1 //===- OneShotAnalysis.cpp - One-Shot (Single Pass) Analysis --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // One-Shot Analysis analyzes function bodies. Function boundaries (FuncOp 10 // bbArgs, CallOps, ReturnOps) are treated as "unknown" ops. 11 // ModuleBufferization.cpp is an extension of One-Shot Analysis for simple 12 // call graphs. 13 // 14 // One-Shot Bufferize consists of two phases. 15 // 16 // 1. Analyze ops to decide which OpResults can bufferize inplace, i.e., without 17 // inserting buffer copies. The analysis queries op bufferization semantics 18 // via `BufferizableOpInterface`. 19 // 2. Bufferize ops by calling `BufferizableOpInterface::bufferize`. This 20 // function does not generate buffer copies for OpResults that were decided 21 // to bufferize inplace during the analysis phase. 22 // 23 // This file contains only the analysis. The actual bufferization is implemented 24 // via `bufferizeOp` (Bufferize.h). For convenience, this file also contains a 25 // helper function `runOneShotBufferize` that analyzes an op (and its nested 26 // ops) and then bufferizes it. 27 // 28 // Inplace bufferization decisions are passed from the analysis to the 29 // bufferization phase via `AnalysisState` and `BufferizationAliasInfo`. 30 // They can be printed for debugging purposes with `testAnalysisOnly`. 31 // 32 // Ops that do not implement `BufferizableOpInterface` can be analyzed but are 33 // treated conservatively. E.g., the analysis has to assume that their tensor 34 // OpOperands bufferize to memory writes. While such ops can be analyzed, they 35 // are not bufferized and remain in the IR. to_tensor and to_memref ops are 36 // inserted at the bufferization boundary. 37 // 38 // This analysis caters to high-performance codegen where buffer reuse is deemed 39 // critical: the analysis should fail if the bufferized form of the function 40 // needs to return a buffer, unless `allowReturnAllocs` is enabled. 41 42 #include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h" 43 44 #include <random> 45 46 #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h" 47 #include "mlir/Dialect/Bufferization/IR/Bufferization.h" 48 #include "mlir/Dialect/Bufferization/Transforms/Bufferize.h" 49 #include "mlir/Dialect/Func/IR/FuncOps.h" 50 #include "mlir/Dialect/MemRef/IR/MemRef.h" 51 #include "mlir/IR/AsmState.h" 52 #include "mlir/IR/Dominance.h" 53 #include "mlir/IR/Operation.h" 54 #include "mlir/IR/TypeUtilities.h" 55 #include "mlir/Interfaces/ControlFlowInterfaces.h" 56 #include "llvm/ADT/DenseSet.h" 57 #include "llvm/ADT/SetVector.h" 58 59 using namespace mlir; 60 using namespace mlir::bufferization; 61 62 static bool isaTensor(Type t) { return t.isa<TensorType>(); } 63 64 //===----------------------------------------------------------------------===// 65 // Bufferization-specific attribute manipulation. 66 // These are for testing and debugging only. Bufferization information is 67 // stored in BufferizationAliasInfo. When run with `testAnalysisOnly`, the IR 68 // is annotated with the results of the analysis (copied from 69 // BufferizationAliasInfo), so that they can be checked in tests. 70 //===----------------------------------------------------------------------===// 71 72 /// Attribute marker to specify op results that can be bufferized inPlace. 73 constexpr StringLiteral kInPlaceResultsAttrName = "__inplace_operands_attr__"; 74 75 /// Mark whether OpOperand will be bufferized inplace. 76 static void setInPlaceOpOperand(OpOperand &opOperand, bool inPlace) { 77 Operation *op = opOperand.getOwner(); 78 auto attr = 79 op->getAttr(kInPlaceResultsAttrName).dyn_cast_or_null<ArrayAttr>(); 80 SmallVector<StringRef> inPlaceVector; 81 if (attr) { 82 inPlaceVector = SmallVector<StringRef>( 83 llvm::to_vector<4>(attr.getAsValueRange<StringAttr>())); 84 } else { 85 inPlaceVector = SmallVector<StringRef>(op->getNumOperands(), "none"); 86 for (OpOperand &opOperand : op->getOpOperands()) 87 if (opOperand.get().getType().isa<TensorType>()) 88 inPlaceVector[opOperand.getOperandNumber()] = "false"; 89 } 90 91 inPlaceVector[opOperand.getOperandNumber()] = inPlace ? "true" : "false"; 92 op->setAttr(kInPlaceResultsAttrName, 93 OpBuilder(op).getStrArrayAttr(inPlaceVector)); 94 } 95 96 //===----------------------------------------------------------------------===// 97 // BufferizationAliasInfo 98 //===----------------------------------------------------------------------===// 99 100 BufferizationAliasInfo::BufferizationAliasInfo(Operation *rootOp) { 101 rootOp->walk([&](Operation *op) { 102 for (Value v : op->getResults()) 103 if (v.getType().isa<TensorType>()) 104 createAliasInfoEntry(v); 105 for (Region &r : op->getRegions()) 106 for (Block &b : r.getBlocks()) 107 for (auto bbArg : b.getArguments()) 108 if (bbArg.getType().isa<TensorType>()) 109 createAliasInfoEntry(bbArg); 110 }); 111 } 112 113 /// Add a new entry for `v` in the `aliasInfo` and `equivalentInfo`. In the 114 /// beginning the alias and equivalence sets only contain `v` itself. 115 void BufferizationAliasInfo::createAliasInfoEntry(Value v) { 116 aliasInfo.insert(v); 117 equivalentInfo.insert(v); 118 } 119 120 /// Insert an info entry for `newValue` and merge its alias set with that of 121 /// `alias`. 122 void BufferizationAliasInfo::insertNewBufferAlias(Value newValue, Value alias) { 123 createAliasInfoEntry(newValue); 124 aliasInfo.unionSets(newValue, alias); 125 } 126 127 /// Insert an info entry for `newValue` and merge its alias set with that of 128 /// `alias`. Additionally, merge their equivalence classes. 129 void BufferizationAliasInfo::insertNewBufferEquivalence(Value newValue, 130 Value alias) { 131 insertNewBufferAlias(newValue, alias); 132 equivalentInfo.unionSets(newValue, alias); 133 } 134 135 /// Return `true` if a value was marked as in-place bufferized. 136 bool BufferizationAliasInfo::isInPlace(OpOperand &operand) const { 137 return inplaceBufferized.contains(&operand); 138 } 139 140 /// Set the inPlace bufferization spec to true. 141 void BufferizationAliasInfo::bufferizeInPlace(OpOperand &operand, 142 AnalysisState &state) { 143 markInPlace(operand); 144 for (OpResult result : state.getAliasingOpResult(operand)) 145 aliasInfo.unionSets(result, operand.get()); 146 } 147 148 /// Set the inPlace bufferization spec to false. 149 void BufferizationAliasInfo::bufferizeOutOfPlace(OpOperand &operand) { 150 assert(!inplaceBufferized.contains(&operand) && 151 "OpOperand was already decided to bufferize inplace"); 152 } 153 154 /// Apply `fun` to all the members of the equivalence class of `v`. 155 void BufferizationAliasInfo::applyOnEquivalenceClass( 156 Value v, function_ref<void(Value)> fun) const { 157 auto leaderIt = equivalentInfo.findLeader(v); 158 for (auto mit = leaderIt, meit = equivalentInfo.member_end(); mit != meit; 159 ++mit) { 160 fun(*mit); 161 } 162 } 163 164 /// Apply `fun` to all aliases of `v`. 165 void BufferizationAliasInfo::applyOnAliases( 166 Value v, function_ref<void(Value)> fun) const { 167 auto leaderIt = aliasInfo.findLeader(v); 168 for (auto mit = leaderIt, meit = aliasInfo.member_end(); mit != meit; ++mit) { 169 fun(*mit); 170 } 171 } 172 173 BufferizationAliasInfo::EquivalenceClassRangeType 174 BufferizationAliasInfo::getAliases(Value v) const { 175 DenseSet<Value> res; 176 auto it = aliasInfo.findValue(aliasInfo.getLeaderValue(v)); 177 for (auto mit = aliasInfo.member_begin(it), meit = aliasInfo.member_end(); 178 mit != meit; ++mit) { 179 res.insert(static_cast<Value>(*mit)); 180 } 181 return BufferizationAliasInfo::EquivalenceClassRangeType( 182 aliasInfo.member_begin(it), aliasInfo.member_end()); 183 } 184 185 //===----------------------------------------------------------------------===// 186 // OneShotAnalysisState 187 //===----------------------------------------------------------------------===// 188 189 OneShotAnalysisState::OneShotAnalysisState( 190 Operation *op, const OneShotBufferizationOptions &options) 191 : AnalysisState(options), aliasInfo(op) { 192 // Set up alias sets for OpResults that must bufferize in-place. This should 193 // be done before making any other bufferization decisions. 194 op->walk([&](BufferizableOpInterface bufferizableOp) { 195 if (!options.isOpAllowed(bufferizableOp)) 196 return WalkResult::skip(); 197 for (OpOperand &opOperand : bufferizableOp->getOpOperands()) { 198 if (opOperand.get().getType().isa<TensorType>()) 199 if (bufferizableOp.mustBufferizeInPlace(opOperand, *this)) { 200 for (OpResult opResult : 201 bufferizableOp.getAliasingOpResult(opOperand, *this)) 202 aliasInfo.unionAliasSets(opOperand.get(), opResult); 203 aliasInfo.markInPlace(opOperand); 204 } 205 } 206 return WalkResult::advance(); 207 }); 208 } 209 210 bool OneShotAnalysisState::isInPlace(OpOperand &opOperand) const { 211 return aliasInfo.isInPlace(opOperand); 212 } 213 214 bool OneShotAnalysisState::areEquivalentBufferizedValues(Value v1, 215 Value v2) const { 216 return aliasInfo.areEquivalentBufferizedValues(v1, v2); 217 } 218 219 // Gather yielded tensors in `yieldedTensors` by querying all aliases. This is 220 // to ensure that such information is available during bufferization time. 221 // Alias information can no longer be queried through BufferizationAliasInfo 222 // once we have started modifying the IR. 223 void OneShotAnalysisState::gatherYieldedTensors(Operation *op) { 224 op->walk([&](Operation *returnOp) { 225 if (!isRegionReturnLike(returnOp) || !getOptions().isOpAllowed(returnOp)) 226 return WalkResult::advance(); 227 228 for (OpOperand &returnValOperand : returnOp->getOpOperands()) { 229 Value returnVal = returnValOperand.get(); 230 // Skip non-tensor values. 231 if (!returnVal.getType().isa<TensorType>()) 232 continue; 233 234 // Add all aliases of the returned value. But only the ones that are in 235 // the same block. 236 aliasInfo.applyOnAliases(returnVal, [&](Value v) { 237 if (auto bbArg = v.dyn_cast<BlockArgument>()) { 238 if (bbArg.getOwner()->getParentOp() == returnOp->getParentOp()) 239 yieldedTensors.insert(bbArg); 240 return; 241 } 242 Operation *definingOp = v.getDefiningOp(); 243 if (definingOp->getParentOp() == returnOp->getParentOp()) 244 yieldedTensors.insert(v); 245 }); 246 } 247 248 return WalkResult::advance(); 249 }); 250 } 251 252 void OneShotAnalysisState::gatherUndefinedTensorUses(Operation *op) { 253 op->walk([&](Operation *op) { 254 // Skip unknown ops. 255 auto bufferizableOp = getOptions().dynCastBufferizableOp(op); 256 if (!bufferizableOp) 257 return WalkResult::skip(); 258 259 // Check all tensor OpResults. 260 for (OpResult opResult : op->getOpResults()) { 261 if (!opResult.getType().isa<TensorType>()) 262 continue; 263 264 // If there is no preceding memory write, the tensor contents are 265 // undefined. 266 // Note: If `findLastPrecedingWrite` reaches the end of the reverse SSA 267 // use-def chain, it returns that value, regardless of whether it is a 268 // memory write or not. 269 SetVector<Value> lastWrites = findLastPrecedingWrite(opResult); 270 bool isUndefined = llvm::none_of(lastWrites, [&](Value lastWrite) { 271 if (auto bufferizableOp = getOptions().dynCastBufferizableOp(lastWrite)) 272 return bufferizableOp.isMemoryWrite(lastWrite.cast<OpResult>(), 273 *this); 274 return true; 275 }); 276 if (isUndefined) 277 for (OpOperand &use : opResult.getUses()) 278 undefinedTensorUses.insert(&use); 279 } 280 281 return WalkResult::advance(); 282 }); 283 } 284 285 bool OneShotAnalysisState::hasUndefinedContents(OpOperand *opOperand) const { 286 return undefinedTensorUses.contains(opOperand); 287 } 288 289 bool OneShotAnalysisState::isTensorYielded(Value tensor) const { 290 return yieldedTensors.contains(tensor); 291 } 292 293 //===----------------------------------------------------------------------===// 294 // Bufferization-specific alias analysis. 295 //===----------------------------------------------------------------------===// 296 297 /// Return true if opOperand has been decided to bufferize in-place. 298 static bool isInplaceMemoryWrite(OpOperand &opOperand, 299 const BufferizationAliasInfo &aliasInfo, 300 AnalysisState &state) { 301 // OpOperands that do not bufferize to a memory write do not write in-place. 302 if (!state.bufferizesToMemoryWrite(opOperand)) 303 return false; 304 // Check current bufferization decisions. 305 return aliasInfo.isInPlace(opOperand); 306 } 307 308 /// Return true if, under current bufferization decisions, the buffer of `value` 309 /// is not writable. 310 static bool aliasesNonWritableBuffer(Value value, 311 const BufferizationAliasInfo &aliasInfo, 312 AnalysisState &state) { 313 bool foundNonWritableBuffer = false; 314 aliasInfo.applyOnAliases(value, [&](Value v) { 315 // Query BufferizableOpInterface to see if the value is writable. 316 // TODO: Out-of-place bufferized value could be considered writable. 317 if (auto bufferizableOp = state.getOptions().dynCastBufferizableOp(v)) 318 if (bufferizableOp && bufferizableOp.isWritable(v, state)) 319 return; 320 321 // Query BufferizableOpInterface to see if the BlockArgument is writable. 322 if (auto bbArg = v.dyn_cast<BlockArgument>()) 323 if (auto bufferizableOp = state.getOptions().dynCastBufferizableOp( 324 bbArg.getOwner()->getParentOp())) 325 if (bufferizableOp.isWritable(bbArg, state)) 326 return; 327 328 foundNonWritableBuffer = true; 329 }); 330 331 return foundNonWritableBuffer; 332 } 333 334 /// Return true if the buffer to which `operand` would bufferize is equivalent 335 /// to some buffer write. 336 static bool aliasesInPlaceWrite(Value value, 337 const BufferizationAliasInfo &aliasInfo, 338 AnalysisState &state) { 339 bool foundInplaceWrite = false; 340 aliasInfo.applyOnAliases(value, [&](Value v) { 341 for (auto &use : v.getUses()) { 342 if (isInplaceMemoryWrite(use, aliasInfo, state)) { 343 foundInplaceWrite = true; 344 return; 345 } 346 } 347 }); 348 return foundInplaceWrite; 349 } 350 351 /// Return true if `a` happens before `b`, i.e., `a` or one of its ancestors 352 /// properly dominates `b` and `b` is not inside `a`. 353 static bool happensBefore(Operation *a, Operation *b, 354 const DominanceInfo &domInfo) { 355 do { 356 // TODO: Instead of isProperAncestor + properlyDominates, we should use 357 // properlyDominatesImpl(a, b, /*enclosingOpOk=*/false) 358 if (a->isProperAncestor(b)) 359 return false; 360 if (domInfo.properlyDominates(a, b)) 361 return true; 362 } while ((a = a->getParentOp())); 363 return false; 364 } 365 366 /// For each given value, find the closest enclosing repetitive region. If this 367 /// is the same region for each value, return it. Otherwise return None. 368 /// Note: If there is no enclosing repetitive region, return nullptr. 369 static Optional<Region *> 370 getCommonEnclosingRepetitiveRegion(ArrayRef<Value> values) { 371 if (values.empty()) 372 return None; 373 Region *r = getEnclosingRepetitiveRegion(values.front()); 374 for (Value value : values.drop_front()) 375 if (getEnclosingRepetitiveRegion(value) != r) 376 return None; 377 return r; 378 } 379 380 /// Return `true` if the given tensor value is a memory write. Most values are 381 /// tensor writes, but ops that define a tensor SSA value without specifying its 382 /// contents (e.g., alloc_tensor) are not. 383 static bool isMemoryWrite(Value value, const AnalysisState &state) { 384 auto opResult = value.dyn_cast<OpResult>(); 385 if (!opResult) 386 return true; 387 auto bufferizableOp = state.getOptions().dynCastBufferizableOp(value); 388 if (!bufferizableOp) 389 return true; 390 return bufferizableOp.isMemoryWrite(opResult, state); 391 } 392 393 /// Annotate IR with details about the detected RaW conflict. 394 static void annotateConflict(OpOperand *uRead, OpOperand *uConflictingWrite, 395 Value lastWrite) { 396 static uint64_t counter = 0; 397 Operation *readingOp = uRead->getOwner(); 398 Operation *conflictingWritingOp = uConflictingWrite->getOwner(); 399 400 OpBuilder b(conflictingWritingOp->getContext()); 401 std::string id = "C_" + std::to_string(counter++); 402 403 std::string conflictingWriteAttr = 404 id + 405 "[CONFL-WRITE: " + std::to_string(uConflictingWrite->getOperandNumber()) + 406 "]"; 407 conflictingWritingOp->setAttr(conflictingWriteAttr, b.getUnitAttr()); 408 409 std::string readAttr = 410 id + "[READ: " + std::to_string(uRead->getOperandNumber()) + "]"; 411 readingOp->setAttr(readAttr, b.getUnitAttr()); 412 413 if (auto opResult = lastWrite.dyn_cast<OpResult>()) { 414 std::string lastWriteAttr = id + "[LAST-WRITE: result " + 415 std::to_string(opResult.getResultNumber()) + 416 "]"; 417 opResult.getDefiningOp()->setAttr(lastWriteAttr, b.getUnitAttr()); 418 } else { 419 auto bbArg = lastWrite.cast<BlockArgument>(); 420 std::string lastWriteAttr = 421 id + "[LAST-WRITE: bbArg " + std::to_string(bbArg.getArgNumber()) + "]"; 422 bbArg.getOwner()->getParentOp()->setAttr(lastWriteAttr, b.getUnitAttr()); 423 } 424 } 425 426 /// Given sets of uses and writes, return true if there is a RaW conflict under 427 /// the assumption that all given reads/writes alias the same buffer and that 428 /// all given writes bufferize inplace. 429 /// 430 /// A conflict is: According to SSA use-def chains, a read R is supposed to read 431 /// the result of a write W1. But because of bufferization decisions, R actually 432 /// reads another write W2. 433 static bool hasReadAfterWriteInterference( 434 const DenseSet<OpOperand *> &usesRead, 435 const DenseSet<OpOperand *> &usesWrite, const DominanceInfo &domInfo, 436 AnalysisState &state, const BufferizationAliasInfo &aliasInfo) { 437 const BufferizationOptions &options = state.getOptions(); 438 439 // Gather all written aliases. Skip over aliases that are not actual writes. 440 SmallVector<Value> writtenAliases; 441 for (OpOperand *uWrite : usesWrite) 442 if (isMemoryWrite(uWrite->get(), state)) 443 writtenAliases.push_back(uWrite->get()); 444 // Find the inner-most enclosing repetitive region of each alias. If this is 445 // the same region for every alias, save it in `repetitiveRegionOfWrites`. 446 Optional<Region *> repetitiveRegionOfWrites = 447 getCommonEnclosingRepetitiveRegion(writtenAliases); 448 449 for (OpOperand *uRead : usesRead) { 450 Operation *readingOp = uRead->getOwner(); 451 452 // Find most recent writes of uRead by following the SSA use-def chain. 453 // E.g.: 454 // 455 // %0 = "writing_op"(%t) : tensor<?x32> -> tensor<?xf32> 456 // %1 = "aliasing_op"(%0) : tensor<?x32> -> tensor<?xf32> 457 // %2 = "reading_op"(%1) : : tensor<?x32> -> not_a_tensor_type 458 // 459 // In the above example, if uRead is the OpOperand of reading_op, lastWrite 460 // is %0. Note that operations that create an alias but do not write (such 461 // as ExtractSliceOp) are skipped. 462 SetVector<Value> lastWrites = state.findLastPrecedingWrite(uRead->get()); 463 464 // Look for conflicting memory writes. Potential conflicts are writes to an 465 // alias that have been decided to bufferize inplace. 466 for (OpOperand *uConflictingWrite : usesWrite) { 467 // Throughout this loop, check for multiple requirements that have to be 468 // met for uConflictingWrite to be an actual conflict. 469 Operation *conflictingWritingOp = uConflictingWrite->getOwner(); 470 471 // Check if conflictingWritingOp is in the same repetitive region as all 472 // written aliases. If this is not the case, there is no meaningful 473 // `happensBefore` relationship because conflictingWritingOp may be 474 // executed multiple times. E.g.: 475 // 476 // %0 = ... : tensor<?xf32> 477 // scf.for ... { 478 // "reading_op"(%0) : tensor<?xf32> 479 // %1 = "writing_op"(%0) : tensor<?xf32> -> tensor<?xf32> 480 // ... 481 // } 482 // 483 // In the above example, reading_op happens before writing_op according to 484 // op dominance. However, both ops may happen multiple times; in 485 // particular, the second execution of reading_op happens after the first 486 // execution of writing_op. This is problematic if the tensor they operate 487 // on (%0) is defined outside of the loop. 488 // 489 // Counter example: 490 // 491 // scf.for ... { 492 // %0 = ... : tensor<?xf32> 493 // "reading_op"(%0) : tensor<?xf32> 494 // %1 = "writing_op"(%0) : tensor<?xf32> -> tensor<?xf32> 495 // ... 496 // } 497 // 498 // In this example, %0 is in the same repetitive region as 499 // conflictingWritingOp, so op dominance can be used to compute the 500 // `happensBefore` relationship. 501 // 502 // Note: iter_args of loops are not aliases of their respective block 503 // arguments, so op domanice can be used when analyzing ops that operate 504 // on them. 505 // 506 // Note: If `writtenAliases` is empty, there are no memory writes outside 507 // of the repetitive region of conflictingWritingOp, which means that all 508 // relevant aliases are inside the same repetitive region. 509 bool canUseOpDominance = 510 writtenAliases.empty() || 511 repetitiveRegionOfWrites == 512 getEnclosingRepetitiveRegion(conflictingWritingOp); 513 514 // No conflict if the readingOp dominates conflictingWritingOp, i.e., the 515 // write is not visible when reading. 516 // 517 // Note: If ops are executed multiple times (e.g., because they are inside 518 // a loop), there may be no meaningful `happensBefore` relationship. 519 if (canUseOpDominance && 520 happensBefore(readingOp, conflictingWritingOp, domInfo)) 521 continue; 522 523 // No conflict if the reading use equals the use of the conflicting write. 524 // A use cannot conflict with itself. 525 // 526 // Note: Just being the same op is not enough. It has to be the same use. 527 // Note: If the op is executed multiple times (e.g., because it is inside 528 // a loop), it may be conflicting with itself. 529 if (canUseOpDominance && uConflictingWrite == uRead) 530 continue; 531 532 // No conflict if the op interface says so. 533 if (auto bufferizableOp = options.dynCastBufferizableOp(readingOp)) 534 if (bufferizableOp.isNotConflicting(uRead, uConflictingWrite, state)) 535 continue; 536 537 if (conflictingWritingOp != readingOp) 538 if (auto bufferizableOp = 539 options.dynCastBufferizableOp(conflictingWritingOp)) 540 if (bufferizableOp.isNotConflicting(uRead, uConflictingWrite, state)) 541 continue; 542 543 // Ops are not conflicting if they are in mutually exclusive regions. 544 // 545 // Note: If ops are executed multiple times (e.g., because they are inside 546 // a loop), mutually exclusive regions may be executed multiple 547 // times. 548 if (canUseOpDominance && 549 insideMutuallyExclusiveRegions(readingOp, conflictingWritingOp)) 550 continue; 551 552 // Check all possible last writes. 553 for (Value lastWrite : lastWrites) { 554 // No conflict if the conflicting write happens before the last 555 // write. 556 if (Operation *writingOp = lastWrite.getDefiningOp()) { 557 if (happensBefore(conflictingWritingOp, writingOp, domInfo)) 558 // conflictingWritingOp happens before writingOp. No conflict. 559 continue; 560 // No conflict if conflictingWritingOp is contained in writingOp. 561 if (writingOp->isProperAncestor(conflictingWritingOp)) 562 continue; 563 } else { 564 auto bbArg = lastWrite.cast<BlockArgument>(); 565 Block *block = bbArg.getOwner(); 566 if (!block->findAncestorOpInBlock(*conflictingWritingOp)) 567 // conflictingWritingOp happens outside of the block. No 568 // conflict. 569 continue; 570 } 571 572 // No conflict if the conflicting write and the last write are the same 573 // use. 574 SmallVector<OpResult> aliasingOpResult = 575 state.getAliasingOpResult(*uConflictingWrite); 576 if (aliasingOpResult.size() == 1 && aliasingOpResult[0] == lastWrite) 577 continue; 578 579 // All requirements are met. Conflict found! 580 581 if (options.printConflicts) 582 annotateConflict(uRead, uConflictingWrite, lastWrite); 583 584 return true; 585 } 586 } 587 } 588 589 return false; 590 } 591 592 /// Return true if bufferizing `operand` inplace would create a conflict. A read 593 /// R and a write W of the same alias set is a conflict if inplace bufferization 594 /// of W changes the value read by R to a value different from the one that 595 /// would be expected by tracing back R's origin through SSA use-def chains. 596 /// A conflict can only be introduced by a new alias and/or an inplace 597 /// bufferization decision. 598 /// 599 /// Example: 600 /// %0 = tensor.extract_slice %t[...][...][1, 1] {inplace?} 601 /// %1 = vector.transfer_write %v1, %t {inplace} : vector<5xf32>, tensor<?xf32> 602 /// %e = tensor.extract_slice %1 603 /// %2 = vector.transfer_write %v2, %0 {inplace} : vector<6xf32>, tensor<?xf32> 604 /// %3 = vector.transfer_read %e, %cst : tensor<?xf32>, vector<7xf32> 605 /// 606 /// In the above example, the two TransferWriteOps have already been decided to 607 /// bufferize inplace. Bufferizing the ExtractSliceOp inplace would create a 608 /// conflict because: 609 /// * According to SSA use-def chains, we expect to read the result of %1. 610 /// * However, adding an alias {%0, %t} would mean that the second 611 /// TransferWriteOp overwrites the first one. Therefore, the TransferReadOp 612 /// would no longer be reading the result of %1. 613 /// 614 /// If `checkConsistencyOnly` is true, this function checks if there is a 615 /// read-after-write conflict without bufferizing `operand` inplace. This would 616 /// indicate a problem with the current inplace bufferization decisions. 617 /// 618 /// Note: If `checkConsistencyOnly`, this function may be called with a null 619 /// OpResult. In that case, only the consistency of bufferization decisions 620 /// involving aliases of the given OpOperand are checked. 621 static bool wouldCreateReadAfterWriteInterference( 622 OpOperand &operand, const DominanceInfo &domInfo, AnalysisState &state, 623 const BufferizationAliasInfo &aliasInfo, 624 bool checkConsistencyOnly = false) { 625 // Helper function to iterate on aliases of `root` and capture the reads. 626 auto getAliasingReads = [&](DenseSet<OpOperand *> &res, Value root) { 627 aliasInfo.applyOnAliases(root, [&](Value alias) { 628 for (auto &use : alias.getUses()) 629 // Read to a value that aliases root. 630 if (state.bufferizesToMemoryRead(use)) 631 res.insert(&use); 632 }); 633 }; 634 635 // Helper function to iterate on aliases of `root` and capture the writes. 636 auto getAliasingInplaceWrites = [&](DenseSet<OpOperand *> &res, Value root) { 637 aliasInfo.applyOnAliases(root, [&](Value alias) { 638 for (auto &use : alias.getUses()) 639 // Inplace write to a value that aliases root. 640 if (isInplaceMemoryWrite(use, aliasInfo, state)) 641 res.insert(&use); 642 }); 643 }; 644 645 // Collect reads and writes of all aliases of OpOperand and OpResult. 646 DenseSet<OpOperand *> usesRead, usesWrite; 647 getAliasingReads(usesRead, operand.get()); 648 getAliasingInplaceWrites(usesWrite, operand.get()); 649 for (OpResult result : state.getAliasingOpResult(operand)) { 650 getAliasingReads(usesRead, result); 651 getAliasingInplaceWrites(usesWrite, result); 652 } 653 if (!checkConsistencyOnly && state.bufferizesToMemoryWrite(operand)) 654 usesWrite.insert(&operand); 655 656 return hasReadAfterWriteInterference(usesRead, usesWrite, domInfo, state, 657 aliasInfo); 658 } 659 660 /// Return true if bufferizing `opOperand` inplace would create a write to a 661 /// non-writable buffer. 662 static bool 663 wouldCreateWriteToNonWritableBuffer(OpOperand &opOperand, 664 const BufferizationAliasInfo &aliasInfo, 665 AnalysisState &state) { 666 // Certain buffers are not writeable: 667 // 1. A function bbArg that is not inplaceable or 668 // 2. A constant op. 669 bool nonWritable = 670 aliasesNonWritableBuffer(opOperand.get(), aliasInfo, state); 671 if (!nonWritable) 672 return false; 673 674 // This is a problem only if the buffer is written to via some alias. 675 bool hasWrite = aliasesInPlaceWrite(opOperand.get(), aliasInfo, state) || 676 state.bufferizesToMemoryWrite(opOperand); 677 678 for (OpResult opResult : state.getAliasingOpResult(opOperand)) 679 hasWrite |= aliasesInPlaceWrite(opResult, aliasInfo, state); 680 681 return hasWrite; 682 } 683 684 //===----------------------------------------------------------------------===// 685 // Bufferization analyses. 686 //===----------------------------------------------------------------------===// 687 688 /// Determine if `operand` can be bufferized in-place. 689 static LogicalResult bufferizableInPlaceAnalysisImpl( 690 OpOperand &operand, BufferizationAliasInfo &aliasInfo, AnalysisState &state, 691 const DominanceInfo &domInfo) { 692 bool foundInterference = 693 wouldCreateWriteToNonWritableBuffer(operand, aliasInfo, state) || 694 wouldCreateReadAfterWriteInterference(operand, domInfo, state, aliasInfo); 695 696 if (foundInterference) 697 aliasInfo.bufferizeOutOfPlace(operand); 698 else 699 aliasInfo.bufferizeInPlace(operand, state); 700 701 return success(); 702 } 703 704 /// Analyze the `ops` to determine which OpOperands are inplaceable. Walk ops in 705 /// reverse and bufferize ops greedily. This is a good starter heuristic. 706 /// 707 /// Even if an op does not read or write, it may still create an alias when 708 /// bufferized in-place. An example of such ops is tensor.extract_slice. 709 /// 710 /// Rationale for bufferizing `%1 = tensor.extract_slice %0[...]` inplace: 711 /// 712 /// When bufferized out of place, an ExtractSliceOp lowers to alloc + copy. This 713 /// cannot change the flow of information for either the source or the 714 /// result buffers. 715 /// 716 /// When bufferized inplace, an ExtractSliceOp does not by itself create any 717 /// read or write from memory. Instead, it has the effect of merging the alias 718 /// sets of the source and the result buffers. 719 /// 720 /// An analysis is required to ensure inplace bufferization would not result in 721 /// RaW dependence violations. 722 static LogicalResult inPlaceAnalysis(SmallVector<Operation *> &ops, 723 BufferizationAliasInfo &aliasInfo, 724 AnalysisState &state, 725 const DominanceInfo &domInfo, 726 unsigned analysisFuzzerSeed = 0) { 727 if (analysisFuzzerSeed) { 728 // This is a fuzzer. For testing purposes only. Randomize the order in which 729 // operations are analyzed. The bufferization quality is likely worse, but 730 // we want to make sure that no assertions are triggered anywhere. 731 std::mt19937 g(analysisFuzzerSeed); 732 llvm::shuffle(ops.begin(), ops.end(), g); 733 } 734 735 // Walk ops in reverse for better interference analysis. 736 for (Operation *op : reverse(ops)) 737 for (OpOperand &opOperand : op->getOpOperands()) 738 if (opOperand.get().getType().isa<TensorType>()) 739 if (auto bufferizableOp = state.getOptions().dynCastBufferizableOp(op)) 740 if (failed(bufferizableInPlaceAnalysisImpl(opOperand, aliasInfo, 741 state, domInfo))) 742 return failure(); 743 744 return success(); 745 } 746 747 /// Return true if the given op has a tensor result or a tensor operand. 748 static bool hasTensorSemantics(Operation *op) { 749 bool hasTensorResult = any_of(op->getResultTypes(), isaTensor); 750 bool hasTensorOperand = any_of(op->getOperandTypes(), isaTensor); 751 return hasTensorResult || hasTensorOperand; 752 } 753 754 /// Analyze all ops that are contained in `op`. 755 static LogicalResult inPlaceAnalysis(Operation *op, 756 BufferizationAliasInfo &aliasInfo, 757 AnalysisState &state, 758 const DominanceInfo &domInfo, 759 unsigned analysisFuzzerSeed = 0) { 760 // Collect ops so we can build our own reverse traversal. 761 SmallVector<Operation *> ops; 762 op->walk([&](Operation *op) { 763 // No tensors => no buffers. 764 if (!hasTensorSemantics(op)) 765 return; 766 ops.push_back(op); 767 }); 768 769 return inPlaceAnalysis(ops, aliasInfo, state, domInfo, analysisFuzzerSeed); 770 } 771 772 /// Analyze equivalence of tied OpResult/OpOperand pairs of the given ops. 773 static void equivalenceAnalysis(SmallVector<Operation *> &ops, 774 BufferizationAliasInfo &aliasInfo, 775 AnalysisState &state) { 776 for (Operation *op : ops) 777 if (auto bufferizableOp = state.getOptions().dynCastBufferizableOp(op)) 778 for (OpResult opResult : op->getOpResults()) 779 if (opResult.getType().isa<TensorType>()) 780 for (OpOperand *opOperand : 781 bufferizableOp.getAliasingOpOperand(opResult, state)) 782 if (state.isInPlace(*opOperand)) 783 if (bufferizableOp.bufferRelation(opResult, state) == 784 BufferRelation::Equivalent) 785 aliasInfo.unionEquivalenceClasses(opResult, opOperand->get()); 786 } 787 788 /// Analyze equivalence of tied OpResult/OpOperand pairs of all ops contained 789 /// in `op`. 790 static void equivalenceAnalysis(Operation *op, 791 BufferizationAliasInfo &aliasInfo, 792 AnalysisState &state) { 793 // Traverse ops in PostOrder: Nested ops first, then enclosing ops. 794 SmallVector<Operation *> ops; 795 op->walk<WalkOrder::PostOrder>([&](Operation *op) { 796 // No tensors => no buffers. 797 if (none_of(op->getResultTypes(), isaTensor)) 798 return; 799 ops.push_back(op); 800 }); 801 802 equivalenceAnalysis(ops, aliasInfo, state); 803 } 804 805 /// Assert that the current bufferization decisions are consistent. 806 static LogicalResult 807 checkAliasInfoConsistency(Operation *op, const DominanceInfo &domInfo, 808 AnalysisState &state, 809 const BufferizationAliasInfo &aliasInfo) { 810 const BufferizationOptions &options = state.getOptions(); 811 Operation *inconsistentOp = nullptr; 812 WalkResult walkResult = op->walk([&](Operation *op) { 813 if (auto bufferizableOp = options.dynCastBufferizableOp(op)) 814 for (OpOperand &opOperand : op->getOpOperands()) 815 if (opOperand.get().getType().isa<TensorType>()) { 816 if (wouldCreateReadAfterWriteInterference( 817 opOperand, domInfo, state, aliasInfo, 818 /*checkConsistencyOnly=*/true)) { 819 // This error can happen if certain "mustBufferizeInPlace" interface 820 // methods are implemented incorrectly, such that the IR already has 821 // a RaW conflict before making any bufferization decisions. 822 inconsistentOp = op; 823 return WalkResult::interrupt(); 824 } 825 } 826 return WalkResult::advance(); 827 }); 828 829 if (walkResult.wasInterrupted()) 830 return inconsistentOp->emitError("input IR has RaW conflict"); 831 return success(); 832 } 833 834 /// Annotate the IR with the result of the analysis. For testing/debugging only. 835 static void 836 annotateOpsWithBufferizationMarkers(Operation *op, 837 const BufferizationAliasInfo &aliasInfo, 838 AnalysisState &state) { 839 op->walk([&](Operation *op) { 840 if (auto bufferizableOp = state.getOptions().dynCastBufferizableOp(op)) 841 for (OpOperand &opOperand : op->getOpOperands()) 842 if (opOperand.get().getType().isa<TensorType>()) 843 setInPlaceOpOperand(opOperand, aliasInfo.isInPlace(opOperand)); 844 }); 845 } 846 847 /// Assert that IR is in destination-passing style. I.e., every value that is 848 /// returned or yielded from a block is: 849 /// * aliasing a bbArg of that block or a parent block, or 850 /// * aliasing an OpResult of a op in a parent block. 851 /// 852 /// Example: 853 /// ``` 854 /// %0 = "some_op" : tensor<?xf32> 855 /// %1 = scf.if %c -> (tensor<?xf32>) { 856 /// scf.yield %0 : tensor<?xf32> 857 /// } else { 858 /// %t = linalg.alloc_tensor : tensor<?xf32> 859 /// scf.yield %t : tensor<?xf32> 860 /// } 861 /// ``` 862 /// In the above example, the first scf.yield op satifies destination-passing 863 /// style because the yielded value %0 is defined in the parent block. The 864 /// second scf.yield op does not satisfy destination-passing style because the 865 /// yielded value %t is defined in the same block as the scf.yield op. 866 // TODO: The current implementation checks for equivalent values instead of 867 // aliasing values, which is stricter than needed. We can currently not check 868 // for aliasing values because the analysis is a maybe-alias analysis and we 869 // need a must-alias analysis here. 870 static LogicalResult 871 assertDestinationPassingStyle(Operation *op, AnalysisState &state, 872 BufferizationAliasInfo &aliasInfo, 873 SmallVector<Operation *> &newOps) { 874 LogicalResult status = success(); 875 DominanceInfo domInfo(op); 876 op->walk([&](Operation *returnOp) { 877 if (!isRegionReturnLike(returnOp) || 878 !state.getOptions().isOpAllowed(returnOp)) 879 return WalkResult::advance(); 880 881 for (OpOperand &returnValOperand : returnOp->getOpOperands()) { 882 Value returnVal = returnValOperand.get(); 883 // Skip non-tensor values. 884 if (!returnVal.getType().isa<TensorType>()) 885 continue; 886 887 bool foundEquivValue = false; 888 aliasInfo.applyOnEquivalenceClass(returnVal, [&](Value equivVal) { 889 if (auto bbArg = equivVal.dyn_cast<BlockArgument>()) { 890 Operation *definingOp = bbArg.getOwner()->getParentOp(); 891 if (definingOp->isProperAncestor(returnOp)) 892 foundEquivValue = true; 893 return; 894 } 895 896 Operation *definingOp = equivVal.getDefiningOp(); 897 if (definingOp->getBlock()->findAncestorOpInBlock( 898 *returnOp->getParentOp())) 899 // Skip ops that happen after `returnOp` and parent ops. 900 if (happensBefore(definingOp, returnOp, domInfo)) 901 foundEquivValue = true; 902 }); 903 904 if (!foundEquivValue) 905 status = 906 returnOp->emitError() 907 << "operand #" << returnValOperand.getOperandNumber() 908 << " of ReturnLike op does not satisfy destination passing style"; 909 } 910 911 return WalkResult::advance(); 912 }); 913 914 return status; 915 } 916 917 LogicalResult bufferization::analyzeOp(Operation *op, 918 OneShotAnalysisState &state) { 919 DominanceInfo domInfo(op); 920 BufferizationAliasInfo &aliasInfo = state.getAliasInfo(); 921 const auto &options = 922 static_cast<const OneShotBufferizationOptions &>(state.getOptions()); 923 924 // Catch incorrect API usage. 925 assert((state.hasDialectState(func::FuncDialect::getDialectNamespace()) || 926 !options.bufferizeFunctionBoundaries) && 927 "must use ModuleBufferize to bufferize function boundaries"); 928 929 if (failed(checkAliasInfoConsistency(op, domInfo, state, aliasInfo))) 930 return failure(); 931 932 // If the analysis fails, just return. 933 if (failed(inPlaceAnalysis(op, aliasInfo, state, domInfo, 934 options.analysisFuzzerSeed))) 935 return failure(); 936 equivalenceAnalysis(op, aliasInfo, state); 937 938 for (const PostAnalysisStepFn &fn : options.postAnalysisSteps) { 939 SmallVector<Operation *> newOps; 940 if (failed(fn(op, state, aliasInfo, newOps))) 941 return failure(); 942 // Analyze ops that were created by the PostAnalysisStepFn. 943 if (failed(inPlaceAnalysis(newOps, aliasInfo, state, domInfo))) 944 return failure(); 945 equivalenceAnalysis(newOps, aliasInfo, state); 946 } 947 948 bool failedAnalysis = false; 949 if (!options.allowReturnAllocs) { 950 SmallVector<Operation *> newOps; 951 failedAnalysis |= 952 failed(assertDestinationPassingStyle(op, state, aliasInfo, newOps)); 953 } 954 955 // Gather some extra analysis data. 956 state.gatherYieldedTensors(op); 957 state.gatherUndefinedTensorUses(op); 958 959 // Analysis verification: After setting up alias/equivalence sets, each op 960 // can check for expected invariants/limitations and fail the analysis if 961 // necessary. 962 op->walk([&](Operation *op) { 963 if (BufferizableOpInterface bufferizableOp = 964 options.dynCastBufferizableOp(op)) 965 failedAnalysis |= failed(bufferizableOp.verifyAnalysis(state)); 966 }); 967 968 // Annotate operations if we only want to report the analysis. 969 if (options.testAnalysisOnly) 970 annotateOpsWithBufferizationMarkers(op, aliasInfo, state); 971 972 return success(!failedAnalysis); 973 } 974 975 LogicalResult 976 bufferization::runOneShotBufferize(Operation *op, 977 const OneShotBufferizationOptions &options) { 978 OneShotAnalysisState state(op, options); 979 if (failed(analyzeOp(op, state))) 980 return failure(); 981 if (options.testAnalysisOnly) 982 return success(); 983 return bufferizeOp(op, state); 984 } 985