1 //===- AsyncRegionRewriter.cpp - Implementation of GPU async rewriters ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the GPU dialect pattern rewriters that make GPU op 10 // within a region execute asynchronously. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PassDetail.h" 15 #include "mlir/Dialect/Async/IR/Async.h" 16 #include "mlir/Dialect/GPU/GPUDialect.h" 17 #include "mlir/Dialect/GPU/Passes.h" 18 #include "mlir/Dialect/GPU/Utils.h" 19 #include "mlir/Dialect/StandardOps/IR/Ops.h" 20 #include "mlir/IR/BlockAndValueMapping.h" 21 #include "mlir/IR/Builders.h" 22 #include "mlir/IR/PatternMatch.h" 23 #include "mlir/IR/SymbolTable.h" 24 #include "mlir/Support/LLVM.h" 25 #include "mlir/Transforms/RegionUtils.h" 26 #include "llvm/ADT/TypeSwitch.h" 27 28 using namespace mlir; 29 namespace { 30 class GpuAsyncRegionPass : public GpuAsyncRegionPassBase<GpuAsyncRegionPass> { 31 struct ThreadTokenCallback; 32 struct DeferWaitCallback; 33 struct SingleTokenUseCallback; 34 void runOnFunction() override; 35 }; 36 } // namespace 37 38 static bool isTerminator(Operation *op) { 39 return op->mightHaveTrait<OpTrait::IsTerminator>(); 40 } 41 static bool hasSideEffects(Operation *op) { 42 return !MemoryEffectOpInterface::hasNoEffect(op); 43 } 44 45 // Region walk callback which makes GPU ops implementing the AsyncOpInterface 46 // execute asynchronously. 47 struct GpuAsyncRegionPass::ThreadTokenCallback { 48 ThreadTokenCallback(MLIRContext &context) : builder(&context) {} 49 50 // If `op` implements the AsyncOpInterface, insert a `gpu.wait async` to 51 // create a current token (unless it already exists), and 'thread' that token 52 // through the `op` so that it executes asynchronously. 53 // 54 // If `op` is a terminator or an op with side-effects, insert a `gpu.wait` to 55 // host-synchronize execution. A `!gpu.async.token` will therefore only be 56 // used inside of its block and GPU execution will always synchronize with 57 // the host at block boundaries. 58 WalkResult operator()(Operation *op) { 59 if (isa<gpu::LaunchOp>(op)) 60 return op->emitOpError("replace with gpu.launch_func first"); 61 if (isa<gpu::WaitOp>(op)) 62 return op->emitOpError("unexpected pre-existing gpu.wait"); 63 builder.setInsertionPoint(op); 64 if (auto asyncOp = dyn_cast<gpu::AsyncOpInterface>(op)) 65 return rewriteAsyncOp(asyncOp); // Replace GPU op with async version. 66 if (!currentToken) 67 return success(); 68 // Insert host synchronization before terminator or op with side effects. 69 if (isTerminator(op) || hasSideEffects(op)) 70 currentToken = createWaitOp(op->getLoc(), Type(), {currentToken}); 71 return success(); 72 } 73 74 private: 75 // Replaces asyncOp with a clone that returns a token. 76 LogicalResult rewriteAsyncOp(gpu::AsyncOpInterface asyncOp) { 77 auto *op = asyncOp.getOperation(); 78 if (asyncOp.getAsyncToken()) 79 // TODO: Support ops that are already async. 80 return op->emitOpError("is already async"); 81 if (op->getNumRegions() > 0) 82 return op->emitOpError("regions are not supported"); 83 84 auto tokenType = builder.getType<gpu::AsyncTokenType>(); 85 86 // If there is no current token, insert a `gpu.wait async` without 87 // dependencies to create one. 88 if (!currentToken) 89 currentToken = createWaitOp(op->getLoc(), tokenType, {}); 90 asyncOp.addAsyncDependency(currentToken); 91 92 // Clone the op to return a token in addition to the other results. 93 SmallVector<Type, 1> resultTypes; 94 resultTypes.reserve(1 + op->getNumResults()); 95 copy(op->getResultTypes(), std::back_inserter(resultTypes)); 96 resultTypes.push_back(tokenType); 97 auto *newOp = Operation::create(op->getLoc(), op->getName(), resultTypes, 98 op->getOperands(), op->getAttrDictionary(), 99 op->getSuccessors()); 100 101 // Replace the op with the async clone. 102 auto results = newOp->getResults(); 103 currentToken = results.back(); 104 builder.insert(newOp); 105 op->replaceAllUsesWith(results.drop_back()); 106 op->erase(); 107 108 return success(); 109 } 110 111 Value createWaitOp(Location loc, Type resultType, ValueRange operands) { 112 return builder.create<gpu::WaitOp>(loc, resultType, operands).asyncToken(); 113 } 114 115 OpBuilder builder; 116 117 // The token that represents the current asynchronous dependency. It's valid 118 // range starts with a `gpu.wait async` op, and ends with a `gpu.wait` op. 119 // In between, each gpu::AsyncOpInterface depends on the current token and 120 // produces the new one. 121 Value currentToken = {}; 122 }; 123 124 /// Erases `executeOp` and returns a clone with additional `results`. 125 async::ExecuteOp addExecuteResults(async::ExecuteOp executeOp, 126 ValueRange results) { 127 // Add values to async.yield op. 128 Operation *yieldOp = executeOp.getBody()->getTerminator(); 129 yieldOp->insertOperands(yieldOp->getNumOperands(), results); 130 131 // Construct new result type list with additional types. 132 SmallVector<Type, 2> resultTypes; 133 resultTypes.reserve(executeOp.getNumResults() + results.size()); 134 transform(executeOp.getResultTypes(), std::back_inserter(resultTypes), 135 [](Type type) { 136 // Extract value type from !async.value. 137 if (auto valueType = type.dyn_cast<async::ValueType>()) 138 return valueType.getValueType(); 139 assert(type.isa<async::TokenType>() && "expected token type"); 140 return type; 141 }); 142 transform(results, std::back_inserter(resultTypes), 143 [](Value value) { return value.getType(); }); 144 145 // Clone executeOp with the extra results. 146 OpBuilder builder(executeOp); 147 auto newOp = builder.create<async::ExecuteOp>( 148 executeOp.getLoc(), TypeRange{resultTypes}.drop_front() /*drop token*/, 149 executeOp.dependencies(), executeOp.operands()); 150 BlockAndValueMapping mapper; 151 newOp.getRegion().getBlocks().clear(); 152 executeOp.getRegion().cloneInto(&newOp.getRegion(), mapper); 153 154 // Replace executeOp with cloned one. 155 executeOp.getOperation()->replaceAllUsesWith( 156 newOp.getResults().drop_back(results.size())); 157 executeOp.erase(); 158 159 return newOp; 160 } 161 162 // Callback for `async.execute` ops which tries to push the contained 163 // synchronous `gpu.wait` op to the dependencies of the `async.execute`. 164 struct GpuAsyncRegionPass::DeferWaitCallback { 165 // If the `executeOp`s token is used only in `async.execute` or `async.await` 166 // ops, add the region's last `gpu.wait` op to the worklist if it is 167 // synchronous and is the last op with side effects. 168 void operator()(async::ExecuteOp executeOp) { 169 if (!areAllUsersExecuteOrAwait(executeOp.token())) 170 return; 171 // async.execute's region is currently restricted to one block. 172 for (auto &op : llvm::reverse(executeOp.getBody()->without_terminator())) { 173 if (auto waitOp = dyn_cast<gpu::WaitOp>(op)) { 174 if (!waitOp.asyncToken()) 175 worklist.push_back(waitOp); 176 return; 177 } 178 if (hasSideEffects(&op)) 179 return; 180 } 181 } 182 183 // The destructor performs the actual rewrite work. 184 ~DeferWaitCallback() { 185 for (size_t i = 0; i < worklist.size(); ++i) { 186 auto waitOp = worklist[i]; 187 auto executeOp = waitOp->getParentOfType<async::ExecuteOp>(); 188 189 // Erase `gpu.wait` and return async dependencies from execute op instead. 190 SmallVector<Value, 4> dependencies = waitOp.asyncDependencies(); 191 waitOp.erase(); 192 executeOp = addExecuteResults(executeOp, dependencies); 193 194 // Add the async dependency to each user of the `async.execute` token. 195 auto asyncTokens = executeOp.getResults().take_back(dependencies.size()); 196 for (Operation *user : executeOp.token().getUsers()) 197 addAsyncDependencyAfter(asyncTokens, user); 198 } 199 } 200 201 private: 202 // Returns whether all token users are either 'async.execute' or 'async.await' 203 // ops. This is used as a requirement for pushing 'gpu.wait' ops from a 204 // 'async.execute' body to it's users. Specifically, we do not allow 205 // terminator users, because it could mean that the `async.execute` is inside 206 // control flow code. 207 static bool areAllUsersExecuteOrAwait(Value token) { 208 return !token.use_empty() && 209 llvm::all_of(token.getUsers(), [](Operation *user) { 210 return isa<async::ExecuteOp, async::AwaitOp>(user); 211 }); 212 } 213 214 // Add the `asyncToken` as dependency as needed after `op`. 215 void addAsyncDependencyAfter(ValueRange asyncTokens, Operation *op) { 216 OpBuilder builder(op->getContext()); 217 auto loc = op->getLoc(); 218 219 Block::iterator it; 220 SmallVector<Value, 1> tokens; 221 tokens.reserve(asyncTokens.size()); 222 TypeSwitch<Operation *>(op) 223 .Case<async::AwaitOp>([&](auto awaitOp) { 224 // Add async.await ops to wait for the !gpu.async.tokens. 225 builder.setInsertionPointAfter(op); 226 for (auto asyncToken : asyncTokens) 227 tokens.push_back( 228 builder.create<async::AwaitOp>(loc, asyncToken).result()); 229 // Set `it` after the inserted async.await ops. 230 it = builder.getInsertionPoint(); 231 }) 232 .Case<async::ExecuteOp>([&](auto executeOp) { 233 // Set `it` to the beginning of the region and add asyncTokens to the 234 // async.execute operands. 235 it = executeOp.getBody()->begin(); 236 executeOp.operandsMutable().append(asyncTokens); 237 SmallVector<Type, 1> tokenTypes( 238 asyncTokens.size(), builder.getType<gpu::AsyncTokenType>()); 239 copy(executeOp.getBody()->addArguments(tokenTypes), 240 std::back_inserter(tokens)); 241 }); 242 243 // Advance `it` to terminator or op with side-effects. 244 it = std::find_if(it, Block::iterator(), [](Operation &op) { 245 return isTerminator(&op) || hasSideEffects(&op); 246 }); 247 248 // If `op` implements the AsyncOpInterface, add `token` to the list of async 249 // dependencies. 250 if (auto asyncOp = dyn_cast<gpu::AsyncOpInterface>(*it)) { 251 for (auto token : tokens) 252 asyncOp.addAsyncDependency(token); 253 return; 254 } 255 256 // Otherwise, insert a gpu.wait before 'it'. 257 builder.setInsertionPoint(it->getBlock(), it); 258 auto waitOp = builder.create<gpu::WaitOp>(loc, Type{}, tokens); 259 260 // If the new waitOp is at the end of an async.execute region, add it to the 261 // worklist. 'operator()(executeOp)' would do the same, but this is faster. 262 auto executeOp = dyn_cast<async::ExecuteOp>(it->getParentOp()); 263 if (executeOp && areAllUsersExecuteOrAwait(executeOp.token()) && 264 !it->getNextNode()) 265 worklist.push_back(waitOp); 266 } 267 268 SmallVector<gpu::WaitOp, 8> worklist; 269 }; 270 271 // Callback for `async.execute` ops which repeats !gpu.async.token results 272 // so that each of them is only used once. 273 struct GpuAsyncRegionPass::SingleTokenUseCallback { 274 void operator()(async::ExecuteOp executeOp) { 275 // Extract !gpu.async.token results which have multiple uses. 276 auto multiUseResults = 277 llvm::make_filter_range(executeOp.results(), [](OpResult result) { 278 if (result.use_empty() || result.hasOneUse()) 279 return false; 280 auto valueType = result.getType().dyn_cast<async::ValueType>(); 281 return valueType && 282 valueType.getValueType().isa<gpu::AsyncTokenType>(); 283 }); 284 if (multiUseResults.empty()) 285 return; 286 287 // Indices within !async.execute results (i.e. without the async.token). 288 SmallVector<int, 4> indices; 289 transform(multiUseResults, std::back_inserter(indices), 290 [](OpResult result) { 291 return result.getResultNumber() - 1; // Index without token. 292 }); 293 294 for (auto index : indices) { 295 assert(!executeOp.results()[index].getUses().empty()); 296 // Repeat async.yield token result, one for each use after the first one. 297 auto uses = llvm::drop_begin(executeOp.results()[index].getUses()); 298 auto count = std::distance(uses.begin(), uses.end()); 299 auto yieldOp = cast<async::YieldOp>(executeOp.getBody()->getTerminator()); 300 SmallVector<Value, 4> operands(count, yieldOp.getOperand(index)); 301 executeOp = addExecuteResults(executeOp, operands); 302 // Update 'uses' to refer to the new executeOp. 303 uses = llvm::drop_begin(executeOp.results()[index].getUses()); 304 auto results = executeOp.results().take_back(count); 305 for (auto pair : llvm::zip(uses, results)) 306 std::get<0>(pair).set(std::get<1>(pair)); 307 } 308 } 309 }; 310 311 // Replaces synchronous GPU ops in the op's region with asynchronous ones and 312 // inserts the necessary synchronization (as gpu.wait ops). Assumes sequential 313 // execution semantics and that no GPU ops are asynchronous yet. 314 void GpuAsyncRegionPass::runOnFunction() { 315 if (getFunction() 316 .getRegion() 317 .walk(ThreadTokenCallback(getContext())) 318 .wasInterrupted()) 319 return signalPassFailure(); 320 321 // Collect gpu.wait ops that we can move out of async.execute regions. 322 getFunction().getRegion().walk(DeferWaitCallback()); 323 // Makes each !gpu.async.token returned from async.execute op have single use. 324 getFunction().getRegion().walk(SingleTokenUseCallback()); 325 } 326 327 std::unique_ptr<OperationPass<FuncOp>> mlir::createGpuAsyncRegionPass() { 328 return std::make_unique<GpuAsyncRegionPass>(); 329 } 330