1 //===- OneShotAnalysis.cpp - One-Shot (Single Pass) Analysis --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // One-Shot Analysis analyzes function bodies. Function boundaries (FuncOp 10 // bbArgs, CallOps, ReturnOps) are treated as "unknown" ops. 11 // ModuleBufferization.cpp is an extension of One-Shot Analysis for simple 12 // call graphs. 13 // 14 // One-Shot Bufferize consists of two phases. 15 // 16 // 1. Analyze ops to decide which OpResults can bufferize inplace, i.e., without 17 // inserting buffer copies. The analysis queries op bufferization semantics 18 // via `BufferizableOpInterface`. 19 // 2. Bufferize ops by calling `BufferizableOpInterface::bufferize`. This 20 // function does not generate buffer copies for OpResults that were decided 21 // to bufferize inplace during the analysis phase. 22 // 23 // This file contains only the analysis. The actual bufferization is implemented 24 // via `bufferizeOp` (Bufferize.h). For convenience, this file also contains a 25 // helper function `runOneShotBufferize` that analyzes an op (and its nested 26 // ops) and then bufferizes it. 27 // 28 // Inplace bufferization decisions are passed from the analysis to the 29 // bufferization phase via `AnalysisState` and `BufferizationAliasInfo`. 30 // They can be printed for debugging purposes with `testAnalysisOnly`. 31 // 32 // Ops that do not implement `BufferizableOpInterface` can be analyzed but are 33 // treated conservatively. E.g., the analysis has to assume that their tensor 34 // OpOperands bufferize to memory writes. While such ops can be analyzed, they 35 // are not bufferized and remain in the IR. to_tensor and to_memref ops are 36 // inserted at the bufferization boundary. 37 // 38 // This analysis caters to high-performance codegen where buffer reuse is deemed 39 // critical: the analysis should fail if the bufferized form of the function 40 // needs to return a buffer, unless `allowReturnAllocs` is enabled. 41 42 #include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h" 43 44 #include <random> 45 46 #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h" 47 #include "mlir/Dialect/Bufferization/IR/Bufferization.h" 48 #include "mlir/Dialect/Bufferization/Transforms/Bufferize.h" 49 #include "mlir/Dialect/Func/IR/FuncOps.h" 50 #include "mlir/Dialect/MemRef/IR/MemRef.h" 51 #include "mlir/IR/AsmState.h" 52 #include "mlir/IR/Dominance.h" 53 #include "mlir/IR/Operation.h" 54 #include "mlir/IR/TypeUtilities.h" 55 #include "mlir/Interfaces/ControlFlowInterfaces.h" 56 #include "llvm/ADT/DenseSet.h" 57 #include "llvm/ADT/SetVector.h" 58 59 using namespace mlir; 60 using namespace mlir::bufferization; 61 62 static bool isaTensor(Type t) { return t.isa<TensorType>(); } 63 64 //===----------------------------------------------------------------------===// 65 // Bufferization-specific attribute manipulation. 66 // These are for testing and debugging only. Bufferization information is 67 // stored in BufferizationAliasInfo. When run with `testAnalysisOnly`, the IR 68 // is annotated with the results of the analysis (copied from 69 // BufferizationAliasInfo), so that they can be checked in tests. 70 //===----------------------------------------------------------------------===// 71 72 /// Attribute marker to specify op results that can be bufferized inPlace. 73 constexpr StringLiteral kInPlaceResultsAttrName = "__inplace_operands_attr__"; 74 75 /// Mark whether OpOperand will be bufferized inplace. 76 static void setInPlaceOpOperand(OpOperand &opOperand, bool inPlace) { 77 Operation *op = opOperand.getOwner(); 78 auto attr = 79 op->getAttr(kInPlaceResultsAttrName).dyn_cast_or_null<ArrayAttr>(); 80 SmallVector<StringRef> inPlaceVector; 81 if (attr) { 82 inPlaceVector = SmallVector<StringRef>( 83 llvm::to_vector<4>(attr.getAsValueRange<StringAttr>())); 84 } else { 85 inPlaceVector = SmallVector<StringRef>(op->getNumOperands(), "none"); 86 for (OpOperand &opOperand : op->getOpOperands()) 87 if (opOperand.get().getType().isa<TensorType>()) 88 inPlaceVector[opOperand.getOperandNumber()] = "false"; 89 } 90 91 inPlaceVector[opOperand.getOperandNumber()] = inPlace ? "true" : "false"; 92 op->setAttr(kInPlaceResultsAttrName, 93 OpBuilder(op).getStrArrayAttr(inPlaceVector)); 94 } 95 96 //===----------------------------------------------------------------------===// 97 // BufferizationAliasInfo 98 //===----------------------------------------------------------------------===// 99 100 BufferizationAliasInfo::BufferizationAliasInfo(Operation *rootOp) { 101 rootOp->walk([&](Operation *op) { 102 for (Value v : op->getResults()) 103 if (v.getType().isa<TensorType>()) 104 createAliasInfoEntry(v); 105 for (Region &r : op->getRegions()) 106 for (Block &b : r.getBlocks()) 107 for (auto bbArg : b.getArguments()) 108 if (bbArg.getType().isa<TensorType>()) 109 createAliasInfoEntry(bbArg); 110 }); 111 } 112 113 /// Add a new entry for `v` in the `aliasInfo` and `equivalentInfo`. In the 114 /// beginning the alias and equivalence sets only contain `v` itself. 115 void BufferizationAliasInfo::createAliasInfoEntry(Value v) { 116 aliasInfo.insert(v); 117 equivalentInfo.insert(v); 118 } 119 120 /// Insert an info entry for `newValue` and merge its alias set with that of 121 /// `alias`. 122 void BufferizationAliasInfo::insertNewBufferAlias(Value newValue, Value alias) { 123 createAliasInfoEntry(newValue); 124 aliasInfo.unionSets(newValue, alias); 125 } 126 127 /// Insert an info entry for `newValue` and merge its alias set with that of 128 /// `alias`. Additionally, merge their equivalence classes. 129 void BufferizationAliasInfo::insertNewBufferEquivalence(Value newValue, 130 Value alias) { 131 insertNewBufferAlias(newValue, alias); 132 equivalentInfo.unionSets(newValue, alias); 133 } 134 135 /// Return `true` if a value was marked as in-place bufferized. 136 bool BufferizationAliasInfo::isInPlace(OpOperand &operand) const { 137 return inplaceBufferized.contains(&operand); 138 } 139 140 /// Set the inPlace bufferization spec to true. 141 void BufferizationAliasInfo::bufferizeInPlace(OpOperand &operand, 142 AnalysisState &state) { 143 markInPlace(operand); 144 for (OpResult result : state.getAliasingOpResult(operand)) 145 aliasInfo.unionSets(result, operand.get()); 146 } 147 148 /// Set the inPlace bufferization spec to false. 149 void BufferizationAliasInfo::bufferizeOutOfPlace(OpOperand &operand) { 150 assert(!inplaceBufferized.contains(&operand) && 151 "OpOperand was already decided to bufferize inplace"); 152 } 153 154 /// Apply `fun` to all the members of the equivalence class of `v`. 155 void BufferizationAliasInfo::applyOnEquivalenceClass( 156 Value v, function_ref<void(Value)> fun) const { 157 auto leaderIt = equivalentInfo.findLeader(v); 158 for (auto mit = leaderIt, meit = equivalentInfo.member_end(); mit != meit; 159 ++mit) { 160 fun(*mit); 161 } 162 } 163 164 /// Apply `fun` to all aliases of `v`. 165 void BufferizationAliasInfo::applyOnAliases( 166 Value v, function_ref<void(Value)> fun) const { 167 auto leaderIt = aliasInfo.findLeader(v); 168 for (auto mit = leaderIt, meit = aliasInfo.member_end(); mit != meit; ++mit) { 169 fun(*mit); 170 } 171 } 172 173 BufferizationAliasInfo::EquivalenceClassRangeType 174 BufferizationAliasInfo::getAliases(Value v) const { 175 DenseSet<Value> res; 176 auto it = aliasInfo.findValue(aliasInfo.getLeaderValue(v)); 177 for (auto mit = aliasInfo.member_begin(it), meit = aliasInfo.member_end(); 178 mit != meit; ++mit) { 179 res.insert(static_cast<Value>(*mit)); 180 } 181 return BufferizationAliasInfo::EquivalenceClassRangeType( 182 aliasInfo.member_begin(it), aliasInfo.member_end()); 183 } 184 185 //===----------------------------------------------------------------------===// 186 // OneShotAnalysisState 187 //===----------------------------------------------------------------------===// 188 189 OneShotAnalysisState::OneShotAnalysisState( 190 Operation *op, const OneShotBufferizationOptions &options) 191 : AnalysisState(options), aliasInfo(op) { 192 // Set up alias sets for OpResults that must bufferize in-place. This should 193 // be done before making any other bufferization decisions. 194 op->walk([&](BufferizableOpInterface bufferizableOp) { 195 if (!options.isOpAllowed(bufferizableOp)) 196 return WalkResult::skip(); 197 for (OpOperand &opOperand : bufferizableOp->getOpOperands()) { 198 if (opOperand.get().getType().isa<TensorType>()) 199 if (bufferizableOp.mustBufferizeInPlace(opOperand, *this)) { 200 for (OpResult opResult : 201 bufferizableOp.getAliasingOpResult(opOperand, *this)) 202 aliasInfo.unionAliasSets(opOperand.get(), opResult); 203 aliasInfo.markInPlace(opOperand); 204 } 205 } 206 return WalkResult::advance(); 207 }); 208 } 209 210 bool OneShotAnalysisState::isInPlace(OpOperand &opOperand) const { 211 return aliasInfo.isInPlace(opOperand); 212 } 213 214 bool OneShotAnalysisState::areEquivalentBufferizedValues(Value v1, 215 Value v2) const { 216 return aliasInfo.areEquivalentBufferizedValues(v1, v2); 217 } 218 219 // Gather yielded tensors in `yieldedTensors` by querying all aliases. This is 220 // to ensure that such information is available during bufferization time. 221 // Alias information can no longer be queried through BufferizationAliasInfo 222 // once we have started modifying the IR. 223 void OneShotAnalysisState::gatherYieldedTensors(Operation *op) { 224 op->walk([&](Operation *returnOp) { 225 if (!isRegionReturnLike(returnOp) || !getOptions().isOpAllowed(returnOp)) 226 return WalkResult::advance(); 227 228 for (OpOperand &returnValOperand : returnOp->getOpOperands()) { 229 Value returnVal = returnValOperand.get(); 230 // Skip non-tensor values. 231 if (!returnVal.getType().isa<TensorType>()) 232 continue; 233 234 // Add all aliases of the returned value. But only the ones that are in 235 // the same block. 236 aliasInfo.applyOnAliases(returnVal, [&](Value v) { 237 if (auto bbArg = v.dyn_cast<BlockArgument>()) { 238 if (bbArg.getOwner()->getParentOp() == returnOp->getParentOp()) 239 yieldedTensors.insert(bbArg); 240 return; 241 } 242 Operation *definingOp = v.getDefiningOp(); 243 if (definingOp->getParentOp() == returnOp->getParentOp()) 244 yieldedTensors.insert(v); 245 }); 246 } 247 248 return WalkResult::advance(); 249 }); 250 } 251 252 bool OneShotAnalysisState::isTensorYielded(Value tensor) const { 253 return yieldedTensors.contains(tensor); 254 } 255 256 //===----------------------------------------------------------------------===// 257 // Bufferization-specific alias analysis. 258 //===----------------------------------------------------------------------===// 259 260 /// Return true if opOperand has been decided to bufferize in-place. 261 static bool isInplaceMemoryWrite(OpOperand &opOperand, 262 const BufferizationAliasInfo &aliasInfo, 263 AnalysisState &state) { 264 // OpOperands that do not bufferize to a memory write do not write in-place. 265 if (!state.bufferizesToMemoryWrite(opOperand)) 266 return false; 267 // Check current bufferization decisions. 268 return aliasInfo.isInPlace(opOperand); 269 } 270 271 /// Return true if, under current bufferization decisions, the buffer of `value` 272 /// is not writable. 273 static bool aliasesNonWritableBuffer(Value value, 274 const BufferizationAliasInfo &aliasInfo, 275 AnalysisState &state) { 276 bool foundNonWritableBuffer = false; 277 aliasInfo.applyOnAliases(value, [&](Value v) { 278 // Query BufferizableOpInterface to see if the value is writable. 279 // TODO: Out-of-place bufferized value could be considered writable. 280 if (auto bufferizableOp = state.getOptions().dynCastBufferizableOp(v)) 281 if (bufferizableOp && bufferizableOp.isWritable(v, state)) 282 return; 283 284 // Query BufferizableOpInterface to see if the BlockArgument is writable. 285 if (auto bbArg = v.dyn_cast<BlockArgument>()) 286 if (auto bufferizableOp = state.getOptions().dynCastBufferizableOp( 287 bbArg.getOwner()->getParentOp())) 288 if (bufferizableOp.isWritable(bbArg, state)) 289 return; 290 291 foundNonWritableBuffer = true; 292 }); 293 294 return foundNonWritableBuffer; 295 } 296 297 /// Return true if the buffer to which `operand` would bufferize is equivalent 298 /// to some buffer write. 299 static bool aliasesInPlaceWrite(Value value, 300 const BufferizationAliasInfo &aliasInfo, 301 AnalysisState &state) { 302 bool foundInplaceWrite = false; 303 aliasInfo.applyOnAliases(value, [&](Value v) { 304 for (auto &use : v.getUses()) { 305 if (isInplaceMemoryWrite(use, aliasInfo, state)) { 306 foundInplaceWrite = true; 307 return; 308 } 309 } 310 }); 311 return foundInplaceWrite; 312 } 313 314 /// Return true if `a` happens before `b`, i.e., `a` or one of its ancestors 315 /// properly dominates `b` and `b` is not inside `a`. 316 static bool happensBefore(Operation *a, Operation *b, 317 const DominanceInfo &domInfo) { 318 do { 319 // TODO: Instead of isProperAncestor + properlyDominates, we should use 320 // properlyDominatesImpl(a, b, /*enclosingOpOk=*/false) 321 if (a->isProperAncestor(b)) 322 return false; 323 if (domInfo.properlyDominates(a, b)) 324 return true; 325 } while ((a = a->getParentOp())); 326 return false; 327 } 328 329 /// For each given value, find the closest enclosing repetitive region. If this 330 /// is the same region for each value, return it. Otherwise return None. 331 /// Note: If there is no enclosing repetitive region, return nullptr. 332 static Optional<Region *> 333 getCommonEnclosingRepetitiveRegion(ArrayRef<Value> values) { 334 if (values.empty()) 335 return None; 336 Region *r = getEnclosingRepetitiveRegion(values.front()); 337 for (Value value : values.drop_front()) 338 if (getEnclosingRepetitiveRegion(value) != r) 339 return None; 340 return r; 341 } 342 343 /// Annotate IR with details about the detected RaW conflict. 344 static void annotateConflict(OpOperand *uRead, OpOperand *uConflictingWrite, 345 Value lastWrite) { 346 static uint64_t counter = 0; 347 Operation *readingOp = uRead->getOwner(); 348 Operation *conflictingWritingOp = uConflictingWrite->getOwner(); 349 350 OpBuilder b(conflictingWritingOp->getContext()); 351 std::string id = "C_" + std::to_string(counter++); 352 353 std::string conflictingWriteAttr = 354 id + 355 "[CONFL-WRITE: " + std::to_string(uConflictingWrite->getOperandNumber()) + 356 "]"; 357 conflictingWritingOp->setAttr(conflictingWriteAttr, b.getUnitAttr()); 358 359 std::string readAttr = 360 id + "[READ: " + std::to_string(uRead->getOperandNumber()) + "]"; 361 readingOp->setAttr(readAttr, b.getUnitAttr()); 362 363 if (auto opResult = lastWrite.dyn_cast<OpResult>()) { 364 std::string lastWriteAttr = id + "[LAST-WRITE: result " + 365 std::to_string(opResult.getResultNumber()) + 366 "]"; 367 opResult.getDefiningOp()->setAttr(lastWriteAttr, b.getUnitAttr()); 368 } else { 369 auto bbArg = lastWrite.cast<BlockArgument>(); 370 std::string lastWriteAttr = 371 id + "[LAST-WRITE: bbArg " + std::to_string(bbArg.getArgNumber()) + "]"; 372 bbArg.getOwner()->getParentOp()->setAttr(lastWriteAttr, b.getUnitAttr()); 373 } 374 } 375 376 /// Given sets of uses and writes, return true if there is a RaW conflict under 377 /// the assumption that all given reads/writes alias the same buffer and that 378 /// all given writes bufferize inplace. 379 /// 380 /// A conflict is: According to SSA use-def chains, a read R is supposed to read 381 /// the result of a write W1. But because of bufferization decisions, R actually 382 /// reads another write W2. 383 static bool hasReadAfterWriteInterference( 384 const DenseSet<OpOperand *> &usesRead, 385 const DenseSet<OpOperand *> &usesWrite, const DominanceInfo &domInfo, 386 AnalysisState &state, const BufferizationAliasInfo &aliasInfo) { 387 const BufferizationOptions &options = state.getOptions(); 388 389 // Gather all written aliases. 390 SmallVector<Value> writtenAliases; 391 for (OpOperand *uWrite : usesWrite) 392 writtenAliases.push_back(uWrite->get()); 393 // Find the inner-most enclosing repetitive region of each alias. If this is 394 // the same region for every alias, save it in `repetitiveRegionOfWrites`. 395 Optional<Region *> repetitiveRegionOfWrites = 396 getCommonEnclosingRepetitiveRegion(writtenAliases); 397 398 for (OpOperand *uRead : usesRead) { 399 Operation *readingOp = uRead->getOwner(); 400 401 // Find most recent writes of uRead by following the SSA use-def chain. 402 // E.g.: 403 // 404 // %0 = "writing_op"(%t) : tensor<?x32> -> tensor<?xf32> 405 // %1 = "aliasing_op"(%0) : tensor<?x32> -> tensor<?xf32> 406 // %2 = "reading_op"(%1) : : tensor<?x32> -> not_a_tensor_type 407 // 408 // In the above example, if uRead is the OpOperand of reading_op, lastWrite 409 // is %0. Note that operations that create an alias but do not write (such 410 // as ExtractSliceOp) are skipped. 411 SetVector<Value> lastWrites = state.findLastPrecedingWrite(uRead->get()); 412 413 // Look for conflicting memory writes. Potential conflicts are writes to an 414 // alias that have been decided to bufferize inplace. 415 for (OpOperand *uConflictingWrite : usesWrite) { 416 // Throughout this loop, check for multiple requirements that have to be 417 // met for uConflictingWrite to be an actual conflict. 418 Operation *conflictingWritingOp = uConflictingWrite->getOwner(); 419 420 // Check if conflictingWritingOp is in the same repetitive region as all 421 // written aliases. If this is not the case, there is no meaningful 422 // `happensBefore` relationship because conflictingWritingOp may be 423 // executed multiple times. E.g.: 424 // 425 // %0 = ... : tensor<?xf32> 426 // scf.for ... { 427 // "reading_op"(%0) : tensor<?xf32> 428 // %1 = "writing_op"(%0) : tensor<?xf32> -> tensor<?xf32> 429 // ... 430 // } 431 // 432 // In the above example, reading_op happens before writing_op according to 433 // op dominance. However, both ops may happen multiple times; in 434 // particular, the second execution of reading_op happens after the first 435 // execution of writing_op. This is problematic if the tensor they operate 436 // on (%0) is defined outside of the loop. 437 // 438 // Counter example: 439 // 440 // scf.for ... { 441 // %0 = ... : tensor<?xf32> 442 // "reading_op"(%0) : tensor<?xf32> 443 // %1 = "writing_op"(%0) : tensor<?xf32> -> tensor<?xf32> 444 // ... 445 // } 446 // 447 // In this example, %0 is in the same repetitive region as 448 // conflictingWritingOp, so op dominance can be used to compute the 449 // `happensBefore` relationship. 450 // 451 // Note: iter_args of loops are not aliases of their respective block 452 // arguments, so op domanice can be used when analyzing ops that operate 453 // on them. 454 bool canUseOpDominance = 455 repetitiveRegionOfWrites == 456 getEnclosingRepetitiveRegion(conflictingWritingOp); 457 458 // No conflict if the readingOp dominates conflictingWritingOp, i.e., the 459 // write is not visible when reading. 460 // 461 // Note: If ops are executed multiple times (e.g., because they are inside 462 // a loop), there may be no meaningful `happensBefore` relationship. 463 if (canUseOpDominance && 464 happensBefore(readingOp, conflictingWritingOp, domInfo)) 465 continue; 466 467 // No conflict if the reading use equals the use of the conflicting write. 468 // A use cannot conflict with itself. 469 // 470 // Note: Just being the same op is not enough. It has to be the same use. 471 // Note: If the op is executed multiple times (e.g., because it is inside 472 // a loop), it may be conflicting with itself. 473 if (canUseOpDominance && uConflictingWrite == uRead) 474 continue; 475 476 // No conflict if the op interface says so. 477 if (auto bufferizableOp = options.dynCastBufferizableOp(readingOp)) 478 if (bufferizableOp.isNotConflicting(uRead, uConflictingWrite, state)) 479 continue; 480 481 if (conflictingWritingOp != readingOp) 482 if (auto bufferizableOp = 483 options.dynCastBufferizableOp(conflictingWritingOp)) 484 if (bufferizableOp.isNotConflicting(uRead, uConflictingWrite, state)) 485 continue; 486 487 // Ops are not conflicting if they are in mutually exclusive regions. 488 // 489 // Note: If ops are executed multiple times (e.g., because they are inside 490 // a loop), mutually exclusive regions may be executed multiple 491 // times. 492 if (canUseOpDominance && 493 insideMutuallyExclusiveRegions(readingOp, conflictingWritingOp)) 494 continue; 495 496 // Check all possible last writes. 497 for (Value lastWrite : lastWrites) { 498 // No conflict if the conflicting write happens before the last 499 // write. 500 if (Operation *writingOp = lastWrite.getDefiningOp()) { 501 if (happensBefore(conflictingWritingOp, writingOp, domInfo)) 502 // conflictingWritingOp happens before writingOp. No conflict. 503 continue; 504 // No conflict if conflictingWritingOp is contained in writingOp. 505 if (writingOp->isProperAncestor(conflictingWritingOp)) 506 continue; 507 } else { 508 auto bbArg = lastWrite.cast<BlockArgument>(); 509 Block *block = bbArg.getOwner(); 510 if (!block->findAncestorOpInBlock(*conflictingWritingOp)) 511 // conflictingWritingOp happens outside of the block. No 512 // conflict. 513 continue; 514 } 515 516 // No conflict if the conflicting write and the last write are the same 517 // use. 518 SmallVector<OpResult> aliasingOpResult = 519 state.getAliasingOpResult(*uConflictingWrite); 520 if (aliasingOpResult.size() == 1 && aliasingOpResult[0] == lastWrite) 521 continue; 522 523 // All requirements are met. Conflict found! 524 525 if (options.printConflicts) 526 annotateConflict(uRead, uConflictingWrite, lastWrite); 527 528 return true; 529 } 530 } 531 } 532 533 return false; 534 } 535 536 /// Return true if bufferizing `operand` inplace would create a conflict. A read 537 /// R and a write W of the same alias set is a conflict if inplace bufferization 538 /// of W changes the value read by R to a value different from the one that 539 /// would be expected by tracing back R's origin through SSA use-def chains. 540 /// A conflict can only be introduced by a new alias and/or an inplace 541 /// bufferization decision. 542 /// 543 /// Example: 544 /// %0 = tensor.extract_slice %t[...][...][1, 1] {inplace?} 545 /// %1 = vector.transfer_write %v1, %t {inplace} : vector<5xf32>, tensor<?xf32> 546 /// %e = tensor.extract_slice %1 547 /// %2 = vector.transfer_write %v2, %0 {inplace} : vector<6xf32>, tensor<?xf32> 548 /// %3 = vector.transfer_read %e, %cst : tensor<?xf32>, vector<7xf32> 549 /// 550 /// In the above example, the two TransferWriteOps have already been decided to 551 /// bufferize inplace. Bufferizing the ExtractSliceOp inplace would create a 552 /// conflict because: 553 /// * According to SSA use-def chains, we expect to read the result of %1. 554 /// * However, adding an alias {%0, %t} would mean that the second 555 /// TransferWriteOp overwrites the first one. Therefore, the TransferReadOp 556 /// would no longer be reading the result of %1. 557 /// 558 /// If `checkConsistencyOnly` is true, this function checks if there is a 559 /// read-after-write conflict without bufferizing `operand` inplace. This would 560 /// indicate a problem with the current inplace bufferization decisions. 561 /// 562 /// Note: If `checkConsistencyOnly`, this function may be called with a null 563 /// OpResult. In that case, only the consistency of bufferization decisions 564 /// involving aliases of the given OpOperand are checked. 565 static bool wouldCreateReadAfterWriteInterference( 566 OpOperand &operand, const DominanceInfo &domInfo, AnalysisState &state, 567 const BufferizationAliasInfo &aliasInfo, 568 bool checkConsistencyOnly = false) { 569 // Helper function to iterate on aliases of `root` and capture the reads. 570 auto getAliasingReads = [&](DenseSet<OpOperand *> &res, Value root) { 571 aliasInfo.applyOnAliases(root, [&](Value alias) { 572 for (auto &use : alias.getUses()) 573 // Read to a value that aliases root. 574 if (state.bufferizesToMemoryRead(use)) 575 res.insert(&use); 576 }); 577 }; 578 579 // Helper function to iterate on aliases of `root` and capture the writes. 580 auto getAliasingInplaceWrites = [&](DenseSet<OpOperand *> &res, Value root) { 581 aliasInfo.applyOnAliases(root, [&](Value alias) { 582 for (auto &use : alias.getUses()) 583 // Inplace write to a value that aliases root. 584 if (isInplaceMemoryWrite(use, aliasInfo, state)) 585 res.insert(&use); 586 }); 587 }; 588 589 // Collect reads and writes of all aliases of OpOperand and OpResult. 590 DenseSet<OpOperand *> usesRead, usesWrite; 591 getAliasingReads(usesRead, operand.get()); 592 getAliasingInplaceWrites(usesWrite, operand.get()); 593 for (OpResult result : state.getAliasingOpResult(operand)) { 594 getAliasingReads(usesRead, result); 595 getAliasingInplaceWrites(usesWrite, result); 596 } 597 if (!checkConsistencyOnly && state.bufferizesToMemoryWrite(operand)) 598 usesWrite.insert(&operand); 599 600 return hasReadAfterWriteInterference(usesRead, usesWrite, domInfo, state, 601 aliasInfo); 602 } 603 604 /// Return true if bufferizing `opOperand` inplace would create a write to a 605 /// non-writable buffer. 606 static bool 607 wouldCreateWriteToNonWritableBuffer(OpOperand &opOperand, 608 const BufferizationAliasInfo &aliasInfo, 609 AnalysisState &state) { 610 // Certain buffers are not writeable: 611 // 1. A function bbArg that is not inplaceable or 612 // 2. A constant op. 613 bool nonWritable = 614 aliasesNonWritableBuffer(opOperand.get(), aliasInfo, state); 615 if (!nonWritable) 616 return false; 617 618 // This is a problem only if the buffer is written to via some alias. 619 bool hasWrite = aliasesInPlaceWrite(opOperand.get(), aliasInfo, state) || 620 state.bufferizesToMemoryWrite(opOperand); 621 622 for (OpResult opResult : state.getAliasingOpResult(opOperand)) 623 hasWrite |= aliasesInPlaceWrite(opResult, aliasInfo, state); 624 625 return hasWrite; 626 } 627 628 //===----------------------------------------------------------------------===// 629 // Bufferization analyses. 630 //===----------------------------------------------------------------------===// 631 632 /// Determine if `operand` can be bufferized in-place. 633 static LogicalResult bufferizableInPlaceAnalysisImpl( 634 OpOperand &operand, BufferizationAliasInfo &aliasInfo, AnalysisState &state, 635 const DominanceInfo &domInfo) { 636 bool foundInterference = 637 wouldCreateWriteToNonWritableBuffer(operand, aliasInfo, state) || 638 wouldCreateReadAfterWriteInterference(operand, domInfo, state, aliasInfo); 639 640 if (foundInterference) 641 aliasInfo.bufferizeOutOfPlace(operand); 642 else 643 aliasInfo.bufferizeInPlace(operand, state); 644 645 return success(); 646 } 647 648 /// Analyze the `ops` to determine which OpOperands are inplaceable. Walk ops in 649 /// reverse and bufferize ops greedily. This is a good starter heuristic. 650 /// 651 /// Even if an op does not read or write, it may still create an alias when 652 /// bufferized in-place. An example of such ops is tensor.extract_slice. 653 /// 654 /// Rationale for bufferizing `%1 = tensor.extract_slice %0[...]` inplace: 655 /// 656 /// When bufferized out of place, an ExtractSliceOp lowers to alloc + copy. This 657 /// cannot change the flow of information for either the source or the 658 /// result buffers. 659 /// 660 /// When bufferized inplace, an ExtractSliceOp does not by itself create any 661 /// read or write from memory. Instead, it has the effect of merging the alias 662 /// sets of the source and the result buffers. 663 /// 664 /// An analysis is required to ensure inplace bufferization would not result in 665 /// RaW dependence violations. 666 static LogicalResult inPlaceAnalysis(SmallVector<Operation *> &ops, 667 BufferizationAliasInfo &aliasInfo, 668 AnalysisState &state, 669 const DominanceInfo &domInfo, 670 unsigned analysisFuzzerSeed = 0) { 671 if (analysisFuzzerSeed) { 672 // This is a fuzzer. For testing purposes only. Randomize the order in which 673 // operations are analyzed. The bufferization quality is likely worse, but 674 // we want to make sure that no assertions are triggered anywhere. 675 std::mt19937 g(analysisFuzzerSeed); 676 llvm::shuffle(ops.begin(), ops.end(), g); 677 } 678 679 // Walk ops in reverse for better interference analysis. 680 for (Operation *op : reverse(ops)) 681 for (OpOperand &opOperand : op->getOpOperands()) 682 if (opOperand.get().getType().isa<TensorType>()) 683 if (auto bufferizableOp = state.getOptions().dynCastBufferizableOp(op)) 684 if (failed(bufferizableInPlaceAnalysisImpl(opOperand, aliasInfo, 685 state, domInfo))) 686 return failure(); 687 688 return success(); 689 } 690 691 /// Return true if the given op has a tensor result or a tensor operand. 692 static bool hasTensorSemantics(Operation *op) { 693 bool hasTensorResult = any_of(op->getResultTypes(), isaTensor); 694 bool hasTensorOperand = any_of(op->getOperandTypes(), isaTensor); 695 return hasTensorResult || hasTensorOperand; 696 } 697 698 /// Analyze all ops that are contained in `op`. 699 static LogicalResult inPlaceAnalysis(Operation *op, 700 BufferizationAliasInfo &aliasInfo, 701 AnalysisState &state, 702 const DominanceInfo &domInfo, 703 unsigned analysisFuzzerSeed = 0) { 704 // Collect ops so we can build our own reverse traversal. 705 SmallVector<Operation *> ops; 706 op->walk([&](Operation *op) { 707 // No tensors => no buffers. 708 if (!hasTensorSemantics(op)) 709 return; 710 ops.push_back(op); 711 }); 712 713 return inPlaceAnalysis(ops, aliasInfo, state, domInfo, analysisFuzzerSeed); 714 } 715 716 /// Analyze equivalence of tied OpResult/OpOperand pairs of the given ops. 717 static void equivalenceAnalysis(SmallVector<Operation *> &ops, 718 BufferizationAliasInfo &aliasInfo, 719 AnalysisState &state) { 720 for (Operation *op : ops) 721 if (auto bufferizableOp = state.getOptions().dynCastBufferizableOp(op)) 722 for (OpResult opResult : op->getOpResults()) 723 if (opResult.getType().isa<TensorType>()) 724 for (OpOperand *opOperand : 725 bufferizableOp.getAliasingOpOperand(opResult, state)) 726 if (state.isInPlace(*opOperand)) 727 if (bufferizableOp.bufferRelation(opResult, state) == 728 BufferRelation::Equivalent) 729 aliasInfo.unionEquivalenceClasses(opResult, opOperand->get()); 730 } 731 732 /// Analyze equivalence of tied OpResult/OpOperand pairs of all ops contained 733 /// in `op`. 734 static void equivalenceAnalysis(Operation *op, 735 BufferizationAliasInfo &aliasInfo, 736 AnalysisState &state) { 737 // Traverse ops in PostOrder: Nested ops first, then enclosing ops. 738 SmallVector<Operation *> ops; 739 op->walk<WalkOrder::PostOrder>([&](Operation *op) { 740 // No tensors => no buffers. 741 if (none_of(op->getResultTypes(), isaTensor)) 742 return; 743 ops.push_back(op); 744 }); 745 746 equivalenceAnalysis(ops, aliasInfo, state); 747 } 748 749 /// Assert that the current bufferization decisions are consistent. 750 static LogicalResult 751 checkAliasInfoConsistency(Operation *op, const DominanceInfo &domInfo, 752 AnalysisState &state, 753 const BufferizationAliasInfo &aliasInfo) { 754 const BufferizationOptions &options = state.getOptions(); 755 Operation *inconsistentOp = nullptr; 756 WalkResult walkResult = op->walk([&](Operation *op) { 757 if (auto bufferizableOp = options.dynCastBufferizableOp(op)) 758 for (OpOperand &opOperand : op->getOpOperands()) 759 if (opOperand.get().getType().isa<TensorType>()) { 760 if (wouldCreateReadAfterWriteInterference( 761 opOperand, domInfo, state, aliasInfo, 762 /*checkConsistencyOnly=*/true)) { 763 // This error can happen if certain "mustBufferizeInPlace" interface 764 // methods are implemented incorrectly, such that the IR already has 765 // a RaW conflict before making any bufferization decisions. 766 inconsistentOp = op; 767 return WalkResult::interrupt(); 768 } 769 } 770 return WalkResult::advance(); 771 }); 772 773 if (walkResult.wasInterrupted()) 774 return inconsistentOp->emitError("input IR has RaW conflict"); 775 return success(); 776 } 777 778 /// Annotate the IR with the result of the analysis. For testing/debugging only. 779 static void 780 annotateOpsWithBufferizationMarkers(Operation *op, 781 const BufferizationAliasInfo &aliasInfo, 782 AnalysisState &state) { 783 op->walk([&](Operation *op) { 784 if (auto bufferizableOp = state.getOptions().dynCastBufferizableOp(op)) 785 for (OpOperand &opOperand : op->getOpOperands()) 786 if (opOperand.get().getType().isa<TensorType>()) 787 setInPlaceOpOperand(opOperand, aliasInfo.isInPlace(opOperand)); 788 }); 789 } 790 791 /// Assert that IR is in destination-passing style. I.e., every value that is 792 /// returned or yielded from a block is: 793 /// * aliasing a bbArg of that block or a parent block, or 794 /// * aliasing an OpResult of a op in a parent block. 795 /// 796 /// Example: 797 /// ``` 798 /// %0 = "some_op" : tensor<?xf32> 799 /// %1 = scf.if %c -> (tensor<?xf32>) { 800 /// scf.yield %0 : tensor<?xf32> 801 /// } else { 802 /// %t = linalg.init_tensor : tensor<?xf32> 803 /// scf.yield %t : tensor<?xf32> 804 /// } 805 /// ``` 806 /// In the above example, the first scf.yield op satifies destination-passing 807 /// style because the yielded value %0 is defined in the parent block. The 808 /// second scf.yield op does not satisfy destination-passing style because the 809 /// yielded value %t is defined in the same block as the scf.yield op. 810 // TODO: The current implementation checks for equivalent values instead of 811 // aliasing values, which is stricter than needed. We can currently not check 812 // for aliasing values because the analysis is a maybe-alias analysis and we 813 // need a must-alias analysis here. 814 static LogicalResult 815 assertDestinationPassingStyle(Operation *op, AnalysisState &state, 816 BufferizationAliasInfo &aliasInfo, 817 SmallVector<Operation *> &newOps) { 818 LogicalResult status = success(); 819 DominanceInfo domInfo(op); 820 op->walk([&](Operation *returnOp) { 821 if (!isRegionReturnLike(returnOp) || 822 !state.getOptions().isOpAllowed(returnOp)) 823 return WalkResult::advance(); 824 825 for (OpOperand &returnValOperand : returnOp->getOpOperands()) { 826 Value returnVal = returnValOperand.get(); 827 // Skip non-tensor values. 828 if (!returnVal.getType().isa<TensorType>()) 829 continue; 830 831 bool foundEquivValue = false; 832 aliasInfo.applyOnEquivalenceClass(returnVal, [&](Value equivVal) { 833 if (auto bbArg = equivVal.dyn_cast<BlockArgument>()) { 834 Operation *definingOp = bbArg.getOwner()->getParentOp(); 835 if (definingOp->isProperAncestor(returnOp)) 836 foundEquivValue = true; 837 return; 838 } 839 840 Operation *definingOp = equivVal.getDefiningOp(); 841 if (definingOp->getBlock()->findAncestorOpInBlock( 842 *returnOp->getParentOp())) 843 // Skip ops that happen after `returnOp` and parent ops. 844 if (happensBefore(definingOp, returnOp, domInfo)) 845 foundEquivValue = true; 846 }); 847 848 if (!foundEquivValue) 849 status = 850 returnOp->emitError() 851 << "operand #" << returnValOperand.getOperandNumber() 852 << " of ReturnLike op does not satisfy destination passing style"; 853 } 854 855 return WalkResult::advance(); 856 }); 857 858 return status; 859 } 860 861 LogicalResult bufferization::analyzeOp(Operation *op, 862 OneShotAnalysisState &state) { 863 DominanceInfo domInfo(op); 864 BufferizationAliasInfo &aliasInfo = state.getAliasInfo(); 865 const auto &options = 866 static_cast<const OneShotBufferizationOptions &>(state.getOptions()); 867 868 // Catch incorrect API usage. 869 assert((state.hasDialectState(func::FuncDialect::getDialectNamespace()) || 870 !options.bufferizeFunctionBoundaries) && 871 "must use ModuleBufferize to bufferize function boundaries"); 872 873 if (failed(checkAliasInfoConsistency(op, domInfo, state, aliasInfo))) 874 return failure(); 875 876 // If the analysis fails, just return. 877 if (failed(inPlaceAnalysis(op, aliasInfo, state, domInfo, 878 options.analysisFuzzerSeed))) 879 return failure(); 880 equivalenceAnalysis(op, aliasInfo, state); 881 882 for (const PostAnalysisStepFn &fn : options.postAnalysisSteps) { 883 SmallVector<Operation *> newOps; 884 if (failed(fn(op, state, aliasInfo, newOps))) 885 return failure(); 886 // Analyze ops that were created by the PostAnalysisStepFn. 887 if (failed(inPlaceAnalysis(newOps, aliasInfo, state, domInfo))) 888 return failure(); 889 equivalenceAnalysis(newOps, aliasInfo, state); 890 } 891 892 bool failedAnalysis = false; 893 if (!options.allowReturnAllocs) { 894 SmallVector<Operation *> newOps; 895 failedAnalysis |= 896 failed(assertDestinationPassingStyle(op, state, aliasInfo, newOps)); 897 } 898 899 // Gather all yielded tensors. 900 state.gatherYieldedTensors(op); 901 902 // Analysis verification: After setting up alias/equivalence sets, each op 903 // can check for expected invariants/limitations and fail the analysis if 904 // necessary. 905 op->walk([&](Operation *op) { 906 if (BufferizableOpInterface bufferizableOp = 907 options.dynCastBufferizableOp(op)) 908 failedAnalysis |= failed(bufferizableOp.verifyAnalysis(state)); 909 }); 910 911 // Annotate operations if we only want to report the analysis. 912 if (options.testAnalysisOnly) 913 annotateOpsWithBufferizationMarkers(op, aliasInfo, state); 914 915 return success(!failedAnalysis); 916 } 917 918 LogicalResult 919 bufferization::runOneShotBufferize(Operation *op, 920 const OneShotBufferizationOptions &options) { 921 OneShotAnalysisState state(op, options); 922 if (failed(analyzeOp(op, state))) 923 return failure(); 924 if (options.testAnalysisOnly) 925 return success(); 926 return bufferizeOp(op, state); 927 } 928