1 //===- AsyncRegionRewriter.cpp - Implementation of GPU async rewriters ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the GPU dialect pattern rewriters that make GPU op
10 // within a region execute asynchronously.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "PassDetail.h"
15 #include "mlir/Dialect/Async/IR/Async.h"
16 #include "mlir/Dialect/GPU/GPUDialect.h"
17 #include "mlir/Dialect/GPU/Passes.h"
18 #include "mlir/Dialect/GPU/Utils.h"
19 #include "mlir/IR/BlockAndValueMapping.h"
20 #include "mlir/IR/Builders.h"
21 #include "mlir/IR/PatternMatch.h"
22 #include "mlir/IR/SymbolTable.h"
23 #include "mlir/Support/LLVM.h"
24 #include "mlir/Transforms/RegionUtils.h"
25 #include "llvm/ADT/TypeSwitch.h"
26 
27 using namespace mlir;
28 namespace {
29 class GpuAsyncRegionPass : public GpuAsyncRegionPassBase<GpuAsyncRegionPass> {
30   struct ThreadTokenCallback;
31   struct DeferWaitCallback;
32   struct SingleTokenUseCallback;
33   void runOnOperation() override;
34 };
35 } // namespace
36 
37 static bool isTerminator(Operation *op) {
38   return op->mightHaveTrait<OpTrait::IsTerminator>();
39 }
40 static bool hasSideEffects(Operation *op) {
41   return !MemoryEffectOpInterface::hasNoEffect(op);
42 }
43 
44 // Region walk callback which makes GPU ops implementing the AsyncOpInterface
45 // execute asynchronously.
46 struct GpuAsyncRegionPass::ThreadTokenCallback {
47   ThreadTokenCallback(MLIRContext &context) : builder(&context) {}
48 
49   WalkResult operator()(Block *block) {
50     for (Operation &op : make_early_inc_range(*block)) {
51       if (failed(visit(&op)))
52         return WalkResult::interrupt();
53     }
54     return WalkResult::advance();
55   }
56 
57 private:
58   // If `op` implements the AsyncOpInterface, insert a `gpu.wait async` to
59   // create a current token (unless it already exists), and 'thread' that token
60   // through the `op` so that it executes asynchronously.
61   //
62   // If `op` is a terminator or an op with side-effects, insert a `gpu.wait` to
63   // host-synchronize execution. A `!gpu.async.token` will therefore only be
64   // used inside of its block and GPU execution will always synchronize with
65   // the host at block boundaries.
66   LogicalResult visit(Operation *op) {
67     if (isa<gpu::LaunchOp>(op))
68       return op->emitOpError("replace with gpu.launch_func first");
69     if (auto waitOp = llvm::dyn_cast<gpu::WaitOp>(op)) {
70       if (currentToken)
71         waitOp.addAsyncDependency(currentToken);
72       currentToken = waitOp.asyncToken();
73       return success();
74     }
75     builder.setInsertionPoint(op);
76     if (auto asyncOp = dyn_cast<gpu::AsyncOpInterface>(op))
77       return rewriteAsyncOp(asyncOp); // Replace GPU op with async version.
78     if (!currentToken)
79       return success();
80     // Insert host synchronization before terminator or op with side effects.
81     if (isTerminator(op) || hasSideEffects(op))
82       currentToken = createWaitOp(op->getLoc(), Type(), {currentToken});
83     return success();
84   }
85 
86   // Replaces asyncOp with a clone that returns a token.
87   LogicalResult rewriteAsyncOp(gpu::AsyncOpInterface asyncOp) {
88     auto *op = asyncOp.getOperation();
89     auto tokenType = builder.getType<gpu::AsyncTokenType>();
90 
91     // If there is no current token, insert a `gpu.wait async` without
92     // dependencies to create one.
93     if (!currentToken)
94       currentToken = createWaitOp(op->getLoc(), tokenType, {});
95     asyncOp.addAsyncDependency(currentToken);
96 
97     // Return early if op returns a token already.
98     currentToken = asyncOp.getAsyncToken();
99     if (currentToken)
100       return success();
101 
102     // Clone the op to return a token in addition to the other results.
103     SmallVector<Type, 1> resultTypes;
104     resultTypes.reserve(1 + op->getNumResults());
105     copy(op->getResultTypes(), std::back_inserter(resultTypes));
106     resultTypes.push_back(tokenType);
107     auto *newOp = Operation::create(op->getLoc(), op->getName(), resultTypes,
108                                     op->getOperands(), op->getAttrDictionary(),
109                                     op->getSuccessors(), op->getNumRegions());
110 
111     // Clone regions into new op.
112     BlockAndValueMapping mapping;
113     for (auto pair : llvm::zip_first(op->getRegions(), newOp->getRegions()))
114       std::get<0>(pair).cloneInto(&std::get<1>(pair), mapping);
115 
116     // Replace the op with the async clone.
117     auto results = newOp->getResults();
118     currentToken = results.back();
119     builder.insert(newOp);
120     op->replaceAllUsesWith(results.drop_back());
121     op->erase();
122 
123     return success();
124   }
125 
126   Value createWaitOp(Location loc, Type resultType, ValueRange operands) {
127     return builder.create<gpu::WaitOp>(loc, resultType, operands).asyncToken();
128   }
129 
130   OpBuilder builder;
131 
132   // The token that represents the current asynchronous dependency. It's valid
133   // range starts with a `gpu.wait async` op, and ends with a `gpu.wait` op.
134   // In between, each gpu::AsyncOpInterface depends on the current token and
135   // produces the new one.
136   Value currentToken = {};
137 };
138 
139 /// Erases `executeOp` and returns a clone with additional `results`.
140 async::ExecuteOp addExecuteResults(async::ExecuteOp executeOp,
141                                    ValueRange results) {
142   // Add values to async.yield op.
143   Operation *yieldOp = executeOp.getBody()->getTerminator();
144   yieldOp->insertOperands(yieldOp->getNumOperands(), results);
145 
146   // Construct new result type list with additional types.
147   SmallVector<Type, 2> resultTypes;
148   resultTypes.reserve(executeOp.getNumResults() + results.size());
149   transform(executeOp.getResultTypes(), std::back_inserter(resultTypes),
150             [](Type type) {
151               // Extract value type from !async.value.
152               if (auto valueType = type.dyn_cast<async::ValueType>())
153                 return valueType.getValueType();
154               assert(type.isa<async::TokenType>() && "expected token type");
155               return type;
156             });
157   transform(results, std::back_inserter(resultTypes),
158             [](Value value) { return value.getType(); });
159 
160   // Clone executeOp with the extra results.
161   OpBuilder builder(executeOp);
162   auto newOp = builder.create<async::ExecuteOp>(
163       executeOp.getLoc(), TypeRange{resultTypes}.drop_front() /*drop token*/,
164       executeOp.dependencies(), executeOp.operands());
165   BlockAndValueMapping mapper;
166   newOp.getRegion().getBlocks().clear();
167   executeOp.getRegion().cloneInto(&newOp.getRegion(), mapper);
168 
169   // Replace executeOp with cloned one.
170   executeOp.getOperation()->replaceAllUsesWith(
171       newOp.getResults().drop_back(results.size()));
172   executeOp.erase();
173 
174   return newOp;
175 }
176 
177 // Callback for `async.execute` ops which tries to push the contained
178 // synchronous `gpu.wait` op to the dependencies of the `async.execute`.
179 struct GpuAsyncRegionPass::DeferWaitCallback {
180   // If the `executeOp`s token is used only in `async.execute` or `async.await`
181   // ops, add the region's last `gpu.wait` op to the worklist if it is
182   // synchronous and is the last op with side effects.
183   void operator()(async::ExecuteOp executeOp) {
184     if (!areAllUsersExecuteOrAwait(executeOp.token()))
185       return;
186     // async.execute's region is currently restricted to one block.
187     for (auto &op : llvm::reverse(executeOp.getBody()->without_terminator())) {
188       if (auto waitOp = dyn_cast<gpu::WaitOp>(op)) {
189         if (!waitOp.asyncToken())
190           worklist.push_back(waitOp);
191         return;
192       }
193       if (hasSideEffects(&op))
194         return;
195     }
196   }
197 
198   // The destructor performs the actual rewrite work.
199   ~DeferWaitCallback() {
200     for (size_t i = 0; i < worklist.size(); ++i) {
201       auto waitOp = worklist[i];
202       auto executeOp = waitOp->getParentOfType<async::ExecuteOp>();
203 
204       // Erase `gpu.wait` and return async dependencies from execute op instead.
205       SmallVector<Value, 4> dependencies = waitOp.asyncDependencies();
206       waitOp.erase();
207       executeOp = addExecuteResults(executeOp, dependencies);
208 
209       // Add the async dependency to each user of the `async.execute` token.
210       auto asyncTokens = executeOp.getResults().take_back(dependencies.size());
211       for (Operation *user : executeOp.token().getUsers())
212         addAsyncDependencyAfter(asyncTokens, user);
213     }
214   }
215 
216 private:
217   // Returns whether all token users are either 'async.execute' or 'async.await'
218   // ops. This is used as a requirement for pushing 'gpu.wait' ops from a
219   // 'async.execute' body to it's users. Specifically, we do not allow
220   // terminator users, because it could mean that the `async.execute` is inside
221   // control flow code.
222   static bool areAllUsersExecuteOrAwait(Value token) {
223     return !token.use_empty() &&
224            llvm::all_of(token.getUsers(), [](Operation *user) {
225              return isa<async::ExecuteOp, async::AwaitOp>(user);
226            });
227   }
228 
229   // Add the `asyncToken` as dependency as needed after `op`.
230   void addAsyncDependencyAfter(ValueRange asyncTokens, Operation *op) {
231     OpBuilder builder(op->getContext());
232     auto loc = op->getLoc();
233 
234     Block::iterator it;
235     SmallVector<Value, 1> tokens;
236     tokens.reserve(asyncTokens.size());
237     TypeSwitch<Operation *>(op)
238         .Case<async::AwaitOp>([&](auto awaitOp) {
239           // Add async.await ops to wait for the !gpu.async.tokens.
240           builder.setInsertionPointAfter(op);
241           for (auto asyncToken : asyncTokens)
242             tokens.push_back(
243                 builder.create<async::AwaitOp>(loc, asyncToken).result());
244           // Set `it` after the inserted async.await ops.
245           it = builder.getInsertionPoint();
246         })
247         .Case<async::ExecuteOp>([&](auto executeOp) {
248           // Set `it` to the beginning of the region and add asyncTokens to the
249           // async.execute operands.
250           it = executeOp.getBody()->begin();
251           executeOp.operandsMutable().append(asyncTokens);
252           SmallVector<Type, 1> tokenTypes(
253               asyncTokens.size(), builder.getType<gpu::AsyncTokenType>());
254           SmallVector<Location, 1> tokenLocs(asyncTokens.size(),
255                                              executeOp.getLoc());
256           copy(executeOp.getBody()->addArguments(tokenTypes, tokenLocs),
257                std::back_inserter(tokens));
258         });
259 
260     // Advance `it` to terminator or op with side-effects.
261     it = std::find_if(it, Block::iterator(), [](Operation &op) {
262       return isTerminator(&op) || hasSideEffects(&op);
263     });
264 
265     // If `op` implements the AsyncOpInterface, add `token` to the list of async
266     // dependencies.
267     if (auto asyncOp = dyn_cast<gpu::AsyncOpInterface>(*it)) {
268       for (auto token : tokens)
269         asyncOp.addAsyncDependency(token);
270       return;
271     }
272 
273     // Otherwise, insert a gpu.wait before 'it'.
274     builder.setInsertionPoint(it->getBlock(), it);
275     auto waitOp = builder.create<gpu::WaitOp>(loc, Type{}, tokens);
276 
277     // If the new waitOp is at the end of an async.execute region, add it to the
278     // worklist. 'operator()(executeOp)' would do the same, but this is faster.
279     auto executeOp = dyn_cast<async::ExecuteOp>(it->getParentOp());
280     if (executeOp && areAllUsersExecuteOrAwait(executeOp.token()) &&
281         !it->getNextNode())
282       worklist.push_back(waitOp);
283   }
284 
285   SmallVector<gpu::WaitOp, 8> worklist;
286 };
287 
288 // Callback for `async.execute` ops which repeats !gpu.async.token results
289 // so that each of them is only used once.
290 struct GpuAsyncRegionPass::SingleTokenUseCallback {
291   void operator()(async::ExecuteOp executeOp) {
292     // Extract !gpu.async.token results which have multiple uses.
293     auto multiUseResults =
294         llvm::make_filter_range(executeOp.results(), [](OpResult result) {
295           if (result.use_empty() || result.hasOneUse())
296             return false;
297           auto valueType = result.getType().dyn_cast<async::ValueType>();
298           return valueType &&
299                  valueType.getValueType().isa<gpu::AsyncTokenType>();
300         });
301     if (multiUseResults.empty())
302       return;
303 
304     // Indices within !async.execute results (i.e. without the async.token).
305     SmallVector<int, 4> indices;
306     transform(multiUseResults, std::back_inserter(indices),
307               [](OpResult result) {
308                 return result.getResultNumber() - 1; // Index without token.
309               });
310 
311     for (auto index : indices) {
312       assert(!executeOp.results()[index].getUses().empty());
313       // Repeat async.yield token result, one for each use after the first one.
314       auto uses = llvm::drop_begin(executeOp.results()[index].getUses());
315       auto count = std::distance(uses.begin(), uses.end());
316       auto yieldOp = cast<async::YieldOp>(executeOp.getBody()->getTerminator());
317       SmallVector<Value, 4> operands(count, yieldOp.getOperand(index));
318       executeOp = addExecuteResults(executeOp, operands);
319       // Update 'uses' to refer to the new executeOp.
320       uses = llvm::drop_begin(executeOp.results()[index].getUses());
321       auto results = executeOp.results().take_back(count);
322       for (auto pair : llvm::zip(uses, results))
323         std::get<0>(pair).set(std::get<1>(pair));
324     }
325   }
326 };
327 
328 // Replaces synchronous GPU ops in the op's region with asynchronous ones and
329 // inserts the necessary synchronization (as gpu.wait ops). Assumes sequential
330 // execution semantics and that no GPU ops are asynchronous yet.
331 void GpuAsyncRegionPass::runOnOperation() {
332   if (getOperation()->walk(ThreadTokenCallback(getContext())).wasInterrupted())
333     return signalPassFailure();
334 
335   // Collect gpu.wait ops that we can move out of async.execute regions.
336   getOperation().getRegion().walk(DeferWaitCallback());
337   // Makes each !gpu.async.token returned from async.execute op have single use.
338   getOperation().getRegion().walk(SingleTokenUseCallback());
339 }
340 
341 std::unique_ptr<OperationPass<FuncOp>> mlir::createGpuAsyncRegionPass() {
342   return std::make_unique<GpuAsyncRegionPass>();
343 }
344