1 //===- Bufferize.cpp - Bufferization utilities ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "PassDetail.h" 10 11 #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h" 12 #include "mlir/Dialect/Bufferization/IR/Bufferization.h" 13 #include "mlir/Dialect/Bufferization/Transforms/Bufferize.h" 14 #include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h" 15 #include "mlir/Dialect/Bufferization/Transforms/OneShotModuleBufferize.h" 16 #include "mlir/Dialect/Bufferization/Transforms/Passes.h" 17 #include "mlir/Dialect/Func/IR/FuncOps.h" 18 #include "mlir/Dialect/MemRef/IR/MemRef.h" 19 #include "mlir/IR/Operation.h" 20 #include "mlir/Pass/PassManager.h" 21 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 22 #include "mlir/Transforms/Passes.h" 23 24 using namespace mlir; 25 using namespace mlir::bufferization; 26 27 //===----------------------------------------------------------------------===// 28 // BufferizeTypeConverter 29 //===----------------------------------------------------------------------===// 30 31 static Value materializeToTensor(OpBuilder &builder, TensorType type, 32 ValueRange inputs, Location loc) { 33 assert(inputs.size() == 1); 34 assert(inputs[0].getType().isa<BaseMemRefType>()); 35 return builder.create<bufferization::ToTensorOp>(loc, type, inputs[0]); 36 } 37 38 /// Registers conversions into BufferizeTypeConverter 39 BufferizeTypeConverter::BufferizeTypeConverter() { 40 // Keep all types unchanged. 41 addConversion([](Type type) { return type; }); 42 // Convert RankedTensorType to MemRefType. 43 addConversion([](RankedTensorType type) -> Type { 44 return MemRefType::get(type.getShape(), type.getElementType()); 45 }); 46 // Convert UnrankedTensorType to UnrankedMemRefType. 47 addConversion([](UnrankedTensorType type) -> Type { 48 return UnrankedMemRefType::get(type.getElementType(), 0); 49 }); 50 addArgumentMaterialization(materializeToTensor); 51 addSourceMaterialization(materializeToTensor); 52 addTargetMaterialization([](OpBuilder &builder, BaseMemRefType type, 53 ValueRange inputs, Location loc) -> Value { 54 assert(inputs.size() == 1 && "expected exactly one input"); 55 56 if (auto inputType = inputs[0].getType().dyn_cast<MemRefType>()) { 57 // MemRef to MemRef cast. 58 assert(inputType != type && "expected different types"); 59 // Unranked to ranked and ranked to unranked casts must be explicit. 60 auto rankedDestType = type.dyn_cast<MemRefType>(); 61 if (!rankedDestType) 62 return nullptr; 63 FailureOr<Value> replacement = 64 castOrReallocMemRefValue(builder, inputs[0], rankedDestType); 65 if (failed(replacement)) 66 return nullptr; 67 return *replacement; 68 } 69 70 if (inputs[0].getType().isa<TensorType>()) { 71 // Tensor to MemRef cast. 72 return builder.create<bufferization::ToMemrefOp>(loc, type, inputs[0]); 73 } 74 75 llvm_unreachable("only tensor/memref input types supported"); 76 }); 77 } 78 79 void mlir::bufferization::populateBufferizeMaterializationLegality( 80 ConversionTarget &target) { 81 target.addLegalOp<bufferization::ToTensorOp, bufferization::ToMemrefOp>(); 82 } 83 84 namespace { 85 // In a finalizing bufferize conversion, we know that all tensors have been 86 // converted to memrefs, thus, this op becomes an identity. 87 class BufferizeToTensorOp 88 : public OpConversionPattern<bufferization::ToTensorOp> { 89 public: 90 using OpConversionPattern::OpConversionPattern; 91 LogicalResult 92 matchAndRewrite(bufferization::ToTensorOp op, OpAdaptor adaptor, 93 ConversionPatternRewriter &rewriter) const override { 94 rewriter.replaceOp(op, adaptor.memref()); 95 return success(); 96 } 97 }; 98 } // namespace 99 100 namespace { 101 // In a finalizing bufferize conversion, we know that all tensors have been 102 // converted to memrefs, thus, this op becomes an identity. 103 class BufferizeToMemrefOp 104 : public OpConversionPattern<bufferization::ToMemrefOp> { 105 public: 106 using OpConversionPattern::OpConversionPattern; 107 LogicalResult 108 matchAndRewrite(bufferization::ToMemrefOp op, OpAdaptor adaptor, 109 ConversionPatternRewriter &rewriter) const override { 110 rewriter.replaceOp(op, adaptor.tensor()); 111 return success(); 112 } 113 }; 114 } // namespace 115 116 void mlir::bufferization::populateEliminateBufferizeMaterializationsPatterns( 117 BufferizeTypeConverter &typeConverter, RewritePatternSet &patterns) { 118 patterns.add<BufferizeToTensorOp, BufferizeToMemrefOp>(typeConverter, 119 patterns.getContext()); 120 } 121 122 namespace { 123 struct FinalizingBufferizePass 124 : public FinalizingBufferizeBase<FinalizingBufferizePass> { 125 using FinalizingBufferizeBase< 126 FinalizingBufferizePass>::FinalizingBufferizeBase; 127 128 void runOnOperation() override { 129 auto func = getOperation(); 130 auto *context = &getContext(); 131 132 BufferizeTypeConverter typeConverter; 133 RewritePatternSet patterns(context); 134 ConversionTarget target(*context); 135 136 populateEliminateBufferizeMaterializationsPatterns(typeConverter, patterns); 137 138 // If all result types are legal, and all block arguments are legal (ensured 139 // by func conversion above), then all types in the program are legal. 140 // 141 // We also check that the operand types are legal to avoid creating invalid 142 // IR. For example, this prevents 143 // populateEliminateBufferizeMaterializationsPatterns from updating the 144 // types of the operands to a return op without updating the enclosing 145 // function. 146 target.markUnknownOpDynamicallyLegal( 147 [&](Operation *op) { return typeConverter.isLegal(op); }); 148 149 if (failed(applyFullConversion(func, target, std::move(patterns)))) 150 signalPassFailure(); 151 } 152 }; 153 154 static BufferizationOptions::LayoutMapOption 155 parseLayoutMapOption(const std::string &s) { 156 if (s == "fully-dynamic-layout-map") 157 return BufferizationOptions::LayoutMapOption::FullyDynamicLayoutMap; 158 if (s == "identity-layout-map") 159 return BufferizationOptions::LayoutMapOption::IdentityLayoutMap; 160 if (s == "infer-layout-map") 161 return BufferizationOptions::LayoutMapOption::InferLayoutMap; 162 llvm_unreachable("invalid layout map option"); 163 } 164 165 struct OneShotBufferizePass 166 : public OneShotBufferizeBase<OneShotBufferizePass> { 167 OneShotBufferizePass() : OneShotBufferizeBase<OneShotBufferizePass>() {} 168 169 explicit OneShotBufferizePass(const OneShotBufferizationOptions &options) 170 : options(options) {} 171 172 void getDependentDialects(DialectRegistry ®istry) const override { 173 registry 174 .insert<bufferization::BufferizationDialect, memref::MemRefDialect>(); 175 registerAllocationOpInterfaceExternalModels(registry); 176 } 177 178 void runOnOperation() override { 179 OneShotBufferizationOptions opt; 180 if (!options) { 181 // Make new bufferization options if none were provided when creating the 182 // pass. 183 opt.allowReturnAllocs = allowReturnAllocs; 184 opt.allowUnknownOps = allowUnknownOps; 185 opt.alwaysAliasingWithDest = alwaysAliasingWithDest; 186 opt.analysisFuzzerSeed = analysisFuzzerSeed; 187 opt.createDeallocs = createDeallocs; 188 opt.functionBoundaryTypeConversion = 189 parseLayoutMapOption(functionBoundaryTypeConversion); 190 opt.printConflicts = printConflicts; 191 opt.testAnalysisOnly = testAnalysisOnly; 192 opt.bufferizeFunctionBoundaries = bufferizeFunctionBoundaries; 193 opt.unknownTypeConversion = parseLayoutMapOption(unknownTypeConversion); 194 195 OpFilter::Entry::FilterFn filterFn = 196 [&](Operation *op) { 197 // Filter may be specified via options. 198 if (this->dialectFilter.hasValue()) 199 return llvm::is_contained(this->dialectFilter, 200 op->getDialect()->getNamespace()); 201 // No filter specified: All other ops are allowed. 202 return true; 203 }; 204 opt.opFilter.allowOperation(filterFn); 205 } else { 206 opt = *options; 207 } 208 209 ModuleOp moduleOp = getOperation(); 210 if (opt.bufferizeFunctionBoundaries) { 211 if (failed(runOneShotModuleBufferize(moduleOp, opt))) { 212 signalPassFailure(); 213 return; 214 } 215 } else { 216 if (failed(runOneShotBufferize(moduleOp, opt))) { 217 signalPassFailure(); 218 return; 219 } 220 } 221 222 if (opt.testAnalysisOnly) 223 return; 224 225 OpPassManager cleanupPipeline("builtin.module"); 226 cleanupPipeline.addPass(createCanonicalizerPass()); 227 cleanupPipeline.addPass(createCSEPass()); 228 cleanupPipeline.addPass(createLoopInvariantCodeMotionPass()); 229 (void)runPipeline(cleanupPipeline, moduleOp); 230 } 231 232 private: 233 llvm::Optional<OneShotBufferizationOptions> options; 234 }; 235 } // namespace 236 237 namespace { 238 struct BufferizationBufferizePass 239 : public BufferizationBufferizeBase<BufferizationBufferizePass> { 240 void runOnOperation() override { 241 BufferizationOptions options = getPartialBufferizationOptions(); 242 options.opFilter.allowDialect<BufferizationDialect>(); 243 244 if (failed(bufferizeOp(getOperation(), options))) 245 signalPassFailure(); 246 } 247 248 void getDependentDialects(DialectRegistry ®istry) const override { 249 registry 250 .insert<bufferization::BufferizationDialect, memref::MemRefDialect>(); 251 } 252 }; 253 } // namespace 254 255 std::unique_ptr<Pass> mlir::bufferization::createBufferizationBufferizePass() { 256 return std::make_unique<BufferizationBufferizePass>(); 257 } 258 259 std::unique_ptr<Pass> mlir::bufferization::createOneShotBufferizePass() { 260 return std::make_unique<OneShotBufferizePass>(); 261 } 262 263 std::unique_ptr<Pass> mlir::bufferization::createOneShotBufferizePass( 264 const OneShotBufferizationOptions &options) { 265 return std::make_unique<OneShotBufferizePass>(options); 266 } 267 268 std::unique_ptr<OperationPass<func::FuncOp>> 269 mlir::bufferization::createFinalizingBufferizePass() { 270 return std::make_unique<FinalizingBufferizePass>(); 271 } 272 273 //===----------------------------------------------------------------------===// 274 // BufferizableOpInterface-based Bufferization 275 //===----------------------------------------------------------------------===// 276 277 static bool isaTensor(Type t) { return t.isa<TensorType>(); } 278 279 /// Return true if the given op has a tensor result or a tensor operand. 280 static bool hasTensorSemantics(Operation *op) { 281 if (auto funcOp = dyn_cast<FunctionOpInterface>(op)) { 282 bool hasTensorArg = any_of(funcOp.getArgumentTypes(), isaTensor); 283 bool hasTensorResult = any_of(funcOp.getResultTypes(), isaTensor); 284 return hasTensorArg || hasTensorResult; 285 } 286 287 bool hasTensorResult = any_of(op->getResultTypes(), isaTensor); 288 bool hasTensorOperand = any_of(op->getOperandTypes(), isaTensor); 289 return hasTensorResult || hasTensorOperand; 290 } 291 292 LogicalResult bufferization::bufferizeOp(Operation *op, 293 const AnalysisState &analysisState) { 294 // Catch incorrect API usage. 295 assert((analysisState.hasDialectState( 296 func::FuncDialect::getDialectNamespace()) || 297 !analysisState.getOptions().bufferizeFunctionBoundaries) && 298 "must use ModuleBufferize to bufferize function boundaries"); 299 300 BufferizationState bufferizationState(analysisState); 301 if (failed(bufferizeOp(op, bufferizationState))) 302 return failure(); 303 return success(); 304 } 305 306 namespace { 307 /// A rewriter that keeps track of extra information during bufferization. 308 class BufferizationRewriter : public IRRewriter { 309 public: 310 BufferizationRewriter(MLIRContext *ctx, DenseSet<Operation *> &erasedOps, 311 DenseSet<Operation *> &toMemrefOps, 312 const BufferizationOptions &options, 313 const OpFilter *opFilter) 314 : IRRewriter(ctx), erasedOps(erasedOps), toMemrefOps(toMemrefOps), 315 options(options), opFilter(opFilter) {} 316 317 protected: 318 void notifyOperationRemoved(Operation *op) override { 319 IRRewriter::notifyOperationRemoved(op); 320 erasedOps.insert(op); 321 // Erase if present. 322 toMemrefOps.erase(op); 323 } 324 325 void notifyOperationInserted(Operation *op) override { 326 IRRewriter::notifyOperationInserted(op); 327 328 // Keep track of to_memref ops. 329 if (isa<ToMemrefOp>(op)) { 330 toMemrefOps.insert(op); 331 return; 332 } 333 334 // Skip to_tensor ops. 335 if (isa<ToTensorOp>(op)) 336 return; 337 338 // Skip non-tensor ops. 339 if (!hasTensorSemantics(op)) 340 return; 341 342 // Skip ops that are not allowed. 343 if (!options.isOpAllowed(op) || (opFilter && !opFilter->isOpAllowed(op))) 344 return; 345 346 // Adding new bufferizable ops is not allowed during bufferization. Such ops 347 // would not be analyzed and can lead to surprising behavior. 348 llvm_unreachable( 349 "creating new tensor ops is not allowed during bufferization"); 350 } 351 352 private: 353 /// A set of all erased ops. 354 DenseSet<Operation *> &erasedOps; 355 356 /// A set of all to_memref ops. 357 DenseSet<Operation *> &toMemrefOps; 358 359 /// The bufferization options. 360 /// Used for debug modes. 361 LLVM_ATTRIBUTE_UNUSED 362 const BufferizationOptions &options; 363 364 const OpFilter *opFilter; 365 }; 366 } // namespace 367 368 LogicalResult bufferization::bufferizeOp(Operation *op, 369 BufferizationState &bufferizationState, 370 const OpFilter *opFilter) { 371 const auto &options = bufferizationState.getOptions(); 372 assert(options.unknownTypeConversion != 373 BufferizationOptions::LayoutMapOption::InferLayoutMap && 374 "invalid layout map option"); 375 376 // Keep track of to_memref ops. 377 DenseSet<Operation *> toMemrefOps; 378 op->walk([&](ToMemrefOp toMemrefOp) { toMemrefOps.insert(toMemrefOp); }); 379 380 // Gather all bufferizable ops in top-to-bottom order. 381 // 382 // We should ideally know the exact memref type of all operands when 383 // bufferizing an op. (This is the case when bufferizing top-to-bottom.) 384 // Otherwise, we have to use a memref type with a fully dynamic layout map to 385 // avoid copies. We are currently missing patterns for layout maps to 386 // canonicalize away (or canonicalize to more precise layouts). 387 SmallVector<Operation *> worklist; 388 op->walk<WalkOrder::PreOrder>([&](Operation *op) { 389 if (hasTensorSemantics(op)) 390 worklist.push_back(op); 391 }); 392 393 // Keep track of all erased ops. 394 DenseSet<Operation *> erasedOps; 395 396 // Bufferize all ops. 397 BufferizationRewriter rewriter(op->getContext(), erasedOps, toMemrefOps, 398 bufferizationState.getOptions(), opFilter); 399 for (unsigned i = 0; i < worklist.size(); ++i) { 400 Operation *op = worklist[i]; 401 // Skip ops that were erased. 402 if (erasedOps.contains(op)) 403 continue; 404 // Skip ops that are not bufferizable or not allowed. 405 auto bufferizableOp = options.dynCastBufferizableOp(op); 406 if (!bufferizableOp) 407 continue; 408 if (opFilter && !opFilter->isOpAllowed(op)) 409 continue; 410 // Skip ops that no longer have tensor semantics. 411 if (!hasTensorSemantics(op)) 412 continue; 413 // Bufferize the op. 414 rewriter.setInsertionPoint(op); 415 if (failed(bufferizableOp.bufferize(rewriter, bufferizationState))) 416 return op->emitError("failed to bufferize op"); 417 } 418 419 // Fold all to_memref(to_tensor(x)) pairs. 420 for (Operation *op : toMemrefOps) { 421 rewriter.setInsertionPoint(op); 422 (void)bufferization::foldToMemrefToTensorPair(rewriter, 423 cast<ToMemrefOp>(op)); 424 } 425 426 /// Check the result of bufferization. Return an error if an op was not 427 /// bufferized, unless partial bufferization is allowed. 428 if (bufferizationState.getOptions().allowUnknownOps) 429 return success(); 430 431 for (Operation *op : worklist) { 432 // Skip ops that are entirely gone. 433 if (erasedOps.contains(op)) 434 continue; 435 // Ops that no longer have tensor semantics (because they were updated 436 // in-place) are allowed. 437 if (!hasTensorSemantics(op)) 438 continue; 439 // Continue ops that are not allowed. 440 if (!options.isOpAllowed(op)) 441 continue; 442 if (opFilter && !opFilter->isOpAllowed(op)) 443 continue; 444 // Ops without any uses and no side effects will fold away. 445 if (op->getUses().empty() && MemoryEffectOpInterface::hasNoEffect(op)) 446 continue; 447 return op->emitError("op was not bufferized"); 448 } 449 450 return success(); 451 } 452 453 namespace { 454 /// This a "no analysis, always copy" AnalysisState. In the absence of an 455 /// analysis, a buffer must be copied each time it is written to. Therefore, all 456 /// OpOperands that bufferize to a memory write must bufferize out-of-place. 457 class AlwaysCopyAnalysisState : public AnalysisState { 458 public: 459 AlwaysCopyAnalysisState(const BufferizationOptions &options) 460 : AnalysisState(options) { 461 // Note: Allocations must be deallocated with a subsequent run of the buffer 462 // deallocation pass. 463 assert(!options.createDeallocs && 464 "cannot create deallocs with AlwaysCopyBufferizationState"); 465 } 466 467 AlwaysCopyAnalysisState(const AlwaysCopyAnalysisState &) = delete; 468 469 virtual ~AlwaysCopyAnalysisState() = default; 470 471 /// Return `true` if the given OpResult has been decided to bufferize inplace. 472 bool isInPlace(OpOperand &opOperand) const override { 473 // OpOperands that bufferize to a memory write are out-of-place, i.e., an 474 // alloc and copy is inserted. 475 return !bufferizesToMemoryWrite(opOperand); 476 } 477 478 /// Return true if `v1` and `v2` bufferize to equivalent buffers. 479 bool areEquivalentBufferizedValues(Value v1, Value v2) const override { 480 // There is no analysis, so we do not know if the values are equivalent. The 481 // conservative answer is "false". 482 return false; 483 } 484 485 /// Return true if `v1` and `v2` may bufferize to aliasing buffers. 486 bool areAliasingBufferizedValues(Value v1, Value v2) const override { 487 // There is no analysis, so we do not know if the values are equivalent. The 488 // conservative answer is "true". 489 return true; 490 } 491 492 /// Return `true` if the given tensor has undefined contents. 493 bool hasUndefinedContents(OpOperand *opOperand) const override { 494 // There is no analysis, so the conservative answer is "false". 495 return false; 496 } 497 498 /// Return true if the given tensor (or an aliasing tensor) is yielded from 499 /// the containing block. Also include all aliasing tensors in the same block. 500 bool isTensorYielded(Value tensor) const override { 501 // There is no analysis, so conservatively answer "true". 502 return true; 503 } 504 }; 505 } // namespace 506 507 LogicalResult bufferization::bufferizeOp(Operation *op, 508 const BufferizationOptions &options) { 509 AlwaysCopyAnalysisState state(options); 510 return bufferizeOp(op, state); 511 } 512 513 BufferizationOptions bufferization::getPartialBufferizationOptions() { 514 BufferizationOptions options; 515 options.allowUnknownOps = true; 516 options.createDeallocs = false; 517 options.unknownTypeConversion = 518 BufferizationOptions::LayoutMapOption::IdentityLayoutMap; 519 return options; 520 } 521