1 //===- KernelOutlining.cpp - Implementation of GPU kernel outlining -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the GPU dialect kernel outlining pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PassDetail.h"
14 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
15 #include "mlir/Dialect/GPU/GPUDialect.h"
16 #include "mlir/Dialect/GPU/Passes.h"
17 #include "mlir/Dialect/GPU/Utils.h"
18 #include "mlir/Dialect/MemRef/IR/MemRef.h"
19 #include "mlir/Dialect/StandardOps/IR/Ops.h"
20 #include "mlir/IR/BlockAndValueMapping.h"
21 #include "mlir/IR/Builders.h"
22 #include "mlir/IR/SymbolTable.h"
23 #include "mlir/Support/LLVM.h"
24 #include "mlir/Transforms/RegionUtils.h"
25 
26 using namespace mlir;
27 
28 template <typename OpTy>
29 static void createForAllDimensions(OpBuilder &builder, Location loc,
30                                    SmallVectorImpl<Value> &values) {
31   for (StringRef dim : {"x", "y", "z"}) {
32     Value v = builder.create<OpTy>(loc, builder.getIndexType(),
33                                    builder.getStringAttr(dim));
34     values.push_back(v);
35   }
36 }
37 
38 /// Adds operations generating block/thread ids and grid/block dimensions at the
39 /// beginning of the `launchFuncOpBody` region. Add mapping from argument in
40 /// entry block of `launchOpBody`, to the corresponding result value of the
41 /// added operations.
42 static void injectGpuIndexOperations(Location loc, Region &launchFuncOpBody,
43                                      Region &launchOpBody,
44                                      BlockAndValueMapping &map) {
45   OpBuilder builder(loc->getContext());
46   Block &firstBlock = launchOpBody.front();
47   builder.setInsertionPointToStart(&launchFuncOpBody.front());
48   SmallVector<Value, 12> indexOps;
49   createForAllDimensions<gpu::BlockIdOp>(builder, loc, indexOps);
50   createForAllDimensions<gpu::ThreadIdOp>(builder, loc, indexOps);
51   createForAllDimensions<gpu::GridDimOp>(builder, loc, indexOps);
52   createForAllDimensions<gpu::BlockDimOp>(builder, loc, indexOps);
53   // Replace the leading 12 function args with the respective thread/block index
54   // operations. Iterate backwards since args are erased and indices change.
55   for (auto indexOp : enumerate(indexOps))
56     map.map(firstBlock.getArgument(indexOp.index()), indexOp.value());
57 }
58 
59 /// Identifies operations that are beneficial to sink into kernels. These
60 /// operations may not have side-effects, as otherwise sinking (and hence
61 /// duplicating them) is not legal.
62 static bool isSinkingBeneficiary(Operation *op) {
63   return isa<arith::ConstantOp, ConstantOp, memref::DimOp, SelectOp,
64              arith::CmpIOp>(op);
65 }
66 
67 /// For a given operation `op`, computes whether it is beneficial to sink the
68 /// operation into the kernel. An operation can be sunk if doing so does not
69 /// introduce new kernel arguments. Whether a value is already available in the
70 /// kernel (and hence does not introduce new arguments) is checked by
71 /// querying `existingDependencies` and `availableValues`.
72 /// If an operand is not yet available, we recursively check whether it can be
73 /// made available by siking its defining op.
74 /// Operations that are indentified for sinking are added to `beneficiaryOps` in
75 /// the order they should appear in the kernel. Furthermore, `availableValues`
76 /// is updated with results that will be available after sinking the identified
77 /// ops.
78 static bool
79 extractBeneficiaryOps(Operation *op, SetVector<Value> existingDependencies,
80                       SetVector<Operation *> &beneficiaryOps,
81                       llvm::SmallPtrSetImpl<Value> &availableValues) {
82   if (beneficiaryOps.count(op))
83     return true;
84 
85   if (!isSinkingBeneficiary(op))
86     return false;
87 
88   for (Value operand : op->getOperands()) {
89     // It is already visible in the kernel, keep going.
90     if (availableValues.count(operand))
91       continue;
92     // Else check whether it can be made available via sinking or already is a
93     // dependency.
94     Operation *definingOp = operand.getDefiningOp();
95     if ((!definingOp ||
96          !extractBeneficiaryOps(definingOp, existingDependencies,
97                                 beneficiaryOps, availableValues)) &&
98         !existingDependencies.count(operand))
99       return false;
100   }
101   // We will sink the operation, mark its results as now available.
102   beneficiaryOps.insert(op);
103   for (Value result : op->getResults())
104     availableValues.insert(result);
105   return true;
106 }
107 
108 LogicalResult mlir::sinkOperationsIntoLaunchOp(gpu::LaunchOp launchOp) {
109   Region &launchOpBody = launchOp.body();
110 
111   // Identify uses from values defined outside of the scope of the launch
112   // operation.
113   SetVector<Value> sinkCandidates;
114   getUsedValuesDefinedAbove(launchOpBody, sinkCandidates);
115 
116   SetVector<Operation *> toBeSunk;
117   llvm::SmallPtrSet<Value, 4> availableValues;
118   for (Value operand : sinkCandidates) {
119     Operation *operandOp = operand.getDefiningOp();
120     if (!operandOp)
121       continue;
122     extractBeneficiaryOps(operandOp, sinkCandidates, toBeSunk, availableValues);
123   }
124 
125   // Insert operations so that the defs get cloned before uses.
126   BlockAndValueMapping map;
127   OpBuilder builder(launchOpBody);
128   for (Operation *op : toBeSunk) {
129     Operation *clonedOp = builder.clone(*op, map);
130     // Only replace uses within the launch op.
131     for (auto pair : llvm::zip(op->getResults(), clonedOp->getResults()))
132       replaceAllUsesInRegionWith(std::get<0>(pair), std::get<1>(pair),
133                                  launchOp.body());
134   }
135   return success();
136 }
137 
138 /// Outline the `gpu.launch` operation body into a kernel function. Replace
139 /// `gpu.terminator` operations by `gpu.return` in the generated function.
140 static gpu::GPUFuncOp outlineKernelFuncImpl(gpu::LaunchOp launchOp,
141                                             StringRef kernelFnName,
142                                             SetVector<Value> &operands) {
143   Location loc = launchOp.getLoc();
144   // Create a builder with no insertion point, insertion will happen separately
145   // due to symbol table manipulation.
146   OpBuilder builder(launchOp.getContext());
147   Region &launchOpBody = launchOp.body();
148 
149   // Identify uses from values defined outside of the scope of the launch
150   // operation.
151   getUsedValuesDefinedAbove(launchOpBody, operands);
152 
153   // Create the gpu.func operation.
154   SmallVector<Type, 4> kernelOperandTypes;
155   kernelOperandTypes.reserve(operands.size());
156   for (Value operand : operands) {
157     kernelOperandTypes.push_back(operand.getType());
158   }
159   FunctionType type =
160       FunctionType::get(launchOp.getContext(), kernelOperandTypes, {});
161   auto outlinedFunc = builder.create<gpu::GPUFuncOp>(loc, kernelFnName, type);
162   outlinedFunc->setAttr(gpu::GPUDialect::getKernelFuncAttrName(),
163                         builder.getUnitAttr());
164   BlockAndValueMapping map;
165 
166   // Map the arguments corresponding to the launch parameters like blockIdx,
167   // threadIdx, etc.
168   Region &outlinedFuncBody = outlinedFunc.body();
169   injectGpuIndexOperations(loc, outlinedFuncBody, launchOpBody, map);
170 
171   // Map arguments from gpu.launch region to the arguments of the gpu.func
172   // operation.
173   Block &entryBlock = outlinedFuncBody.front();
174   for (auto operand : enumerate(operands))
175     map.map(operand.value(), entryBlock.getArgument(operand.index()));
176 
177   // Clone the region of the gpu.launch operation into the gpu.func operation.
178   // TODO: If cloneInto can be modified such that if a mapping for
179   // a block exists, that block will be used to clone operations into (at the
180   // end of the block), instead of creating a new block, this would be much
181   // cleaner.
182   launchOpBody.cloneInto(&outlinedFuncBody, map);
183 
184   // Branch from entry of the gpu.func operation to the block that is cloned
185   // from the entry block of the gpu.launch operation.
186   Block &launchOpEntry = launchOpBody.front();
187   Block *clonedLaunchOpEntry = map.lookup(&launchOpEntry);
188   builder.setInsertionPointToEnd(&entryBlock);
189   builder.create<BranchOp>(loc, clonedLaunchOpEntry);
190 
191   outlinedFunc.walk([](gpu::TerminatorOp op) {
192     OpBuilder replacer(op);
193     replacer.create<gpu::ReturnOp>(op.getLoc());
194     op.erase();
195   });
196   return outlinedFunc;
197 }
198 
199 gpu::GPUFuncOp mlir::outlineKernelFunc(gpu::LaunchOp launchOp,
200                                        StringRef kernelFnName,
201                                        llvm::SmallVectorImpl<Value> &operands) {
202   DenseSet<Value> inputOperandSet;
203   inputOperandSet.insert(operands.begin(), operands.end());
204   SetVector<Value> operandSet(operands.begin(), operands.end());
205   auto funcOp = outlineKernelFuncImpl(launchOp, kernelFnName, operandSet);
206   for (auto operand : operandSet) {
207     if (!inputOperandSet.count(operand))
208       operands.push_back(operand);
209   }
210   return funcOp;
211 }
212 
213 /// Replace `gpu.launch` operations with an `gpu.launch_func` operation
214 /// launching `kernelFunc`. The kernel func contains the body of the
215 /// `gpu.launch` with constant region arguments inlined.
216 static void convertToLaunchFuncOp(gpu::LaunchOp launchOp,
217                                   gpu::GPUFuncOp kernelFunc,
218                                   ValueRange operands) {
219   OpBuilder builder(launchOp);
220   // The launch op has an optional dynamic shared memory size. If it doesn't
221   // exist, we use zero.
222   builder.create<gpu::LaunchFuncOp>(
223       launchOp.getLoc(), kernelFunc, launchOp.getGridSizeOperandValues(),
224       launchOp.getBlockSizeOperandValues(), launchOp.dynamicSharedMemorySize(),
225       operands);
226   launchOp.erase();
227 }
228 
229 namespace {
230 /// Pass that moves the kernel of each LaunchOp into its separate nested module.
231 ///
232 /// This pass moves the kernel code of each LaunchOp into a function created
233 /// inside a nested module. It also creates an external function of the same
234 /// name in the parent module.
235 ///
236 /// The gpu.modules are intended to be compiled to a cubin blob independently in
237 /// a separate pass. The external functions can then be annotated with the
238 /// symbol of the cubin accessor function.
239 class GpuKernelOutliningPass
240     : public GpuKernelOutliningBase<GpuKernelOutliningPass> {
241 public:
242   void runOnOperation() override {
243     SymbolTable symbolTable(getOperation());
244     bool modified = false;
245     for (auto func : getOperation().getOps<FuncOp>()) {
246       // Insert just after the function.
247       Block::iterator insertPt(func->getNextNode());
248       auto funcWalkResult = func.walk([&](gpu::LaunchOp op) {
249         SetVector<Value> operands;
250         std::string kernelFnName =
251             Twine(op->getParentOfType<FuncOp>().getName(), "_kernel").str();
252 
253         // Pull in instructions that can be sunk
254         if (failed(sinkOperationsIntoLaunchOp(op)))
255           return WalkResult::interrupt();
256         gpu::GPUFuncOp outlinedFunc =
257             outlineKernelFuncImpl(op, kernelFnName, operands);
258 
259         // Create nested module and insert outlinedFunc. The module will
260         // originally get the same name as the function, but may be renamed on
261         // insertion into the parent module.
262         auto kernelModule = createKernelModule(outlinedFunc, symbolTable);
263         symbolTable.insert(kernelModule, insertPt);
264 
265         // Potentially changes signature, pulling in constants.
266         convertToLaunchFuncOp(op, outlinedFunc, operands.getArrayRef());
267         modified = true;
268         return WalkResult::advance();
269       });
270       if (funcWalkResult.wasInterrupted())
271         return signalPassFailure();
272     }
273 
274     // If any new module was inserted in this module, annotate this module as
275     // a container module.
276     if (modified)
277       getOperation()->setAttr(gpu::GPUDialect::getContainerModuleAttrName(),
278                               UnitAttr::get(&getContext()));
279   }
280 
281 private:
282   /// Returns a gpu.module containing kernelFunc and all callees (recursive).
283   gpu::GPUModuleOp createKernelModule(gpu::GPUFuncOp kernelFunc,
284                                       const SymbolTable &parentSymbolTable) {
285     // TODO: This code cannot use an OpBuilder because it must be inserted into
286     // a SymbolTable by the caller. SymbolTable needs to be refactored to
287     // prevent manual building of Ops with symbols in code using SymbolTables
288     // and then this needs to use the OpBuilder.
289     auto context = getOperation().getContext();
290     OpBuilder builder(context);
291     auto kernelModule = builder.create<gpu::GPUModuleOp>(kernelFunc.getLoc(),
292                                                          kernelFunc.getName());
293     SymbolTable symbolTable(kernelModule);
294     symbolTable.insert(kernelFunc);
295 
296     SmallVector<Operation *, 8> symbolDefWorklist = {kernelFunc};
297     while (!symbolDefWorklist.empty()) {
298       if (Optional<SymbolTable::UseRange> symbolUses =
299               SymbolTable::getSymbolUses(symbolDefWorklist.pop_back_val())) {
300         for (SymbolTable::SymbolUse symbolUse : *symbolUses) {
301           StringRef symbolName =
302               symbolUse.getSymbolRef().cast<FlatSymbolRefAttr>().getValue();
303           if (symbolTable.lookup(symbolName))
304             continue;
305 
306           Operation *symbolDefClone =
307               parentSymbolTable.lookup(symbolName)->clone();
308           symbolDefWorklist.push_back(symbolDefClone);
309           symbolTable.insert(symbolDefClone);
310         }
311       }
312     }
313 
314     return kernelModule;
315   }
316 };
317 
318 } // namespace
319 
320 std::unique_ptr<OperationPass<ModuleOp>> mlir::createGpuKernelOutliningPass() {
321   return std::make_unique<GpuKernelOutliningPass>();
322 }
323