1 //===- OneShotAnalysis.cpp - One-Shot (Single Pass) Analysis --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // One-Shot Analysis analyzes function bodies. Function boundaries (FuncOp 10 // bbArgs, CallOps, ReturnOps) are treated as "unknown" ops. 11 // ModuleBufferization.cpp is an extension of One-Shot Analysis for simple 12 // call graphs. 13 // 14 // One-Shot Bufferize consists of two phases. 15 // 16 // 1. Analyze ops to decide which OpResults can bufferize inplace, i.e., without 17 // inserting buffer copies. The analysis queries op bufferization semantics 18 // via `BufferizableOpInterface`. 19 // 2. Bufferize ops by calling `BufferizableOpInterface::bufferize`. This 20 // function does not generate buffer copies for OpResults that were decided 21 // to bufferize inplace during the analysis phase. 22 // 23 // This file contains only the analysis. The actual bufferization is implemented 24 // via `bufferizeOp` (Bufferize.h). For convenience, this file also contains a 25 // helper function `runOneShotBufferize` that analyzes an op (and its nested 26 // ops) and then bufferizes it. 27 // 28 // Inplace bufferization decisions are passed from the analysis to the 29 // bufferization phase via `AnalysisState` and `BufferizationAliasInfo`. 30 // They can be printed for debugging purposes with `testAnalysisOnly`. 31 // 32 // Ops that do not implement `BufferizableOpInterface` can be analyzed but are 33 // treated conservatively. E.g., the analysis has to assume that their tensor 34 // OpOperands bufferize to memory writes. While such ops can be analyzed, they 35 // are not bufferized and remain in the IR. to_tensor and to_memref ops are 36 // inserted at the bufferization boundary. 37 // 38 // This analysis caters to high-performance codegen where buffer reuse is deemed 39 // critical: the analysis should fail if the bufferized form of the function 40 // needs to return a buffer, unless `allowReturnAllocs` is enabled. 41 42 #include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h" 43 44 #include <random> 45 46 #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h" 47 #include "mlir/Dialect/Bufferization/IR/Bufferization.h" 48 #include "mlir/Dialect/Bufferization/Transforms/Bufferize.h" 49 #include "mlir/Dialect/Func/IR/FuncOps.h" 50 #include "mlir/Dialect/MemRef/IR/MemRef.h" 51 #include "mlir/IR/AsmState.h" 52 #include "mlir/IR/Dominance.h" 53 #include "mlir/IR/Operation.h" 54 #include "mlir/IR/TypeUtilities.h" 55 #include "mlir/Interfaces/ControlFlowInterfaces.h" 56 #include "llvm/ADT/DenseSet.h" 57 #include "llvm/ADT/SetVector.h" 58 59 using namespace mlir; 60 using namespace mlir::bufferization; 61 62 static bool isaTensor(Type t) { return t.isa<TensorType>(); } 63 64 //===----------------------------------------------------------------------===// 65 // Bufferization-specific attribute manipulation. 66 // These are for testing and debugging only. Bufferization information is 67 // stored in BufferizationAliasInfo. When run with `testAnalysisOnly`, the IR 68 // is annotated with the results of the analysis (copied from 69 // BufferizationAliasInfo), so that they can be checked in tests. 70 //===----------------------------------------------------------------------===// 71 72 /// Attribute marker to specify op results that can be bufferized inPlace. 73 constexpr StringLiteral kInPlaceResultsAttrName = "__inplace_operands_attr__"; 74 75 /// Mark whether OpOperand will be bufferized inplace. 76 static void setInPlaceOpOperand(OpOperand &opOperand, bool inPlace) { 77 Operation *op = opOperand.getOwner(); 78 auto attr = 79 op->getAttr(kInPlaceResultsAttrName).dyn_cast_or_null<ArrayAttr>(); 80 SmallVector<StringRef> inPlaceVector; 81 if (attr) { 82 inPlaceVector = SmallVector<StringRef>( 83 llvm::to_vector<4>(attr.getAsValueRange<StringAttr>())); 84 } else { 85 inPlaceVector = SmallVector<StringRef>(op->getNumOperands(), "none"); 86 for (OpOperand &opOperand : op->getOpOperands()) 87 if (opOperand.get().getType().isa<TensorType>()) 88 inPlaceVector[opOperand.getOperandNumber()] = "false"; 89 } 90 91 inPlaceVector[opOperand.getOperandNumber()] = inPlace ? "true" : "false"; 92 op->setAttr(kInPlaceResultsAttrName, 93 OpBuilder(op).getStrArrayAttr(inPlaceVector)); 94 } 95 96 //===----------------------------------------------------------------------===// 97 // BufferizationAliasInfo 98 //===----------------------------------------------------------------------===// 99 100 BufferizationAliasInfo::BufferizationAliasInfo(Operation *rootOp) { 101 rootOp->walk([&](Operation *op) { 102 for (Value v : op->getResults()) 103 if (v.getType().isa<TensorType>()) 104 createAliasInfoEntry(v); 105 for (Region &r : op->getRegions()) 106 for (Block &b : r.getBlocks()) 107 for (auto bbArg : b.getArguments()) 108 if (bbArg.getType().isa<TensorType>()) 109 createAliasInfoEntry(bbArg); 110 }); 111 } 112 113 /// Add a new entry for `v` in the `aliasInfo` and `equivalentInfo`. In the 114 /// beginning the alias and equivalence sets only contain `v` itself. 115 void BufferizationAliasInfo::createAliasInfoEntry(Value v) { 116 aliasInfo.insert(v); 117 equivalentInfo.insert(v); 118 } 119 120 /// Insert an info entry for `newValue` and merge its alias set with that of 121 /// `alias`. 122 void BufferizationAliasInfo::insertNewBufferAlias(Value newValue, Value alias) { 123 createAliasInfoEntry(newValue); 124 aliasInfo.unionSets(newValue, alias); 125 } 126 127 /// Insert an info entry for `newValue` and merge its alias set with that of 128 /// `alias`. Additionally, merge their equivalence classes. 129 void BufferizationAliasInfo::insertNewBufferEquivalence(Value newValue, 130 Value alias) { 131 insertNewBufferAlias(newValue, alias); 132 equivalentInfo.unionSets(newValue, alias); 133 } 134 135 /// Return `true` if a value was marked as in-place bufferized. 136 bool BufferizationAliasInfo::isInPlace(OpOperand &operand) const { 137 return inplaceBufferized.contains(&operand); 138 } 139 140 /// Set the inPlace bufferization spec to true. 141 void BufferizationAliasInfo::bufferizeInPlace(OpOperand &operand, 142 AnalysisState &state) { 143 markInPlace(operand); 144 for (OpResult result : state.getAliasingOpResult(operand)) 145 aliasInfo.unionSets(result, operand.get()); 146 } 147 148 /// Set the inPlace bufferization spec to false. 149 void BufferizationAliasInfo::bufferizeOutOfPlace(OpOperand &operand) { 150 assert(!inplaceBufferized.contains(&operand) && 151 "OpOperand was already decided to bufferize inplace"); 152 } 153 154 /// Apply `fun` to all the members of the equivalence class of `v`. 155 void BufferizationAliasInfo::applyOnEquivalenceClass( 156 Value v, function_ref<void(Value)> fun) const { 157 auto leaderIt = equivalentInfo.findLeader(v); 158 for (auto mit = leaderIt, meit = equivalentInfo.member_end(); mit != meit; 159 ++mit) { 160 fun(*mit); 161 } 162 } 163 164 /// Apply `fun` to all aliases of `v`. 165 void BufferizationAliasInfo::applyOnAliases( 166 Value v, function_ref<void(Value)> fun) const { 167 auto leaderIt = aliasInfo.findLeader(v); 168 for (auto mit = leaderIt, meit = aliasInfo.member_end(); mit != meit; ++mit) { 169 fun(*mit); 170 } 171 } 172 173 BufferizationAliasInfo::EquivalenceClassRangeType 174 BufferizationAliasInfo::getAliases(Value v) const { 175 DenseSet<Value> res; 176 auto it = aliasInfo.findValue(aliasInfo.getLeaderValue(v)); 177 for (auto mit = aliasInfo.member_begin(it), meit = aliasInfo.member_end(); 178 mit != meit; ++mit) { 179 res.insert(static_cast<Value>(*mit)); 180 } 181 return BufferizationAliasInfo::EquivalenceClassRangeType( 182 aliasInfo.member_begin(it), aliasInfo.member_end()); 183 } 184 185 //===----------------------------------------------------------------------===// 186 // OneShotAnalysisState 187 //===----------------------------------------------------------------------===// 188 189 OneShotAnalysisState::OneShotAnalysisState( 190 Operation *op, const OneShotBufferizationOptions &options) 191 : AnalysisState(options), aliasInfo(op) { 192 // Set up alias sets for OpResults that must bufferize in-place. This should 193 // be done before making any other bufferization decisions. 194 op->walk([&](BufferizableOpInterface bufferizableOp) { 195 if (!options.isOpAllowed(bufferizableOp)) 196 return WalkResult::skip(); 197 for (OpOperand &opOperand : bufferizableOp->getOpOperands()) { 198 if (opOperand.get().getType().isa<TensorType>()) 199 if (bufferizableOp.mustBufferizeInPlace(opOperand, *this)) { 200 for (OpResult opResult : 201 bufferizableOp.getAliasingOpResult(opOperand, *this)) 202 aliasInfo.unionAliasSets(opOperand.get(), opResult); 203 aliasInfo.markInPlace(opOperand); 204 } 205 } 206 return WalkResult::advance(); 207 }); 208 } 209 210 bool OneShotAnalysisState::isInPlace(OpOperand &opOperand) const { 211 return aliasInfo.isInPlace(opOperand); 212 } 213 214 bool OneShotAnalysisState::areEquivalentBufferizedValues(Value v1, 215 Value v2) const { 216 return aliasInfo.areEquivalentBufferizedValues(v1, v2); 217 } 218 219 bool OneShotAnalysisState::areAliasingBufferizedValues(Value v1, 220 Value v2) const { 221 return aliasInfo.areAliasingBufferizedValues(v1, v2); 222 } 223 224 // Gather yielded tensors in `yieldedTensors` by querying all aliases. This is 225 // to ensure that such information is available during bufferization time. 226 // Alias information can no longer be queried through BufferizationAliasInfo 227 // once we have started modifying the IR. 228 void OneShotAnalysisState::gatherYieldedTensors(Operation *op) { 229 op->walk([&](Operation *returnOp) { 230 if (!isRegionReturnLike(returnOp) || !getOptions().isOpAllowed(returnOp)) 231 return WalkResult::advance(); 232 233 for (OpOperand &returnValOperand : returnOp->getOpOperands()) { 234 Value returnVal = returnValOperand.get(); 235 // Skip non-tensor values. 236 if (!returnVal.getType().isa<TensorType>()) 237 continue; 238 239 // Add all aliases of the returned value. But only the ones that are in 240 // the same block. 241 aliasInfo.applyOnAliases(returnVal, [&](Value v) { 242 if (auto bbArg = v.dyn_cast<BlockArgument>()) { 243 if (bbArg.getOwner()->getParentOp() == returnOp->getParentOp()) 244 yieldedTensors.insert(bbArg); 245 return; 246 } 247 Operation *definingOp = v.getDefiningOp(); 248 if (definingOp->getParentOp() == returnOp->getParentOp()) 249 yieldedTensors.insert(v); 250 }); 251 } 252 253 return WalkResult::advance(); 254 }); 255 } 256 257 void OneShotAnalysisState::gatherUndefinedTensorUses(Operation *op) { 258 op->walk([&](Operation *op) { 259 // Skip unknown ops. 260 auto bufferizableOp = getOptions().dynCastBufferizableOp(op); 261 if (!bufferizableOp) 262 return WalkResult::skip(); 263 264 // Check all tensor OpResults. 265 for (OpResult opResult : op->getOpResults()) { 266 if (!opResult.getType().isa<TensorType>()) 267 continue; 268 269 // If there is no preceding memory write, the tensor contents are 270 // undefined. 271 // Note: If `findLastPrecedingWrite` reaches the end of the reverse SSA 272 // use-def chain, it returns that value, regardless of whether it is a 273 // memory write or not. 274 SetVector<Value> lastWrites = findLastPrecedingWrite(opResult); 275 bool isUndefined = llvm::none_of(lastWrites, [&](Value lastWrite) { 276 if (auto bufferizableOp = getOptions().dynCastBufferizableOp(lastWrite)) 277 return bufferizableOp.isMemoryWrite(lastWrite.cast<OpResult>(), 278 *this); 279 return true; 280 }); 281 if (isUndefined) 282 for (OpOperand &use : opResult.getUses()) 283 undefinedTensorUses.insert(&use); 284 } 285 286 return WalkResult::advance(); 287 }); 288 } 289 290 bool OneShotAnalysisState::hasUndefinedContents(OpOperand *opOperand) const { 291 return undefinedTensorUses.contains(opOperand); 292 } 293 294 bool OneShotAnalysisState::isTensorYielded(Value tensor) const { 295 return yieldedTensors.contains(tensor); 296 } 297 298 bool OneShotAnalysisState::isValueWritten(Value value) const { 299 bool isWritten = false; 300 aliasInfo.applyOnAliases(value, [&](Value val) { 301 for (OpOperand &use : val.getUses()) 302 if (isInPlace(use) && bufferizesToMemoryWrite(use)) 303 isWritten = true; 304 }); 305 return isWritten; 306 } 307 308 //===----------------------------------------------------------------------===// 309 // Bufferization-specific alias analysis. 310 //===----------------------------------------------------------------------===// 311 312 /// Return true if opOperand has been decided to bufferize in-place. 313 static bool isInplaceMemoryWrite(OpOperand &opOperand, 314 const BufferizationAliasInfo &aliasInfo, 315 AnalysisState &state) { 316 // OpOperands that do not bufferize to a memory write do not write in-place. 317 if (!state.bufferizesToMemoryWrite(opOperand)) 318 return false; 319 // Check current bufferization decisions. 320 return aliasInfo.isInPlace(opOperand); 321 } 322 323 /// Return true if, under current bufferization decisions, the buffer of `value` 324 /// is not writable. 325 static bool aliasesNonWritableBuffer(Value value, 326 const BufferizationAliasInfo &aliasInfo, 327 AnalysisState &state) { 328 bool foundNonWritableBuffer = false; 329 aliasInfo.applyOnAliases(value, [&](Value v) { 330 // Query BufferizableOpInterface to see if the value is writable. 331 // TODO: Out-of-place bufferized value could be considered writable. 332 if (auto bufferizableOp = state.getOptions().dynCastBufferizableOp(v)) 333 if (bufferizableOp && bufferizableOp.isWritable(v, state)) 334 return; 335 336 // Query BufferizableOpInterface to see if the BlockArgument is writable. 337 if (auto bbArg = v.dyn_cast<BlockArgument>()) 338 if (auto bufferizableOp = state.getOptions().dynCastBufferizableOp( 339 bbArg.getOwner()->getParentOp())) 340 if (bufferizableOp.isWritable(bbArg, state)) 341 return; 342 343 foundNonWritableBuffer = true; 344 }); 345 346 return foundNonWritableBuffer; 347 } 348 349 /// Return true if the buffer to which `operand` would bufferize is equivalent 350 /// to some buffer write. 351 static bool aliasesInPlaceWrite(Value value, 352 const BufferizationAliasInfo &aliasInfo, 353 AnalysisState &state) { 354 bool foundInplaceWrite = false; 355 aliasInfo.applyOnAliases(value, [&](Value v) { 356 for (auto &use : v.getUses()) { 357 if (isInplaceMemoryWrite(use, aliasInfo, state)) { 358 foundInplaceWrite = true; 359 return; 360 } 361 } 362 }); 363 return foundInplaceWrite; 364 } 365 366 /// Return true if `a` happens before `b`, i.e., `a` or one of its ancestors 367 /// properly dominates `b` and `b` is not inside `a`. 368 static bool happensBefore(Operation *a, Operation *b, 369 const DominanceInfo &domInfo) { 370 do { 371 // TODO: Instead of isProperAncestor + properlyDominates, we should use 372 // properlyDominatesImpl(a, b, /*enclosingOpOk=*/false) 373 if (a->isProperAncestor(b)) 374 return false; 375 if (domInfo.properlyDominates(a, b)) 376 return true; 377 } while ((a = a->getParentOp())); 378 return false; 379 } 380 381 /// For each given value, find the closest enclosing repetitive region. If this 382 /// is the same region for each value, return it. Otherwise return None. 383 /// Note: If there is no enclosing repetitive region, return nullptr. 384 static Optional<Region *> 385 getCommonEnclosingRepetitiveRegion(ArrayRef<Value> values) { 386 if (values.empty()) 387 return None; 388 Region *r = getEnclosingRepetitiveRegion(values.front()); 389 for (Value value : values.drop_front()) 390 if (getEnclosingRepetitiveRegion(value) != r) 391 return None; 392 return r; 393 } 394 395 /// Return `true` if the given tensor value is a memory write. Most values are 396 /// tensor writes, but ops that define a tensor SSA value without specifying its 397 /// contents (e.g., alloc_tensor) are not. 398 static bool isMemoryWrite(Value value, const AnalysisState &state) { 399 auto opResult = value.dyn_cast<OpResult>(); 400 if (!opResult) 401 return true; 402 auto bufferizableOp = state.getOptions().dynCastBufferizableOp(value); 403 if (!bufferizableOp) 404 return true; 405 return bufferizableOp.isMemoryWrite(opResult, state); 406 } 407 408 /// Annotate IR with details about the detected RaW conflict. 409 static void annotateConflict(OpOperand *uRead, OpOperand *uConflictingWrite, 410 Value lastWrite) { 411 static uint64_t counter = 0; 412 Operation *readingOp = uRead->getOwner(); 413 Operation *conflictingWritingOp = uConflictingWrite->getOwner(); 414 415 OpBuilder b(conflictingWritingOp->getContext()); 416 std::string id = "C_" + std::to_string(counter++); 417 418 std::string conflictingWriteAttr = 419 id + 420 "[CONFL-WRITE: " + std::to_string(uConflictingWrite->getOperandNumber()) + 421 "]"; 422 conflictingWritingOp->setAttr(conflictingWriteAttr, b.getUnitAttr()); 423 424 std::string readAttr = 425 id + "[READ: " + std::to_string(uRead->getOperandNumber()) + "]"; 426 readingOp->setAttr(readAttr, b.getUnitAttr()); 427 428 if (auto opResult = lastWrite.dyn_cast<OpResult>()) { 429 std::string lastWriteAttr = id + "[LAST-WRITE: result " + 430 std::to_string(opResult.getResultNumber()) + 431 "]"; 432 opResult.getDefiningOp()->setAttr(lastWriteAttr, b.getUnitAttr()); 433 } else { 434 auto bbArg = lastWrite.cast<BlockArgument>(); 435 std::string lastWriteAttr = 436 id + "[LAST-WRITE: bbArg " + std::to_string(bbArg.getArgNumber()) + "]"; 437 bbArg.getOwner()->getParentOp()->setAttr(lastWriteAttr, b.getUnitAttr()); 438 } 439 } 440 441 /// Given sets of uses and writes, return true if there is a RaW conflict under 442 /// the assumption that all given reads/writes alias the same buffer and that 443 /// all given writes bufferize inplace. 444 /// 445 /// A conflict is: According to SSA use-def chains, a read R is supposed to read 446 /// the result of a write W1. But because of bufferization decisions, R actually 447 /// reads another write W2. 448 static bool hasReadAfterWriteInterference( 449 const DenseSet<OpOperand *> &usesRead, 450 const DenseSet<OpOperand *> &usesWrite, const DominanceInfo &domInfo, 451 AnalysisState &state, const BufferizationAliasInfo &aliasInfo) { 452 const BufferizationOptions &options = state.getOptions(); 453 454 // Gather all written aliases. Skip over aliases that are not actual writes. 455 SmallVector<Value> writtenAliases; 456 for (OpOperand *uWrite : usesWrite) 457 if (isMemoryWrite(uWrite->get(), state)) 458 writtenAliases.push_back(uWrite->get()); 459 // Find the inner-most enclosing repetitive region of each alias. If this is 460 // the same region for every alias, save it in `repetitiveRegionOfWrites`. 461 Optional<Region *> repetitiveRegionOfWrites = 462 getCommonEnclosingRepetitiveRegion(writtenAliases); 463 464 for (OpOperand *uRead : usesRead) { 465 Operation *readingOp = uRead->getOwner(); 466 467 // Find most recent writes of uRead by following the SSA use-def chain. 468 // E.g.: 469 // 470 // %0 = "writing_op"(%t) : tensor<?x32> -> tensor<?xf32> 471 // %1 = "aliasing_op"(%0) : tensor<?x32> -> tensor<?xf32> 472 // %2 = "reading_op"(%1) : : tensor<?x32> -> not_a_tensor_type 473 // 474 // In the above example, if uRead is the OpOperand of reading_op, lastWrite 475 // is %0. Note that operations that create an alias but do not write (such 476 // as ExtractSliceOp) are skipped. 477 SetVector<Value> lastWrites = state.findLastPrecedingWrite(uRead->get()); 478 479 // Look for conflicting memory writes. Potential conflicts are writes to an 480 // alias that have been decided to bufferize inplace. 481 for (OpOperand *uConflictingWrite : usesWrite) { 482 // Throughout this loop, check for multiple requirements that have to be 483 // met for uConflictingWrite to be an actual conflict. 484 Operation *conflictingWritingOp = uConflictingWrite->getOwner(); 485 486 // Check if conflictingWritingOp is in the same repetitive region as all 487 // written aliases. If this is not the case, there is no meaningful 488 // `happensBefore` relationship because conflictingWritingOp may be 489 // executed multiple times. E.g.: 490 // 491 // %0 = ... : tensor<?xf32> 492 // scf.for ... { 493 // "reading_op"(%0) : tensor<?xf32> 494 // %1 = "writing_op"(%0) : tensor<?xf32> -> tensor<?xf32> 495 // ... 496 // } 497 // 498 // In the above example, reading_op happens before writing_op according to 499 // op dominance. However, both ops may happen multiple times; in 500 // particular, the second execution of reading_op happens after the first 501 // execution of writing_op. This is problematic if the tensor they operate 502 // on (%0) is defined outside of the loop. 503 // 504 // Counter example: 505 // 506 // scf.for ... { 507 // %0 = ... : tensor<?xf32> 508 // "reading_op"(%0) : tensor<?xf32> 509 // %1 = "writing_op"(%0) : tensor<?xf32> -> tensor<?xf32> 510 // ... 511 // } 512 // 513 // In this example, %0 is in the same repetitive region as 514 // conflictingWritingOp, so op dominance can be used to compute the 515 // `happensBefore` relationship. 516 // 517 // Note: iter_args of loops are not aliases of their respective block 518 // arguments, so op domanice can be used when analyzing ops that operate 519 // on them. 520 // 521 // Note: If `writtenAliases` is empty, there are no memory writes outside 522 // of the repetitive region of conflictingWritingOp, which means that all 523 // relevant aliases are inside the same repetitive region. 524 bool canUseOpDominance = 525 writtenAliases.empty() || 526 repetitiveRegionOfWrites == 527 getEnclosingRepetitiveRegion(conflictingWritingOp); 528 529 // No conflict if the readingOp dominates conflictingWritingOp, i.e., the 530 // write is not visible when reading. 531 // 532 // Note: If ops are executed multiple times (e.g., because they are inside 533 // a loop), there may be no meaningful `happensBefore` relationship. 534 if (canUseOpDominance && 535 happensBefore(readingOp, conflictingWritingOp, domInfo)) 536 continue; 537 538 // No conflict if the reading use equals the use of the conflicting write. 539 // A use cannot conflict with itself. 540 // 541 // Note: Just being the same op is not enough. It has to be the same use. 542 // Note: If the op is executed multiple times (e.g., because it is inside 543 // a loop), it may be conflicting with itself. 544 if (canUseOpDominance && uConflictingWrite == uRead) 545 continue; 546 547 // No conflict if the op interface says so. 548 if (auto bufferizableOp = options.dynCastBufferizableOp(readingOp)) 549 if (bufferizableOp.isNotConflicting(uRead, uConflictingWrite, state)) 550 continue; 551 552 if (conflictingWritingOp != readingOp) 553 if (auto bufferizableOp = 554 options.dynCastBufferizableOp(conflictingWritingOp)) 555 if (bufferizableOp.isNotConflicting(uRead, uConflictingWrite, state)) 556 continue; 557 558 // Ops are not conflicting if they are in mutually exclusive regions. 559 // 560 // Note: If ops are executed multiple times (e.g., because they are inside 561 // a loop), mutually exclusive regions may be executed multiple 562 // times. 563 if (canUseOpDominance && 564 insideMutuallyExclusiveRegions(readingOp, conflictingWritingOp)) 565 continue; 566 567 // Check all possible last writes. 568 for (Value lastWrite : lastWrites) { 569 // No conflict if the conflicting write happens before the last 570 // write. 571 if (Operation *writingOp = lastWrite.getDefiningOp()) { 572 if (happensBefore(conflictingWritingOp, writingOp, domInfo)) 573 // conflictingWritingOp happens before writingOp. No conflict. 574 continue; 575 // No conflict if conflictingWritingOp is contained in writingOp. 576 if (writingOp->isProperAncestor(conflictingWritingOp)) 577 continue; 578 } else { 579 auto bbArg = lastWrite.cast<BlockArgument>(); 580 Block *block = bbArg.getOwner(); 581 if (!block->findAncestorOpInBlock(*conflictingWritingOp)) 582 // conflictingWritingOp happens outside of the block. No 583 // conflict. 584 continue; 585 } 586 587 // No conflict if the conflicting write and the last write are the same 588 // use. 589 SmallVector<OpResult> aliasingOpResult = 590 state.getAliasingOpResult(*uConflictingWrite); 591 if (aliasingOpResult.size() == 1 && aliasingOpResult[0] == lastWrite) 592 continue; 593 594 // All requirements are met. Conflict found! 595 596 if (options.printConflicts) 597 annotateConflict(uRead, uConflictingWrite, lastWrite); 598 599 return true; 600 } 601 } 602 } 603 604 return false; 605 } 606 607 /// Return true if bufferizing `operand` inplace would create a conflict. A read 608 /// R and a write W of the same alias set is a conflict if inplace bufferization 609 /// of W changes the value read by R to a value different from the one that 610 /// would be expected by tracing back R's origin through SSA use-def chains. 611 /// A conflict can only be introduced by a new alias and/or an inplace 612 /// bufferization decision. 613 /// 614 /// Example: 615 /// %0 = tensor.extract_slice %t[...][...][1, 1] {inplace?} 616 /// %1 = vector.transfer_write %v1, %t {inplace} : vector<5xf32>, tensor<?xf32> 617 /// %e = tensor.extract_slice %1 618 /// %2 = vector.transfer_write %v2, %0 {inplace} : vector<6xf32>, tensor<?xf32> 619 /// %3 = vector.transfer_read %e, %cst : tensor<?xf32>, vector<7xf32> 620 /// 621 /// In the above example, the two TransferWriteOps have already been decided to 622 /// bufferize inplace. Bufferizing the ExtractSliceOp inplace would create a 623 /// conflict because: 624 /// * According to SSA use-def chains, we expect to read the result of %1. 625 /// * However, adding an alias {%0, %t} would mean that the second 626 /// TransferWriteOp overwrites the first one. Therefore, the TransferReadOp 627 /// would no longer be reading the result of %1. 628 /// 629 /// If `checkConsistencyOnly` is true, this function checks if there is a 630 /// read-after-write conflict without bufferizing `operand` inplace. This would 631 /// indicate a problem with the current inplace bufferization decisions. 632 /// 633 /// Note: If `checkConsistencyOnly`, this function may be called with a null 634 /// OpResult. In that case, only the consistency of bufferization decisions 635 /// involving aliases of the given OpOperand are checked. 636 static bool wouldCreateReadAfterWriteInterference( 637 OpOperand &operand, const DominanceInfo &domInfo, AnalysisState &state, 638 const BufferizationAliasInfo &aliasInfo, 639 bool checkConsistencyOnly = false) { 640 // Helper function to iterate on aliases of `root` and capture the reads. 641 auto getAliasingReads = [&](DenseSet<OpOperand *> &res, Value root) { 642 aliasInfo.applyOnAliases(root, [&](Value alias) { 643 for (auto &use : alias.getUses()) 644 // Read to a value that aliases root. 645 if (state.bufferizesToMemoryRead(use)) 646 res.insert(&use); 647 }); 648 }; 649 650 // Helper function to iterate on aliases of `root` and capture the writes. 651 auto getAliasingInplaceWrites = [&](DenseSet<OpOperand *> &res, Value root) { 652 aliasInfo.applyOnAliases(root, [&](Value alias) { 653 for (auto &use : alias.getUses()) 654 // Inplace write to a value that aliases root. 655 if (isInplaceMemoryWrite(use, aliasInfo, state)) 656 res.insert(&use); 657 }); 658 }; 659 660 // Collect reads and writes of all aliases of OpOperand and OpResult. 661 DenseSet<OpOperand *> usesRead, usesWrite; 662 getAliasingReads(usesRead, operand.get()); 663 getAliasingInplaceWrites(usesWrite, operand.get()); 664 for (OpResult result : state.getAliasingOpResult(operand)) { 665 getAliasingReads(usesRead, result); 666 getAliasingInplaceWrites(usesWrite, result); 667 } 668 if (!checkConsistencyOnly && state.bufferizesToMemoryWrite(operand)) 669 usesWrite.insert(&operand); 670 671 return hasReadAfterWriteInterference(usesRead, usesWrite, domInfo, state, 672 aliasInfo); 673 } 674 675 /// Return true if bufferizing `opOperand` inplace would create a write to a 676 /// non-writable buffer. 677 static bool 678 wouldCreateWriteToNonWritableBuffer(OpOperand &opOperand, 679 const BufferizationAliasInfo &aliasInfo, 680 AnalysisState &state) { 681 // Certain buffers are not writeable: 682 // 1. A function bbArg that is not inplaceable or 683 // 2. A constant op. 684 bool nonWritable = 685 aliasesNonWritableBuffer(opOperand.get(), aliasInfo, state); 686 if (!nonWritable) 687 return false; 688 689 // This is a problem only if the buffer is written to via some alias. 690 bool hasWrite = aliasesInPlaceWrite(opOperand.get(), aliasInfo, state) || 691 state.bufferizesToMemoryWrite(opOperand); 692 693 for (OpResult opResult : state.getAliasingOpResult(opOperand)) 694 hasWrite |= aliasesInPlaceWrite(opResult, aliasInfo, state); 695 696 return hasWrite; 697 } 698 699 //===----------------------------------------------------------------------===// 700 // Bufferization analyses. 701 //===----------------------------------------------------------------------===// 702 703 /// Determine if `operand` can be bufferized in-place. 704 static LogicalResult bufferizableInPlaceAnalysisImpl( 705 OpOperand &operand, BufferizationAliasInfo &aliasInfo, AnalysisState &state, 706 const DominanceInfo &domInfo) { 707 bool foundInterference = 708 wouldCreateWriteToNonWritableBuffer(operand, aliasInfo, state) || 709 wouldCreateReadAfterWriteInterference(operand, domInfo, state, aliasInfo); 710 711 if (foundInterference) 712 aliasInfo.bufferizeOutOfPlace(operand); 713 else 714 aliasInfo.bufferizeInPlace(operand, state); 715 716 return success(); 717 } 718 719 /// Analyze the `ops` to determine which OpOperands are inplaceable. Walk ops in 720 /// reverse and bufferize ops greedily. This is a good starter heuristic. 721 /// 722 /// Even if an op does not read or write, it may still create an alias when 723 /// bufferized in-place. An example of such ops is tensor.extract_slice. 724 /// 725 /// Rationale for bufferizing `%1 = tensor.extract_slice %0[...]` inplace: 726 /// 727 /// When bufferized out of place, an ExtractSliceOp lowers to alloc + copy. This 728 /// cannot change the flow of information for either the source or the 729 /// result buffers. 730 /// 731 /// When bufferized inplace, an ExtractSliceOp does not by itself create any 732 /// read or write from memory. Instead, it has the effect of merging the alias 733 /// sets of the source and the result buffers. 734 /// 735 /// An analysis is required to ensure inplace bufferization would not result in 736 /// RaW dependence violations. 737 static LogicalResult inPlaceAnalysis(SmallVector<Operation *> &ops, 738 BufferizationAliasInfo &aliasInfo, 739 AnalysisState &state, 740 const DominanceInfo &domInfo, 741 unsigned analysisFuzzerSeed = 0) { 742 if (analysisFuzzerSeed) { 743 // This is a fuzzer. For testing purposes only. Randomize the order in which 744 // operations are analyzed. The bufferization quality is likely worse, but 745 // we want to make sure that no assertions are triggered anywhere. 746 std::mt19937 g(analysisFuzzerSeed); 747 llvm::shuffle(ops.begin(), ops.end(), g); 748 } 749 750 // Walk ops in reverse for better interference analysis. 751 for (Operation *op : reverse(ops)) 752 for (OpOperand &opOperand : op->getOpOperands()) 753 if (opOperand.get().getType().isa<TensorType>()) 754 if (auto bufferizableOp = state.getOptions().dynCastBufferizableOp(op)) 755 if (failed(bufferizableInPlaceAnalysisImpl(opOperand, aliasInfo, 756 state, domInfo))) 757 return failure(); 758 759 return success(); 760 } 761 762 /// Return true if the given op has a tensor result or a tensor operand. 763 static bool hasTensorSemantics(Operation *op) { 764 bool hasTensorResult = any_of(op->getResultTypes(), isaTensor); 765 bool hasTensorOperand = any_of(op->getOperandTypes(), isaTensor); 766 return hasTensorResult || hasTensorOperand; 767 } 768 769 /// Analyze all ops that are contained in `op`. 770 static LogicalResult inPlaceAnalysis(Operation *op, 771 BufferizationAliasInfo &aliasInfo, 772 AnalysisState &state, 773 const DominanceInfo &domInfo, 774 unsigned analysisFuzzerSeed = 0) { 775 // Collect ops so we can build our own reverse traversal. 776 SmallVector<Operation *> ops; 777 op->walk([&](Operation *op) { 778 // No tensors => no buffers. 779 if (!hasTensorSemantics(op)) 780 return; 781 ops.push_back(op); 782 }); 783 784 return inPlaceAnalysis(ops, aliasInfo, state, domInfo, analysisFuzzerSeed); 785 } 786 787 /// Analyze equivalence of tied OpResult/OpOperand pairs of the given ops. 788 static void equivalenceAnalysis(SmallVector<Operation *> &ops, 789 BufferizationAliasInfo &aliasInfo, 790 AnalysisState &state) { 791 for (Operation *op : ops) 792 if (auto bufferizableOp = state.getOptions().dynCastBufferizableOp(op)) 793 for (OpResult opResult : op->getOpResults()) 794 if (opResult.getType().isa<TensorType>()) 795 for (OpOperand *opOperand : 796 bufferizableOp.getAliasingOpOperand(opResult, state)) 797 if (state.isInPlace(*opOperand)) 798 if (bufferizableOp.bufferRelation(opResult, state) == 799 BufferRelation::Equivalent) 800 aliasInfo.unionEquivalenceClasses(opResult, opOperand->get()); 801 } 802 803 /// Analyze equivalence of tied OpResult/OpOperand pairs of all ops contained 804 /// in `op`. 805 static void equivalenceAnalysis(Operation *op, 806 BufferizationAliasInfo &aliasInfo, 807 AnalysisState &state) { 808 // Traverse ops in PostOrder: Nested ops first, then enclosing ops. 809 SmallVector<Operation *> ops; 810 op->walk<WalkOrder::PostOrder>([&](Operation *op) { 811 // No tensors => no buffers. 812 if (none_of(op->getResultTypes(), isaTensor)) 813 return; 814 ops.push_back(op); 815 }); 816 817 equivalenceAnalysis(ops, aliasInfo, state); 818 } 819 820 /// Assert that the current bufferization decisions are consistent. 821 static LogicalResult 822 checkAliasInfoConsistency(Operation *op, const DominanceInfo &domInfo, 823 AnalysisState &state, 824 const BufferizationAliasInfo &aliasInfo) { 825 const BufferizationOptions &options = state.getOptions(); 826 Operation *inconsistentOp = nullptr; 827 WalkResult walkResult = op->walk([&](Operation *op) { 828 if (auto bufferizableOp = options.dynCastBufferizableOp(op)) 829 for (OpOperand &opOperand : op->getOpOperands()) 830 if (opOperand.get().getType().isa<TensorType>()) { 831 if (wouldCreateReadAfterWriteInterference( 832 opOperand, domInfo, state, aliasInfo, 833 /*checkConsistencyOnly=*/true)) { 834 // This error can happen if certain "mustBufferizeInPlace" interface 835 // methods are implemented incorrectly, such that the IR already has 836 // a RaW conflict before making any bufferization decisions. 837 inconsistentOp = op; 838 return WalkResult::interrupt(); 839 } 840 } 841 return WalkResult::advance(); 842 }); 843 844 if (walkResult.wasInterrupted()) 845 return inconsistentOp->emitError("input IR has RaW conflict"); 846 return success(); 847 } 848 849 /// Annotate the IR with the result of the analysis. For testing/debugging only. 850 static void 851 annotateOpsWithBufferizationMarkers(Operation *op, 852 const BufferizationAliasInfo &aliasInfo, 853 AnalysisState &state) { 854 op->walk([&](Operation *op) { 855 if (auto bufferizableOp = state.getOptions().dynCastBufferizableOp(op)) 856 for (OpOperand &opOperand : op->getOpOperands()) 857 if (opOperand.get().getType().isa<TensorType>()) 858 setInPlaceOpOperand(opOperand, aliasInfo.isInPlace(opOperand)); 859 }); 860 } 861 862 /// Assert that IR is in destination-passing style. I.e., every value that is 863 /// returned or yielded from a block is: 864 /// * aliasing a bbArg of that block or a parent block, or 865 /// * aliasing an OpResult of a op in a parent block. 866 /// 867 /// Example: 868 /// ``` 869 /// %0 = "some_op" : tensor<?xf32> 870 /// %1 = scf.if %c -> (tensor<?xf32>) { 871 /// scf.yield %0 : tensor<?xf32> 872 /// } else { 873 /// %t = linalg.alloc_tensor : tensor<?xf32> 874 /// scf.yield %t : tensor<?xf32> 875 /// } 876 /// ``` 877 /// In the above example, the first scf.yield op satifies destination-passing 878 /// style because the yielded value %0 is defined in the parent block. The 879 /// second scf.yield op does not satisfy destination-passing style because the 880 /// yielded value %t is defined in the same block as the scf.yield op. 881 // TODO: The current implementation checks for equivalent values instead of 882 // aliasing values, which is stricter than needed. We can currently not check 883 // for aliasing values because the analysis is a maybe-alias analysis and we 884 // need a must-alias analysis here. 885 static LogicalResult 886 assertDestinationPassingStyle(Operation *op, AnalysisState &state, 887 BufferizationAliasInfo &aliasInfo, 888 SmallVector<Operation *> &newOps) { 889 LogicalResult status = success(); 890 DominanceInfo domInfo(op); 891 op->walk([&](Operation *returnOp) { 892 if (!isRegionReturnLike(returnOp) || 893 !state.getOptions().isOpAllowed(returnOp)) 894 return WalkResult::advance(); 895 896 for (OpOperand &returnValOperand : returnOp->getOpOperands()) { 897 Value returnVal = returnValOperand.get(); 898 // Skip non-tensor values. 899 if (!returnVal.getType().isa<TensorType>()) 900 continue; 901 902 bool foundEquivValue = false; 903 aliasInfo.applyOnEquivalenceClass(returnVal, [&](Value equivVal) { 904 if (auto bbArg = equivVal.dyn_cast<BlockArgument>()) { 905 Operation *definingOp = bbArg.getOwner()->getParentOp(); 906 if (definingOp->isProperAncestor(returnOp)) 907 foundEquivValue = true; 908 return; 909 } 910 911 Operation *definingOp = equivVal.getDefiningOp(); 912 if (definingOp->getBlock()->findAncestorOpInBlock( 913 *returnOp->getParentOp())) 914 // Skip ops that happen after `returnOp` and parent ops. 915 if (happensBefore(definingOp, returnOp, domInfo)) 916 foundEquivValue = true; 917 }); 918 919 if (!foundEquivValue) 920 status = 921 returnOp->emitError() 922 << "operand #" << returnValOperand.getOperandNumber() 923 << " of ReturnLike op does not satisfy destination passing style"; 924 } 925 926 return WalkResult::advance(); 927 }); 928 929 return status; 930 } 931 932 LogicalResult bufferization::analyzeOp(Operation *op, 933 OneShotAnalysisState &state) { 934 DominanceInfo domInfo(op); 935 BufferizationAliasInfo &aliasInfo = state.getAliasInfo(); 936 const auto &options = 937 static_cast<const OneShotBufferizationOptions &>(state.getOptions()); 938 939 // Catch incorrect API usage. 940 assert((state.hasDialectState(func::FuncDialect::getDialectNamespace()) || 941 !options.bufferizeFunctionBoundaries) && 942 "must use ModuleBufferize to bufferize function boundaries"); 943 944 if (failed(checkAliasInfoConsistency(op, domInfo, state, aliasInfo))) 945 return failure(); 946 947 // If the analysis fails, just return. 948 if (failed(inPlaceAnalysis(op, aliasInfo, state, domInfo, 949 options.analysisFuzzerSeed))) 950 return failure(); 951 equivalenceAnalysis(op, aliasInfo, state); 952 953 bool failedAnalysis = false; 954 if (!options.allowReturnAllocs) { 955 SmallVector<Operation *> newOps; 956 failedAnalysis |= 957 failed(assertDestinationPassingStyle(op, state, aliasInfo, newOps)); 958 } 959 960 // Gather some extra analysis data. 961 state.gatherYieldedTensors(op); 962 state.gatherUndefinedTensorUses(op); 963 964 // Analysis verification: After setting up alias/equivalence sets, each op 965 // can check for expected invariants/limitations and fail the analysis if 966 // necessary. 967 op->walk([&](Operation *op) { 968 if (BufferizableOpInterface bufferizableOp = 969 options.dynCastBufferizableOp(op)) 970 failedAnalysis |= failed(bufferizableOp.verifyAnalysis(state)); 971 }); 972 973 // Annotate operations if we only want to report the analysis. 974 if (options.testAnalysisOnly) 975 annotateOpsWithBufferizationMarkers(op, aliasInfo, state); 976 977 return success(!failedAnalysis); 978 } 979 980 LogicalResult 981 bufferization::runOneShotBufferize(Operation *op, 982 const OneShotBufferizationOptions &options) { 983 OneShotAnalysisState state(op, options); 984 if (failed(analyzeOp(op, state))) 985 return failure(); 986 if (options.testAnalysisOnly) 987 return success(); 988 return bufferizeOp(op, state); 989 } 990