1 //===- MemoryPromotion.cpp - Utilities for moving data across GPU memories ===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements utilities that allow one to create IR moving the data
10 // across different levels of the GPU memory hierarchy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "mlir/Dialect/GPU/MemoryPromotion.h"
15 #include "mlir/Dialect/GPU/GPUDialect.h"
16 #include "mlir/Dialect/MemRef/IR/MemRef.h"
17 #include "mlir/Dialect/SCF/SCF.h"
18 #include "mlir/Dialect/StandardOps/IR/Ops.h"
19 #include "mlir/IR/ImplicitLocOpBuilder.h"
20 #include "mlir/Pass/Pass.h"
21 #include "mlir/Transforms/LoopUtils.h"
22 
23 using namespace mlir;
24 using namespace mlir::gpu;
25 
26 /// Returns the textual name of a GPU dimension.
27 static StringRef getDimName(unsigned dim) {
28   if (dim == 0)
29     return "x";
30   if (dim == 1)
31     return "y";
32   if (dim == 2)
33     return "z";
34 
35   llvm_unreachable("dimension ID overflow");
36 }
37 
38 /// Emits the (imperfect) loop nest performing the copy between "from" and "to"
39 /// values using the bounds derived from the "from" value. Emits at least
40 /// GPUDialect::getNumWorkgroupDimensions() loops, completing the nest with
41 /// single-iteration loops. Maps the innermost loops to thread dimensions, in
42 /// reverse order to enable access coalescing in the innermost loop.
43 static void insertCopyLoops(ImplicitLocOpBuilder &b, Value from, Value to) {
44   auto memRefType = from.getType().cast<MemRefType>();
45   auto rank = memRefType.getRank();
46 
47   SmallVector<Value, 4> lbs, ubs, steps;
48   Value zero = b.create<ConstantIndexOp>(0);
49   Value one = b.create<ConstantIndexOp>(1);
50 
51   // Make sure we have enough loops to use all thread dimensions, these trivial
52   // loops should be outermost and therefore inserted first.
53   if (rank < GPUDialect::getNumWorkgroupDimensions()) {
54     unsigned extraLoops = GPUDialect::getNumWorkgroupDimensions() - rank;
55     lbs.resize(extraLoops, zero);
56     ubs.resize(extraLoops, one);
57     steps.resize(extraLoops, one);
58   }
59 
60   // Add existing bounds.
61   lbs.append(rank, zero);
62   ubs.reserve(lbs.size());
63   steps.reserve(lbs.size());
64   for (auto idx = 0; idx < rank; ++idx) {
65     ubs.push_back(
66         b.createOrFold<memref::DimOp>(from, b.create<ConstantIndexOp>(idx)));
67     steps.push_back(one);
68   }
69 
70   // Obtain thread identifiers and block sizes, necessary to map to them.
71   auto indexType = b.getIndexType();
72   SmallVector<Value, 3> threadIds, blockDims;
73   for (unsigned i = 0; i < 3; ++i) {
74     auto dimName = b.getStringAttr(getDimName(i));
75     threadIds.push_back(b.create<gpu::ThreadIdOp>(indexType, dimName));
76     blockDims.push_back(b.create<gpu::BlockDimOp>(indexType, dimName));
77   }
78 
79   // Produce the loop nest with copies.
80   SmallVector<Value, 8> ivs(lbs.size());
81   mlir::scf::buildLoopNest(
82       b, b.getLoc(), lbs, ubs, steps,
83       [&](OpBuilder &b, Location loc, ValueRange loopIvs) {
84         ivs.assign(loopIvs.begin(), loopIvs.end());
85         auto activeIvs = llvm::makeArrayRef(ivs).take_back(rank);
86         Value loaded = b.create<memref::LoadOp>(loc, from, activeIvs);
87         b.create<memref::StoreOp>(loc, loaded, to, activeIvs);
88       });
89 
90   // Map the innermost loops to threads in reverse order.
91   for (auto en :
92        llvm::enumerate(llvm::reverse(llvm::makeArrayRef(ivs).take_back(
93            GPUDialect::getNumWorkgroupDimensions())))) {
94     Value v = en.value();
95     auto loop = cast<scf::ForOp>(v.getParentRegion()->getParentOp());
96     mapLoopToProcessorIds(loop, {threadIds[en.index()]},
97                           {blockDims[en.index()]});
98   }
99 }
100 
101 /// Emits the loop nests performing the copy to the designated location in the
102 /// beginning of the region, and from the designated location immediately before
103 /// the terminator of the first block of the region. The region is expected to
104 /// have one block. This boils down to the following structure
105 ///
106 ///   ^bb(...):
107 ///     <loop-bound-computation>
108 ///     for %arg0 = ... to ... step ... {
109 ///       ...
110 ///         for %argN = <thread-id-x> to ... step <block-dim-x> {
111 ///           %0 = load %from[%arg0, ..., %argN]
112 ///           store %0, %to[%arg0, ..., %argN]
113 ///         }
114 ///       ...
115 ///     }
116 ///     gpu.barrier
117 ///     <... original body ...>
118 ///     gpu.barrier
119 ///     for %arg0 = ... to ... step ... {
120 ///       ...
121 ///         for %argN = <thread-id-x> to ... step <block-dim-x> {
122 ///           %1 = load %to[%arg0, ..., %argN]
123 ///           store %1, %from[%arg0, ..., %argN]
124 ///         }
125 ///       ...
126 ///     }
127 ///
128 /// Inserts the barriers unconditionally since different threads may be copying
129 /// values and reading them. An analysis would be required to eliminate barriers
130 /// in case where value is only used by the thread that copies it. Both copies
131 /// are inserted unconditionally, an analysis would be required to only copy
132 /// live-in and live-out values when necessary. This copies the entire memref
133 /// pointed to by "from". In case a smaller block would be sufficient, the
134 /// caller can create a subview of the memref and promote it instead.
135 static void insertCopies(Region &region, Location loc, Value from, Value to) {
136   auto fromType = from.getType().cast<MemRefType>();
137   auto toType = to.getType().cast<MemRefType>();
138   (void)fromType;
139   (void)toType;
140   assert(fromType.getShape() == toType.getShape());
141   assert(fromType.getRank() != 0);
142   assert(llvm::hasSingleElement(region) &&
143          "unstructured control flow not supported");
144 
145   auto b = ImplicitLocOpBuilder::atBlockBegin(loc, &region.front());
146   insertCopyLoops(b, from, to);
147   b.create<gpu::BarrierOp>();
148 
149   b.setInsertionPoint(&region.front().back());
150   b.create<gpu::BarrierOp>();
151   insertCopyLoops(b, to, from);
152 }
153 
154 /// Promotes a function argument to workgroup memory in the given function. The
155 /// copies will be inserted in the beginning and in the end of the function.
156 void mlir::promoteToWorkgroupMemory(GPUFuncOp op, unsigned arg) {
157   Value value = op.getArgument(arg);
158   auto type = value.getType().dyn_cast<MemRefType>();
159   assert(type && type.hasStaticShape() && "can only promote memrefs");
160 
161   // Get the type of the buffer in the workgroup memory.
162   int workgroupMemoryAddressSpace = gpu::GPUDialect::getWorkgroupAddressSpace();
163   auto bufferType = MemRefType::get(type.getShape(), type.getElementType(), {},
164                                     workgroupMemoryAddressSpace);
165 
166   Value attribution = op.addWorkgroupAttribution(bufferType);
167 
168   // Replace the uses first since only the original uses are currently present.
169   // Then insert the copies.
170   value.replaceAllUsesWith(attribution);
171   insertCopies(op.getBody(), op.getLoc(), value, attribution);
172 }
173