1 //===- KernelOutlining.cpp - Implementation of GPU kernel outlining -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the GPU dialect kernel outlining pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PassDetail.h"
14 #include "mlir/Dialect/GPU/GPUDialect.h"
15 #include "mlir/Dialect/GPU/Passes.h"
16 #include "mlir/Dialect/GPU/Utils.h"
17 #include "mlir/Dialect/StandardOps/IR/Ops.h"
18 #include "mlir/IR/BlockAndValueMapping.h"
19 #include "mlir/IR/Builders.h"
20 #include "mlir/IR/SymbolTable.h"
21 #include "mlir/Support/LLVM.h"
22 #include "mlir/Transforms/RegionUtils.h"
23 
24 using namespace mlir;
25 
26 template <typename OpTy>
27 static void createForAllDimensions(OpBuilder &builder, Location loc,
28                                    SmallVectorImpl<Value> &values) {
29   for (StringRef dim : {"x", "y", "z"}) {
30     Value v = builder.create<OpTy>(loc, builder.getIndexType(),
31                                    builder.getStringAttr(dim));
32     values.push_back(v);
33   }
34 }
35 
36 /// Adds operations generating block/thread ids and grid/block dimensions at the
37 /// beginning of the `launchFuncOpBody` region. Add mapping from argument in
38 /// entry block of `launchOpBody`, to the corresponding result value of the
39 /// added operations.
40 static void injectGpuIndexOperations(Location loc, Region &launchFuncOpBody,
41                                      Region &launchOpBody,
42                                      BlockAndValueMapping &map) {
43   OpBuilder builder(loc->getContext());
44   Block &firstBlock = launchOpBody.front();
45   builder.setInsertionPointToStart(&launchFuncOpBody.front());
46   SmallVector<Value, 12> indexOps;
47   createForAllDimensions<gpu::BlockIdOp>(builder, loc, indexOps);
48   createForAllDimensions<gpu::ThreadIdOp>(builder, loc, indexOps);
49   createForAllDimensions<gpu::GridDimOp>(builder, loc, indexOps);
50   createForAllDimensions<gpu::BlockDimOp>(builder, loc, indexOps);
51   // Replace the leading 12 function args with the respective thread/block index
52   // operations. Iterate backwards since args are erased and indices change.
53   for (auto indexOp : enumerate(indexOps))
54     map.map(firstBlock.getArgument(indexOp.index()), indexOp.value());
55 }
56 
57 /// Identifies operations that are beneficial to sink into kernels. These
58 /// operations may not have side-effects, as otherwise sinking (and hence
59 /// duplicating them) is not legal.
60 static bool isSinkingBeneficiary(Operation *op) {
61   return isa<ConstantOp, DimOp, SelectOp, CmpIOp>(op);
62 }
63 
64 /// For a given operation `op`, computes whether it is beneficial to sink the
65 /// operation into the kernel. An operation can be sunk if doing so does not
66 /// introduce new kernel arguments. Whether a value is already available in the
67 /// kernel (and hence does not introduce new arguments) is checked by
68 /// querying `availableValues`.
69 /// If an operand is not yet available, we recursively check whether it can be
70 /// made available by siking its defining op.
71 /// Operations that are indentified for sinking are added to `beneficiaryOps` in
72 /// the order the should appear in the kernel. Furthermore, `availableValues` is
73 /// updated with results that will be available after sinking the identified
74 /// ops.
75 static bool extractBeneficiaryOps(Operation *op,
76                                   llvm::SetVector<Operation *> &beneficiaryOps,
77                                   llvm::SetVector<Value> &availableValues) {
78   if (beneficiaryOps.count(op))
79     return true;
80 
81   if (!isSinkingBeneficiary(op))
82     return false;
83 
84   for (Value operand : op->getOperands()) {
85     // It is already visisble in the kernel, keep going.
86     if (availableValues.count(operand))
87       continue;
88     // Else check whether it can be made available via sinking.
89     Operation *definingOp = operand.getDefiningOp();
90     if (!definingOp ||
91         !extractBeneficiaryOps(definingOp, beneficiaryOps, availableValues))
92       return false;
93   }
94   // We will sink the operation, mark its results as now available.
95   beneficiaryOps.insert(op);
96   for (Value result : op->getResults())
97     availableValues.insert(result);
98   return true;
99 }
100 
101 LogicalResult mlir::sinkOperationsIntoLaunchOp(gpu::LaunchOp launchOp) {
102   Region &launchOpBody = launchOp.body();
103 
104   // Identify uses from values defined outside of the scope of the launch
105   // operation.
106   llvm::SetVector<Value> sinkCandidates;
107   getUsedValuesDefinedAbove(launchOpBody, sinkCandidates);
108 
109   SmallVector<Value, 4> worklist(sinkCandidates.begin(), sinkCandidates.end());
110   llvm::SetVector<Operation *> toBeSunk;
111   for (Value operand : worklist) {
112     Operation *operandOp = operand.getDefiningOp();
113     if (!operandOp)
114       continue;
115     extractBeneficiaryOps(operandOp, toBeSunk, sinkCandidates);
116   }
117 
118   // Insert operations so that the defs get cloned before uses.
119   BlockAndValueMapping map;
120   OpBuilder builder(launchOpBody);
121   for (Operation *op : toBeSunk) {
122     Operation *clonedOp = builder.clone(*op, map);
123     // Only replace uses within the launch op.
124     for (auto pair : llvm::zip(op->getResults(), clonedOp->getResults()))
125       replaceAllUsesInRegionWith(std::get<0>(pair), std::get<1>(pair),
126                                  launchOp.body());
127   }
128   return success();
129 }
130 
131 /// Outline the `gpu.launch` operation body into a kernel function. Replace
132 /// `gpu.terminator` operations by `gpu.return` in the generated function.
133 static gpu::GPUFuncOp outlineKernelFuncImpl(gpu::LaunchOp launchOp,
134                                             StringRef kernelFnName,
135                                             llvm::SetVector<Value> &operands) {
136   Location loc = launchOp.getLoc();
137   // Create a builder with no insertion point, insertion will happen separately
138   // due to symbol table manipulation.
139   OpBuilder builder(launchOp.getContext());
140   Region &launchOpBody = launchOp.body();
141 
142   // Identify uses from values defined outside of the scope of the launch
143   // operation.
144   getUsedValuesDefinedAbove(launchOpBody, operands);
145 
146   // Create the gpu.func operation.
147   SmallVector<Type, 4> kernelOperandTypes;
148   kernelOperandTypes.reserve(operands.size());
149   for (Value operand : operands) {
150     kernelOperandTypes.push_back(operand.getType());
151   }
152   FunctionType type =
153       FunctionType::get(kernelOperandTypes, {}, launchOp.getContext());
154   auto outlinedFunc = builder.create<gpu::GPUFuncOp>(loc, kernelFnName, type);
155   outlinedFunc.setAttr(gpu::GPUDialect::getKernelFuncAttrName(),
156                        builder.getUnitAttr());
157   BlockAndValueMapping map;
158 
159   // Map the arguments corresponding to the launch parameters like blockIdx,
160   // threadIdx, etc.
161   Region &outlinedFuncBody = outlinedFunc.body();
162   injectGpuIndexOperations(loc, outlinedFuncBody, launchOpBody, map);
163 
164   // Map arguments from gpu.launch region to the arguments of the gpu.func
165   // operation.
166   Block &entryBlock = outlinedFuncBody.front();
167   for (auto operand : enumerate(operands))
168     map.map(operand.value(), entryBlock.getArgument(operand.index()));
169 
170   // Clone the region of the gpu.launch operation into the gpu.func operation.
171   // TODO: If cloneInto can be modified such that if a mapping for
172   // a block exists, that block will be used to clone operations into (at the
173   // end of the block), instead of creating a new block, this would be much
174   // cleaner.
175   launchOpBody.cloneInto(&outlinedFuncBody, map);
176 
177   // Branch from entry of the gpu.func operation to the block that is cloned
178   // from the entry block of the gpu.launch operation.
179   Block &launchOpEntry = launchOpBody.front();
180   Block *clonedLaunchOpEntry = map.lookup(&launchOpEntry);
181   builder.setInsertionPointToEnd(&entryBlock);
182   builder.create<BranchOp>(loc, clonedLaunchOpEntry);
183 
184   outlinedFunc.walk([](gpu::TerminatorOp op) {
185     OpBuilder replacer(op);
186     replacer.create<gpu::ReturnOp>(op.getLoc());
187     op.erase();
188   });
189   return outlinedFunc;
190 }
191 
192 gpu::GPUFuncOp mlir::outlineKernelFunc(gpu::LaunchOp launchOp,
193                                        StringRef kernelFnName,
194                                        llvm::SmallVectorImpl<Value> &operands) {
195   DenseSet<Value> inputOperandSet;
196   inputOperandSet.insert(operands.begin(), operands.end());
197   llvm::SetVector<Value> operandSet(operands.begin(), operands.end());
198   auto funcOp = outlineKernelFuncImpl(launchOp, kernelFnName, operandSet);
199   for (auto operand : operandSet) {
200     if (!inputOperandSet.count(operand))
201       operands.push_back(operand);
202   }
203   return funcOp;
204 }
205 
206 /// Replace `gpu.launch` operations with an `gpu.launch_func` operation
207 /// launching `kernelFunc`. The kernel func contains the body of the
208 /// `gpu.launch` with constant region arguments inlined.
209 static void convertToLaunchFuncOp(gpu::LaunchOp launchOp,
210                                   gpu::GPUFuncOp kernelFunc,
211                                   ValueRange operands) {
212   OpBuilder builder(launchOp);
213   builder.create<gpu::LaunchFuncOp>(
214       launchOp.getLoc(), kernelFunc, launchOp.getGridSizeOperandValues(),
215       launchOp.getBlockSizeOperandValues(), operands);
216   launchOp.erase();
217 }
218 
219 namespace {
220 /// Pass that moves the kernel of each LaunchOp into its separate nested module.
221 ///
222 /// This pass moves the kernel code of each LaunchOp into a function created
223 /// inside a nested module. It also creates an external function of the same
224 /// name in the parent module.
225 ///
226 /// The gpu.modules are intended to be compiled to a cubin blob independently in
227 /// a separate pass. The external functions can then be annotated with the
228 /// symbol of the cubin accessor function.
229 class GpuKernelOutliningPass
230     : public GpuKernelOutliningBase<GpuKernelOutliningPass> {
231 public:
232   void runOnOperation() override {
233     SymbolTable symbolTable(getOperation());
234     bool modified = false;
235     for (auto func : getOperation().getOps<FuncOp>()) {
236       // Insert just after the function.
237       Block::iterator insertPt(func.getOperation()->getNextNode());
238       auto funcWalkResult = func.walk([&](gpu::LaunchOp op) {
239         llvm::SetVector<Value> operands;
240         std::string kernelFnName =
241             Twine(op.getParentOfType<FuncOp>().getName(), "_kernel").str();
242 
243         // Pull in instructions that can be sunk
244         if (failed(sinkOperationsIntoLaunchOp(op)))
245           return WalkResult::interrupt();
246         gpu::GPUFuncOp outlinedFunc =
247             outlineKernelFuncImpl(op, kernelFnName, operands);
248 
249         // Create nested module and insert outlinedFunc. The module will
250         // originally get the same name as the function, but may be renamed on
251         // insertion into the parent module.
252         auto kernelModule = createKernelModule(outlinedFunc, symbolTable);
253         symbolTable.insert(kernelModule, insertPt);
254 
255         // Potentially changes signature, pulling in constants.
256         convertToLaunchFuncOp(op, outlinedFunc, operands.getArrayRef());
257         modified = true;
258         return WalkResult::advance();
259       });
260       if (funcWalkResult.wasInterrupted())
261         return signalPassFailure();
262     }
263 
264     // If any new module was inserted in this module, annotate this module as
265     // a container module.
266     if (modified)
267       getOperation().setAttr(gpu::GPUDialect::getContainerModuleAttrName(),
268                              UnitAttr::get(&getContext()));
269   }
270 
271 private:
272   /// Returns a gpu.module containing kernelFunc and all callees (recursive).
273   gpu::GPUModuleOp createKernelModule(gpu::GPUFuncOp kernelFunc,
274                                       const SymbolTable &parentSymbolTable) {
275     // TODO: This code cannot use an OpBuilder because it must be inserted into
276     // a SymbolTable by the caller. SymbolTable needs to be refactored to
277     // prevent manual building of Ops with symbols in code using SymbolTables
278     // and then this needs to use the OpBuilder.
279     auto context = getOperation().getContext();
280     OpBuilder builder(context);
281     OperationState state(kernelFunc.getLoc(),
282                          gpu::GPUModuleOp::getOperationName());
283     gpu::GPUModuleOp::build(builder, state, kernelFunc.getName());
284     auto kernelModule = cast<gpu::GPUModuleOp>(Operation::create(state));
285     SymbolTable symbolTable(kernelModule);
286     symbolTable.insert(kernelFunc);
287 
288     SmallVector<Operation *, 8> symbolDefWorklist = {kernelFunc};
289     while (!symbolDefWorklist.empty()) {
290       if (Optional<SymbolTable::UseRange> symbolUses =
291               SymbolTable::getSymbolUses(symbolDefWorklist.pop_back_val())) {
292         for (SymbolTable::SymbolUse symbolUse : *symbolUses) {
293           StringRef symbolName =
294               symbolUse.getSymbolRef().cast<FlatSymbolRefAttr>().getValue();
295           if (symbolTable.lookup(symbolName))
296             continue;
297 
298           Operation *symbolDefClone =
299               parentSymbolTable.lookup(symbolName)->clone();
300           symbolDefWorklist.push_back(symbolDefClone);
301           symbolTable.insert(symbolDefClone);
302         }
303       }
304     }
305 
306     return kernelModule;
307   }
308 };
309 
310 } // namespace
311 
312 std::unique_ptr<OperationPass<ModuleOp>> mlir::createGpuKernelOutliningPass() {
313   return std::make_unique<GpuKernelOutliningPass>();
314 }
315