as long as they work on tensors.
316     auto isLegalOperation = [&](Operation *op) {
317       return typeConverter.isLegal(op);
318     };
319     target.addDynamicallyLegalDialect<linalg::LinalgDialect>(isLegalOperation);
320     target.addDynamicallyLegalOp<ConstantOp>(isLegalOperation);
321 
322     RewritePatternSet patterns(&context);
323     populateLinalgBufferizePatterns(typeConverter, patterns);
324     if (failed(applyPartialConversion(getOperation(), target,
325                                       std::move(patterns))))
326       signalPassFailure();
327   }
328 };
329 } // end anonymous namespace
330 
331 std::unique_ptr<OperationPass<FuncOp>> mlir::createLinalgBufferizePass() {
332   return std::make_unique<LinalgBufferizePass>();
333 }
334 
335 void mlir::linalg::populateLinalgBufferizePatterns(
336     BufferizeTypeConverter &typeConverter, RewritePatternSet &patterns) {
337   // TODO: Drop this once tensor constants work in standard.
338   // clang-format off
339   patterns.add<
340       BufferizeAnyLinalgOp,
341       BufferizeFillOp,
342       BufferizeInitTensorOp,
343       SubTensorOpConverter,
344       SubTensorInsertOpConverter
345     >(typeConverter, patterns.getContext());
346   // clang-format on
347 }
348