1 //===- OneShotAnalysis.cpp - One-Shot (Single Pass) Analysis --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // One-Shot Analysis analyzes function bodies. Function boundaries (FuncOp 10 // bbArgs, CallOps, ReturnOps) are treated as "unknown" ops. 11 // ModuleBufferization.cpp is an extension of One-Shot Analysis for simple 12 // call graphs. 13 // 14 // One-Shot Bufferize consists of two phases. 15 // 16 // 1. Analyze ops to decide which OpResults can bufferize inplace, i.e., without 17 // inserting buffer copies. The analysis queries op bufferization semantics 18 // via `BufferizableOpInterface`. 19 // 2. Bufferize ops by calling `BufferizableOpInterface::bufferize`. This 20 // function does not generate buffer copies for OpResults that were decided 21 // to bufferize inplace during the analysis phase. 22 // 23 // This file contains only the analysis. The actual bufferization is implemented 24 // via `bufferizeOp` (Bufferize.h). For convenience, this file also contains a 25 // helper function `runOneShotBufferize` that analyzes an op (and its nested 26 // ops) and then bufferizes it. 27 // 28 // Inplace bufferization decisions are passed from the analysis to the 29 // bufferization phase via `AnalysisState` and `BufferizationAliasInfo`. 30 // They can be printed for debugging purposes with `testAnalysisOnly`. 31 // 32 // Ops that do not implement `BufferizableOpInterface` can be analyzed but are 33 // treated conservatively. E.g., the analysis has to assume that their tensor 34 // OpOperands bufferize to memory writes. While such ops can be analyzed, they 35 // are not bufferized and remain in the IR. to_tensor and to_memref ops are 36 // inserted at the bufferization boundary. 37 // 38 // This analysis caters to high-performance codegen where buffer reuse is deemed 39 // critical: the analysis should fail if the bufferized form of the function 40 // needs to return a buffer, unless `allowReturnAllocs` is enabled. 41 42 #include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h" 43 44 #include <random> 45 46 #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h" 47 #include "mlir/Dialect/Bufferization/IR/Bufferization.h" 48 #include "mlir/Dialect/Bufferization/Transforms/Bufferize.h" 49 #include "mlir/Dialect/MemRef/IR/MemRef.h" 50 #include "mlir/IR/AsmState.h" 51 #include "mlir/IR/Dominance.h" 52 #include "mlir/IR/Operation.h" 53 #include "mlir/IR/TypeUtilities.h" 54 #include "mlir/Interfaces/ControlFlowInterfaces.h" 55 #include "llvm/ADT/DenseSet.h" 56 #include "llvm/ADT/SetVector.h" 57 58 using namespace mlir; 59 using namespace mlir::bufferization; 60 61 static bool isaTensor(Type t) { return t.isa<TensorType>(); } 62 63 //===----------------------------------------------------------------------===// 64 // Bufferization-specific attribute manipulation. 65 // These are for testing and debugging only. Bufferization information is 66 // stored in BufferizationAliasInfo. When run with `testAnalysisOnly`, the IR 67 // is annotated with the results of the analysis (copied from 68 // BufferizationAliasInfo), so that they can be checked in tests. 69 //===----------------------------------------------------------------------===// 70 71 /// Attribute marker to specify op results that can be bufferized inPlace. 72 constexpr StringLiteral kInPlaceResultsAttrName = "__inplace_operands_attr__"; 73 74 /// Mark whether OpOperand will be bufferized inplace. 75 static void setInPlaceOpOperand(OpOperand &opOperand, bool inPlace) { 76 Operation *op = opOperand.getOwner(); 77 auto attr = 78 op->getAttr(kInPlaceResultsAttrName).dyn_cast_or_null<ArrayAttr>(); 79 SmallVector<StringRef> inPlaceVector; 80 if (attr) { 81 inPlaceVector = SmallVector<StringRef>( 82 llvm::to_vector<4>(attr.getAsValueRange<StringAttr>())); 83 } else { 84 inPlaceVector = SmallVector<StringRef>(op->getNumOperands(), "none"); 85 for (OpOperand &opOperand : op->getOpOperands()) 86 if (opOperand.get().getType().isa<TensorType>()) 87 inPlaceVector[opOperand.getOperandNumber()] = "false"; 88 } 89 90 inPlaceVector[opOperand.getOperandNumber()] = inPlace ? "true" : "false"; 91 op->setAttr(kInPlaceResultsAttrName, 92 OpBuilder(op).getStrArrayAttr(inPlaceVector)); 93 } 94 95 //===----------------------------------------------------------------------===// 96 // BufferizationAliasInfo 97 //===----------------------------------------------------------------------===// 98 99 BufferizationAliasInfo::BufferizationAliasInfo(Operation *rootOp) { 100 rootOp->walk([&](Operation *op) { 101 for (Value v : op->getResults()) 102 if (v.getType().isa<TensorType>()) 103 createAliasInfoEntry(v); 104 for (Region &r : op->getRegions()) 105 for (Block &b : r.getBlocks()) 106 for (auto bbArg : b.getArguments()) 107 if (bbArg.getType().isa<TensorType>()) 108 createAliasInfoEntry(bbArg); 109 }); 110 } 111 112 /// Add a new entry for `v` in the `aliasInfo` and `equivalentInfo`. In the 113 /// beginning the alias and equivalence sets only contain `v` itself. 114 void BufferizationAliasInfo::createAliasInfoEntry(Value v) { 115 aliasInfo.insert(v); 116 equivalentInfo.insert(v); 117 } 118 119 /// Insert an info entry for `newValue` and merge its alias set with that of 120 /// `alias`. 121 void BufferizationAliasInfo::insertNewBufferAlias(Value newValue, Value alias) { 122 createAliasInfoEntry(newValue); 123 aliasInfo.unionSets(newValue, alias); 124 } 125 126 /// Insert an info entry for `newValue` and merge its alias set with that of 127 /// `alias`. Additionally, merge their equivalence classes. 128 void BufferizationAliasInfo::insertNewBufferEquivalence(Value newValue, 129 Value alias) { 130 insertNewBufferAlias(newValue, alias); 131 equivalentInfo.unionSets(newValue, alias); 132 } 133 134 /// Return `true` if a value was marked as in-place bufferized. 135 bool BufferizationAliasInfo::isInPlace(OpOperand &operand) const { 136 return inplaceBufferized.contains(&operand); 137 } 138 139 /// Set the inPlace bufferization spec to true. 140 void BufferizationAliasInfo::bufferizeInPlace(OpOperand &operand, 141 AnalysisState &state) { 142 markInPlace(operand); 143 for (OpResult result : state.getAliasingOpResult(operand)) 144 aliasInfo.unionSets(result, operand.get()); 145 } 146 147 /// Set the inPlace bufferization spec to false. 148 void BufferizationAliasInfo::bufferizeOutOfPlace(OpOperand &operand) { 149 assert(!inplaceBufferized.contains(&operand) && 150 "OpOperand was already decided to bufferize inplace"); 151 } 152 153 /// Apply `fun` to all the members of the equivalence class of `v`. 154 void BufferizationAliasInfo::applyOnEquivalenceClass( 155 Value v, function_ref<void(Value)> fun) const { 156 auto leaderIt = equivalentInfo.findLeader(v); 157 for (auto mit = leaderIt, meit = equivalentInfo.member_end(); mit != meit; 158 ++mit) { 159 fun(*mit); 160 } 161 } 162 163 /// Apply `fun` to all aliases of `v`. 164 void BufferizationAliasInfo::applyOnAliases( 165 Value v, function_ref<void(Value)> fun) const { 166 auto leaderIt = aliasInfo.findLeader(v); 167 for (auto mit = leaderIt, meit = aliasInfo.member_end(); mit != meit; ++mit) { 168 fun(*mit); 169 } 170 } 171 172 BufferizationAliasInfo::EquivalenceClassRangeType 173 BufferizationAliasInfo::getAliases(Value v) const { 174 DenseSet<Value> res; 175 auto it = aliasInfo.findValue(aliasInfo.getLeaderValue(v)); 176 for (auto mit = aliasInfo.member_begin(it), meit = aliasInfo.member_end(); 177 mit != meit; ++mit) { 178 res.insert(static_cast<Value>(*mit)); 179 } 180 return BufferizationAliasInfo::EquivalenceClassRangeType( 181 aliasInfo.member_begin(it), aliasInfo.member_end()); 182 } 183 184 //===----------------------------------------------------------------------===// 185 // OneShotAnalysisState 186 //===----------------------------------------------------------------------===// 187 188 OneShotAnalysisState::OneShotAnalysisState( 189 Operation *op, const OneShotBufferizationOptions &options) 190 : AnalysisState(options), aliasInfo(op) { 191 // Set up alias sets for OpResults that must bufferize in-place. This should 192 // be done before making any other bufferization decisions. 193 op->walk([&](BufferizableOpInterface bufferizableOp) { 194 if (!options.isOpAllowed(bufferizableOp)) 195 return WalkResult::skip(); 196 for (OpOperand &opOperand : bufferizableOp->getOpOperands()) { 197 if (opOperand.get().getType().isa<TensorType>()) 198 if (bufferizableOp.mustBufferizeInPlace(opOperand, *this)) { 199 for (OpResult opResult : 200 bufferizableOp.getAliasingOpResult(opOperand, *this)) 201 aliasInfo.unionAliasSets(opOperand.get(), opResult); 202 aliasInfo.markInPlace(opOperand); 203 } 204 } 205 return WalkResult::advance(); 206 }); 207 } 208 209 bool OneShotAnalysisState::isInPlace(OpOperand &opOperand) const { 210 return aliasInfo.isInPlace(opOperand); 211 } 212 213 bool OneShotAnalysisState::areEquivalentBufferizedValues(Value v1, 214 Value v2) const { 215 return aliasInfo.areEquivalentBufferizedValues(v1, v2); 216 } 217 218 // Gather yielded tensors in `yieldedTensors` by querying all aliases. This is 219 // to ensure that such information is available during bufferization time. 220 // Alias information can no longer be queried through BufferizationAliasInfo 221 // once we have started modifying the IR. 222 void OneShotAnalysisState::gatherYieldedTensors(Operation *op) { 223 op->walk([&](Operation *returnOp) { 224 if (!isRegionReturnLike(returnOp) || !getOptions().isOpAllowed(returnOp)) 225 return WalkResult::advance(); 226 227 for (OpOperand &returnValOperand : returnOp->getOpOperands()) { 228 Value returnVal = returnValOperand.get(); 229 // Skip non-tensor values. 230 if (!returnVal.getType().isa<TensorType>()) 231 continue; 232 233 // Add all aliases of the returned value. But only the ones that are in 234 // the same block. 235 aliasInfo.applyOnAliases(returnVal, [&](Value v) { 236 if (auto bbArg = v.dyn_cast<BlockArgument>()) { 237 if (bbArg.getOwner()->getParentOp() == returnOp->getParentOp()) 238 yieldedTensors.insert(bbArg); 239 return; 240 } 241 Operation *definingOp = v.getDefiningOp(); 242 if (definingOp->getParentOp() == returnOp->getParentOp()) 243 yieldedTensors.insert(v); 244 }); 245 } 246 247 return WalkResult::advance(); 248 }); 249 } 250 251 bool OneShotAnalysisState::isTensorYielded(Value tensor) const { 252 return yieldedTensors.contains(tensor); 253 } 254 255 //===----------------------------------------------------------------------===// 256 // Bufferization-specific alias analysis. 257 //===----------------------------------------------------------------------===// 258 259 /// Return true if opOperand has been decided to bufferize in-place. 260 static bool isInplaceMemoryWrite(OpOperand &opOperand, 261 const BufferizationAliasInfo &aliasInfo, 262 AnalysisState &state) { 263 // OpOperands that do not bufferize to a memory write do not write in-place. 264 if (!state.bufferizesToMemoryWrite(opOperand)) 265 return false; 266 // Check current bufferization decisions. 267 return aliasInfo.isInPlace(opOperand); 268 } 269 270 /// Return true if, under current bufferization decisions, the buffer of `value` 271 /// is not writable. 272 static bool aliasesNonWritableBuffer(Value value, 273 const BufferizationAliasInfo &aliasInfo, 274 AnalysisState &state) { 275 bool foundNonWritableBuffer = false; 276 aliasInfo.applyOnAliases(value, [&](Value v) { 277 // Query BufferizableOpInterface to see if the value is writable. 278 // TODO: Out-of-place bufferized value could be considered writable. 279 if (auto bufferizableOp = state.getOptions().dynCastBufferizableOp(v)) 280 if (bufferizableOp && bufferizableOp.isWritable(v, state)) 281 return; 282 283 // Query BufferizableOpInterface to see if the BlockArgument is writable. 284 if (auto bbArg = v.dyn_cast<BlockArgument>()) 285 if (auto bufferizableOp = state.getOptions().dynCastBufferizableOp( 286 bbArg.getOwner()->getParentOp())) 287 if (bufferizableOp.isWritable(bbArg, state)) 288 return; 289 290 foundNonWritableBuffer = true; 291 }); 292 293 return foundNonWritableBuffer; 294 } 295 296 /// Return true if the buffer to which `operand` would bufferize is equivalent 297 /// to some buffer write. 298 static bool aliasesInPlaceWrite(Value value, 299 const BufferizationAliasInfo &aliasInfo, 300 AnalysisState &state) { 301 bool foundInplaceWrite = false; 302 aliasInfo.applyOnAliases(value, [&](Value v) { 303 for (auto &use : v.getUses()) { 304 if (isInplaceMemoryWrite(use, aliasInfo, state)) { 305 foundInplaceWrite = true; 306 return; 307 } 308 } 309 }); 310 return foundInplaceWrite; 311 } 312 313 /// Return true if `a` happens before `b`, i.e., `a` or one of its ancestors 314 /// properly dominates `b` and `b` is not inside `a`. 315 static bool happensBefore(Operation *a, Operation *b, 316 const DominanceInfo &domInfo) { 317 do { 318 // TODO: Instead of isProperAncestor + properlyDominates, we should use 319 // properlyDominatesImpl(a, b, /*enclosingOpOk=*/false) 320 if (a->isProperAncestor(b)) 321 return false; 322 if (domInfo.properlyDominates(a, b)) 323 return true; 324 } while ((a = a->getParentOp())); 325 return false; 326 } 327 328 /// Annotate IR with details about the detected RaW conflict. 329 static void annotateConflict(OpOperand *uRead, OpOperand *uConflictingWrite, 330 Value lastWrite) { 331 static uint64_t counter = 0; 332 Operation *readingOp = uRead->getOwner(); 333 Operation *conflictingWritingOp = uConflictingWrite->getOwner(); 334 335 OpBuilder b(conflictingWritingOp->getContext()); 336 std::string id = "C_" + std::to_string(counter++); 337 338 std::string conflictingWriteAttr = 339 id + 340 "[CONFL-WRITE: " + std::to_string(uConflictingWrite->getOperandNumber()) + 341 "]"; 342 conflictingWritingOp->setAttr(conflictingWriteAttr, b.getUnitAttr()); 343 344 std::string readAttr = 345 id + "[READ: " + std::to_string(uRead->getOperandNumber()) + "]"; 346 readingOp->setAttr(readAttr, b.getUnitAttr()); 347 348 if (auto opResult = lastWrite.dyn_cast<OpResult>()) { 349 std::string lastWriteAttr = id + "[LAST-WRITE: result " + 350 std::to_string(opResult.getResultNumber()) + 351 "]"; 352 opResult.getDefiningOp()->setAttr(lastWriteAttr, b.getUnitAttr()); 353 } else { 354 auto bbArg = lastWrite.cast<BlockArgument>(); 355 std::string lastWriteAttr = 356 id + "[LAST-WRITE: bbArg " + std::to_string(bbArg.getArgNumber()) + "]"; 357 bbArg.getOwner()->getParentOp()->setAttr(lastWriteAttr, b.getUnitAttr()); 358 } 359 } 360 361 /// Given sets of uses and writes, return true if there is a RaW conflict under 362 /// the assumption that all given reads/writes alias the same buffer and that 363 /// all given writes bufferize inplace. 364 /// 365 /// A conflict is: According to SSA use-def chains, a read R is supposed to read 366 /// the result of a write W1. But because of bufferization decisions, R actually 367 /// reads another write W2. 368 static bool hasReadAfterWriteInterference( 369 const DenseSet<OpOperand *> &usesRead, 370 const DenseSet<OpOperand *> &usesWrite, const DominanceInfo &domInfo, 371 AnalysisState &state, const BufferizationAliasInfo &aliasInfo) { 372 const BufferizationOptions &options = state.getOptions(); 373 374 for (OpOperand *uRead : usesRead) { 375 Operation *readingOp = uRead->getOwner(); 376 377 // Find most recent writes of uRead by following the SSA use-def chain. 378 // E.g.: 379 // 380 // %0 = "writing_op"(%t) : tensor<?x32> -> tensor<?xf32> 381 // %1 = "aliasing_op"(%0) : tensor<?x32> -> tensor<?xf32> 382 // %2 = "reading_op"(%1) : : tensor<?x32> -> not_a_tensor_type 383 // 384 // In the above example, if uRead is the OpOperand of reading_op, lastWrite 385 // is %0. Note that operations that create an alias but do not write (such 386 // as ExtractSliceOp) are skipped. 387 SetVector<Value> lastWrites = state.findLastPrecedingWrite(uRead->get()); 388 389 // Look for conflicting memory writes. Potential conflicts are writes to an 390 // alias that have been decided to bufferize inplace. 391 for (OpOperand *uConflictingWrite : usesWrite) { 392 // Throughout this loop, check for multiple requirements that have to be 393 // met for uConflictingWrite to be an actual conflict. 394 Operation *conflictingWritingOp = uConflictingWrite->getOwner(); 395 396 // No conflict if the readingOp dominates conflictingWritingOp, i.e., the 397 // write is not visible when reading. 398 if (happensBefore(readingOp, conflictingWritingOp, domInfo)) 399 continue; 400 401 // No conflict if the reading use equals the use of the conflicting write. 402 // A use cannot conflict with itself. Note: Just being the same op is not 403 // enough. It has to be the same use. 404 if (uConflictingWrite == uRead) 405 continue; 406 407 // No conflict if the op interface says so. 408 if (auto bufferizableOp = options.dynCastBufferizableOp(readingOp)) 409 if (bufferizableOp.isNotConflicting(uRead, uConflictingWrite, state)) 410 continue; 411 412 if (conflictingWritingOp != readingOp) 413 if (auto bufferizableOp = 414 options.dynCastBufferizableOp(conflictingWritingOp)) 415 if (bufferizableOp.isNotConflicting(uRead, uConflictingWrite, state)) 416 continue; 417 418 // Ops are not conflicting if they are in mutually exclusive regions. 419 if (insideMutuallyExclusiveRegions(readingOp, conflictingWritingOp)) 420 continue; 421 422 // Check all possible last writes. 423 for (Value lastWrite : lastWrites) { 424 // No conflict if the conflicting write happens before the last 425 // write. 426 if (Operation *writingOp = lastWrite.getDefiningOp()) { 427 if (happensBefore(conflictingWritingOp, writingOp, domInfo)) 428 // conflictingWritingOp happens before writingOp. No conflict. 429 continue; 430 // No conflict if conflictingWritingOp is contained in writingOp. 431 if (writingOp->isProperAncestor(conflictingWritingOp)) 432 continue; 433 } else { 434 auto bbArg = lastWrite.cast<BlockArgument>(); 435 Block *block = bbArg.getOwner(); 436 if (!block->findAncestorOpInBlock(*conflictingWritingOp)) 437 // conflictingWritingOp happens outside of the block. No 438 // conflict. 439 continue; 440 } 441 442 // No conflict if the conflicting write and the last write are the same 443 // use. 444 SmallVector<OpResult> aliasingOpResult = 445 state.getAliasingOpResult(*uConflictingWrite); 446 if (aliasingOpResult.size() == 1 && aliasingOpResult[0] == lastWrite) 447 continue; 448 449 // All requirements are met. Conflict found! 450 451 if (options.printConflicts) 452 annotateConflict(uRead, uConflictingWrite, lastWrite); 453 454 return true; 455 } 456 } 457 } 458 459 return false; 460 } 461 462 /// Return true if bufferizing `operand` inplace would create a conflict. A read 463 /// R and a write W of the same alias set is a conflict if inplace bufferization 464 /// of W changes the value read by R to a value different from the one that 465 /// would be expected by tracing back R's origin through SSA use-def chains. 466 /// A conflict can only be introduced by a new alias and/or an inplace 467 /// bufferization decision. 468 /// 469 /// Example: 470 /// %0 = tensor.extract_slice %t[...][...][1, 1] {inplace?} 471 /// %1 = vector.transfer_write %v1, %t {inplace} : vector<5xf32>, tensor<?xf32> 472 /// %e = tensor.extract_slice %1 473 /// %2 = vector.transfer_write %v2, %0 {inplace} : vector<6xf32>, tensor<?xf32> 474 /// %3 = vector.transfer_read %e, %cst : tensor<?xf32>, vector<7xf32> 475 /// 476 /// In the above example, the two TransferWriteOps have already been decided to 477 /// bufferize inplace. Bufferizing the ExtractSliceOp inplace would create a 478 /// conflict because: 479 /// * According to SSA use-def chains, we expect to read the result of %1. 480 /// * However, adding an alias {%0, %t} would mean that the second 481 /// TransferWriteOp overwrites the first one. Therefore, the TransferReadOp 482 /// would no longer be reading the result of %1. 483 /// 484 /// If `checkConsistencyOnly` is true, this function checks if there is a 485 /// read-after-write conflict without bufferizing `operand` inplace. This would 486 /// indicate a problem with the current inplace bufferization decisions. 487 /// 488 /// Note: If `checkConsistencyOnly`, this function may be called with a null 489 /// OpResult. In that case, only the consistency of bufferization decisions 490 /// involving aliases of the given OpOperand are checked. 491 static bool wouldCreateReadAfterWriteInterference( 492 OpOperand &operand, const DominanceInfo &domInfo, AnalysisState &state, 493 const BufferizationAliasInfo &aliasInfo, 494 bool checkConsistencyOnly = false) { 495 // Helper function to iterate on aliases of `root` and capture the reads. 496 auto getAliasingReads = [&](DenseSet<OpOperand *> &res, Value root) { 497 aliasInfo.applyOnAliases(root, [&](Value alias) { 498 for (auto &use : alias.getUses()) 499 // Read to a value that aliases root. 500 if (state.bufferizesToMemoryRead(use)) 501 res.insert(&use); 502 }); 503 }; 504 505 // Helper function to iterate on aliases of `root` and capture the writes. 506 auto getAliasingInplaceWrites = [&](DenseSet<OpOperand *> &res, Value root) { 507 aliasInfo.applyOnAliases(root, [&](Value alias) { 508 for (auto &use : alias.getUses()) 509 // Inplace write to a value that aliases root. 510 if (isInplaceMemoryWrite(use, aliasInfo, state)) 511 res.insert(&use); 512 }); 513 }; 514 515 // Collect reads and writes of all aliases of OpOperand and OpResult. 516 DenseSet<OpOperand *> usesRead, usesWrite; 517 getAliasingReads(usesRead, operand.get()); 518 getAliasingInplaceWrites(usesWrite, operand.get()); 519 for (OpResult result : state.getAliasingOpResult(operand)) { 520 getAliasingReads(usesRead, result); 521 getAliasingInplaceWrites(usesWrite, result); 522 } 523 if (!checkConsistencyOnly && state.bufferizesToMemoryWrite(operand)) 524 usesWrite.insert(&operand); 525 526 return hasReadAfterWriteInterference(usesRead, usesWrite, domInfo, state, 527 aliasInfo); 528 } 529 530 /// Return true if bufferizing `opOperand` inplace would create a write to a 531 /// non-writable buffer. 532 static bool 533 wouldCreateWriteToNonWritableBuffer(OpOperand &opOperand, 534 const BufferizationAliasInfo &aliasInfo, 535 AnalysisState &state) { 536 // Certain buffers are not writeable: 537 // 1. A function bbArg that is not inplaceable or 538 // 2. A constant op. 539 bool nonWritable = 540 aliasesNonWritableBuffer(opOperand.get(), aliasInfo, state); 541 if (!nonWritable) 542 return false; 543 544 // This is a problem only if the buffer is written to via some alias. 545 bool hasWrite = aliasesInPlaceWrite(opOperand.get(), aliasInfo, state) || 546 state.bufferizesToMemoryWrite(opOperand); 547 548 for (OpResult opResult : state.getAliasingOpResult(opOperand)) 549 hasWrite |= aliasesInPlaceWrite(opResult, aliasInfo, state); 550 551 return hasWrite; 552 } 553 554 //===----------------------------------------------------------------------===// 555 // Bufferization analyses. 556 //===----------------------------------------------------------------------===// 557 558 /// Determine if `operand` can be bufferized in-place. 559 static LogicalResult bufferizableInPlaceAnalysisImpl( 560 OpOperand &operand, BufferizationAliasInfo &aliasInfo, AnalysisState &state, 561 const DominanceInfo &domInfo) { 562 bool foundInterference = 563 wouldCreateWriteToNonWritableBuffer(operand, aliasInfo, state) || 564 wouldCreateReadAfterWriteInterference(operand, domInfo, state, aliasInfo); 565 566 if (foundInterference) 567 aliasInfo.bufferizeOutOfPlace(operand); 568 else 569 aliasInfo.bufferizeInPlace(operand, state); 570 571 return success(); 572 } 573 574 /// Analyze the `ops` to determine which OpOperands are inplaceable. Walk ops in 575 /// reverse and bufferize ops greedily. This is a good starter heuristic. 576 /// 577 /// Even if an op does not read or write, it may still create an alias when 578 /// bufferized in-place. An example of such ops is tensor.extract_slice. 579 /// 580 /// Rationale for bufferizing `%1 = tensor.extract_slice %0[...]` inplace: 581 /// 582 /// When bufferized out of place, an ExtractSliceOp lowers to alloc + copy. This 583 /// cannot change the flow of information for either the source or the 584 /// result buffers. 585 /// 586 /// When bufferized inplace, an ExtractSliceOp does not by itself create any 587 /// read or write from memory. Instead, it has the effect of merging the alias 588 /// sets of the source and the result buffers. 589 /// 590 /// An analysis is required to ensure inplace bufferization would not result in 591 /// RaW dependence violations. 592 static LogicalResult inPlaceAnalysis(SmallVector<Operation *> &ops, 593 BufferizationAliasInfo &aliasInfo, 594 AnalysisState &state, 595 const DominanceInfo &domInfo, 596 unsigned analysisFuzzerSeed = 0) { 597 if (analysisFuzzerSeed) { 598 // This is a fuzzer. For testing purposes only. Randomize the order in which 599 // operations are analyzed. The bufferization quality is likely worse, but 600 // we want to make sure that no assertions are triggered anywhere. 601 std::mt19937 g(analysisFuzzerSeed); 602 llvm::shuffle(ops.begin(), ops.end(), g); 603 } 604 605 // Walk ops in reverse for better interference analysis. 606 for (Operation *op : reverse(ops)) 607 for (OpOperand &opOperand : op->getOpOperands()) 608 if (opOperand.get().getType().isa<TensorType>()) 609 if (auto bufferizableOp = state.getOptions().dynCastBufferizableOp(op)) 610 if (failed(bufferizableInPlaceAnalysisImpl(opOperand, aliasInfo, 611 state, domInfo))) 612 return failure(); 613 614 return success(); 615 } 616 617 /// Return true if the given op has a tensor result or a tensor operand. 618 static bool hasTensorSemantics(Operation *op) { 619 bool hasTensorResult = any_of(op->getResultTypes(), isaTensor); 620 bool hasTensorOperand = any_of(op->getOperandTypes(), isaTensor); 621 return hasTensorResult || hasTensorOperand; 622 } 623 624 /// Analyze all ops that are contained in `op`. 625 static LogicalResult inPlaceAnalysis(Operation *op, 626 BufferizationAliasInfo &aliasInfo, 627 AnalysisState &state, 628 const DominanceInfo &domInfo, 629 unsigned analysisFuzzerSeed = 0) { 630 // Collect ops so we can build our own reverse traversal. 631 SmallVector<Operation *> ops; 632 op->walk([&](Operation *op) { 633 // No tensors => no buffers. 634 if (!hasTensorSemantics(op)) 635 return; 636 ops.push_back(op); 637 }); 638 639 return inPlaceAnalysis(ops, aliasInfo, state, domInfo, analysisFuzzerSeed); 640 } 641 642 /// Analyze equivalence of tied OpResult/OpOperand pairs of the given ops. 643 static void equivalenceAnalysis(SmallVector<Operation *> &ops, 644 BufferizationAliasInfo &aliasInfo, 645 AnalysisState &state) { 646 for (Operation *op : ops) 647 if (auto bufferizableOp = state.getOptions().dynCastBufferizableOp(op)) 648 for (OpResult opResult : op->getOpResults()) 649 if (opResult.getType().isa<TensorType>()) 650 for (OpOperand *opOperand : 651 bufferizableOp.getAliasingOpOperand(opResult, state)) 652 if (state.isInPlace(*opOperand)) 653 if (bufferizableOp.bufferRelation(opResult, state) == 654 BufferRelation::Equivalent) 655 aliasInfo.unionEquivalenceClasses(opResult, opOperand->get()); 656 } 657 658 /// Analyze equivalence of tied OpResult/OpOperand pairs of all ops contained 659 /// in `op`. 660 static void equivalenceAnalysis(Operation *op, 661 BufferizationAliasInfo &aliasInfo, 662 AnalysisState &state) { 663 // Traverse ops in PostOrder: Nested ops first, then enclosing ops. 664 SmallVector<Operation *> ops; 665 op->walk<WalkOrder::PostOrder>([&](Operation *op) { 666 // No tensors => no buffers. 667 if (none_of(op->getResultTypes(), isaTensor)) 668 return; 669 ops.push_back(op); 670 }); 671 672 equivalenceAnalysis(ops, aliasInfo, state); 673 } 674 675 /// Assert that the current bufferization decisions are consistent. 676 static LogicalResult 677 checkAliasInfoConsistency(Operation *op, const DominanceInfo &domInfo, 678 AnalysisState &state, 679 const BufferizationAliasInfo &aliasInfo) { 680 const BufferizationOptions &options = state.getOptions(); 681 Operation *inconsistentOp = nullptr; 682 WalkResult walkResult = op->walk([&](Operation *op) { 683 if (auto bufferizableOp = options.dynCastBufferizableOp(op)) 684 for (OpOperand &opOperand : op->getOpOperands()) 685 if (opOperand.get().getType().isa<TensorType>()) { 686 if (wouldCreateReadAfterWriteInterference( 687 opOperand, domInfo, state, aliasInfo, 688 /*checkConsistencyOnly=*/true)) { 689 // This error can happen if certain "mustBufferizeInPlace" interface 690 // methods are implemented incorrectly, such that the IR already has 691 // a RaW conflict before making any bufferization decisions. 692 inconsistentOp = op; 693 return WalkResult::interrupt(); 694 } 695 } 696 return WalkResult::advance(); 697 }); 698 699 if (walkResult.wasInterrupted()) 700 return inconsistentOp->emitError("input IR has RaW conflict"); 701 return success(); 702 } 703 704 /// Annotate the IR with the result of the analysis. For testing/debugging only. 705 static void 706 annotateOpsWithBufferizationMarkers(Operation *op, 707 const BufferizationAliasInfo &aliasInfo, 708 AnalysisState &state) { 709 op->walk([&](Operation *op) { 710 if (auto bufferizableOp = state.getOptions().dynCastBufferizableOp(op)) 711 for (OpOperand &opOperand : op->getOpOperands()) 712 if (opOperand.get().getType().isa<TensorType>()) 713 setInPlaceOpOperand(opOperand, aliasInfo.isInPlace(opOperand)); 714 }); 715 } 716 717 /// Assert that IR is in destination-passing style. I.e., every value that is 718 /// returned or yielded from a block is: 719 /// * aliasing a bbArg of that block or a parent block, or 720 /// * aliasing an OpResult of a op in a parent block. 721 /// 722 /// Example: 723 /// ``` 724 /// %0 = "some_op" : tensor<?xf32> 725 /// %1 = scf.if %c -> (tensor<?xf32>) { 726 /// scf.yield %0 : tensor<?xf32> 727 /// } else { 728 /// %t = linalg.init_tensor : tensor<?xf32> 729 /// scf.yield %t : tensor<?xf32> 730 /// } 731 /// ``` 732 /// In the above example, the first scf.yield op satifies destination-passing 733 /// style because the yielded value %0 is defined in the parent block. The 734 /// second scf.yield op does not satisfy destination-passing style because the 735 /// yielded value %t is defined in the same block as the scf.yield op. 736 // TODO: The current implementation checks for equivalent values instead of 737 // aliasing values, which is stricter than needed. We can currently not check 738 // for aliasing values because the analysis is a maybe-alias analysis and we 739 // need a must-alias analysis here. 740 static LogicalResult 741 assertDestinationPassingStyle(Operation *op, AnalysisState &state, 742 BufferizationAliasInfo &aliasInfo, 743 SmallVector<Operation *> &newOps) { 744 LogicalResult status = success(); 745 DominanceInfo domInfo(op); 746 op->walk([&](Operation *returnOp) { 747 if (!isRegionReturnLike(returnOp) || 748 !state.getOptions().isOpAllowed(returnOp)) 749 return WalkResult::advance(); 750 751 for (OpOperand &returnValOperand : returnOp->getOpOperands()) { 752 Value returnVal = returnValOperand.get(); 753 // Skip non-tensor values. 754 if (!returnVal.getType().isa<TensorType>()) 755 continue; 756 757 bool foundEquivValue = false; 758 aliasInfo.applyOnEquivalenceClass(returnVal, [&](Value equivVal) { 759 if (auto bbArg = equivVal.dyn_cast<BlockArgument>()) { 760 Operation *definingOp = bbArg.getOwner()->getParentOp(); 761 if (definingOp->isProperAncestor(returnOp)) 762 foundEquivValue = true; 763 return; 764 } 765 766 Operation *definingOp = equivVal.getDefiningOp(); 767 if (definingOp->getBlock()->findAncestorOpInBlock( 768 *returnOp->getParentOp())) 769 // Skip ops that happen after `returnOp` and parent ops. 770 if (happensBefore(definingOp, returnOp, domInfo)) 771 foundEquivValue = true; 772 }); 773 774 if (!foundEquivValue) 775 status = 776 returnOp->emitError() 777 << "operand #" << returnValOperand.getOperandNumber() 778 << " of ReturnLike op does not satisfy destination passing style"; 779 } 780 781 return WalkResult::advance(); 782 }); 783 784 return status; 785 } 786 787 LogicalResult bufferization::analyzeOp(Operation *op, 788 OneShotAnalysisState &state) { 789 DominanceInfo domInfo(op); 790 BufferizationAliasInfo &aliasInfo = state.getAliasInfo(); 791 const auto &options = 792 static_cast<const OneShotBufferizationOptions &>(state.getOptions()); 793 794 if (failed(checkAliasInfoConsistency(op, domInfo, state, aliasInfo))) 795 return failure(); 796 797 // If the analysis fails, just return. 798 if (failed(inPlaceAnalysis(op, aliasInfo, state, domInfo, 799 options.analysisFuzzerSeed))) 800 return failure(); 801 equivalenceAnalysis(op, aliasInfo, state); 802 803 for (const PostAnalysisStepFn &fn : options.postAnalysisSteps) { 804 SmallVector<Operation *> newOps; 805 if (failed(fn(op, state, aliasInfo, newOps))) 806 return failure(); 807 // Analyze ops that were created by the PostAnalysisStepFn. 808 if (failed(inPlaceAnalysis(newOps, aliasInfo, state, domInfo))) 809 return failure(); 810 equivalenceAnalysis(newOps, aliasInfo, state); 811 } 812 813 bool failedAnalysis = false; 814 if (!options.allowReturnAllocs) { 815 SmallVector<Operation *> newOps; 816 failedAnalysis |= 817 failed(assertDestinationPassingStyle(op, state, aliasInfo, newOps)); 818 } 819 820 // Gather all yielded tensors. 821 state.gatherYieldedTensors(op); 822 823 // Analysis verification: After setting up alias/equivalence sets, each op 824 // can check for expected invariants/limitations and fail the analysis if 825 // necessary. 826 op->walk([&](Operation *op) { 827 if (BufferizableOpInterface bufferizableOp = 828 options.dynCastBufferizableOp(op)) 829 failedAnalysis |= failed(bufferizableOp.verifyAnalysis(state)); 830 }); 831 832 // Annotate operations if we only want to report the analysis. 833 if (options.testAnalysisOnly) 834 annotateOpsWithBufferizationMarkers(op, aliasInfo, state); 835 836 return success(!failedAnalysis); 837 } 838 839 LogicalResult 840 bufferization::runOneShotBufferize(Operation *op, 841 const OneShotBufferizationOptions &options) { 842 OneShotAnalysisState state(op, options); 843 if (failed(analyzeOp(op, state))) 844 return failure(); 845 if (options.testAnalysisOnly) 846 return success(); 847 return bufferizeOp(op, state); 848 } 849