1 //===- Bufferize.cpp - Bufferization utilities ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "PassDetail.h"
10 
11 #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
12 #include "mlir/Dialect/Bufferization/IR/Bufferization.h"
13 #include "mlir/Dialect/Bufferization/Transforms/Bufferize.h"
14 #include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h"
15 #include "mlir/Dialect/Bufferization/Transforms/OneShotModuleBufferize.h"
16 #include "mlir/Dialect/Bufferization/Transforms/Passes.h"
17 #include "mlir/Dialect/Func/IR/FuncOps.h"
18 #include "mlir/Dialect/MemRef/IR/MemRef.h"
19 #include "mlir/IR/Operation.h"
20 #include "mlir/Pass/PassManager.h"
21 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
22 #include "mlir/Transforms/Passes.h"
23 
24 using namespace mlir;
25 using namespace mlir::bufferization;
26 
27 //===----------------------------------------------------------------------===//
28 // BufferizeTypeConverter
29 //===----------------------------------------------------------------------===//
30 
31 static Value materializeToTensor(OpBuilder &builder, TensorType type,
32                                  ValueRange inputs, Location loc) {
33   assert(inputs.size() == 1);
34   assert(inputs[0].getType().isa<BaseMemRefType>());
35   return builder.create<bufferization::ToTensorOp>(loc, type, inputs[0]);
36 }
37 
38 /// Registers conversions into BufferizeTypeConverter
39 BufferizeTypeConverter::BufferizeTypeConverter() {
40   // Keep all types unchanged.
41   addConversion([](Type type) { return type; });
42   // Convert RankedTensorType to MemRefType.
43   addConversion([](RankedTensorType type) -> Type {
44     return MemRefType::get(type.getShape(), type.getElementType());
45   });
46   // Convert UnrankedTensorType to UnrankedMemRefType.
47   addConversion([](UnrankedTensorType type) -> Type {
48     return UnrankedMemRefType::get(type.getElementType(), 0);
49   });
50   addArgumentMaterialization(materializeToTensor);
51   addSourceMaterialization(materializeToTensor);
52   addTargetMaterialization([](OpBuilder &builder, BaseMemRefType type,
53                               ValueRange inputs, Location loc) -> Value {
54     assert(inputs.size() == 1 && "expected exactly one input");
55 
56     if (auto inputType = inputs[0].getType().dyn_cast<MemRefType>()) {
57       // MemRef to MemRef cast.
58       assert(inputType != type && "expected different types");
59       // Unranked to ranked and ranked to unranked casts must be explicit.
60       auto rankedDestType = type.dyn_cast<MemRefType>();
61       if (!rankedDestType)
62         return nullptr;
63       FailureOr<Value> replacement =
64           castOrReallocMemRefValue(builder, inputs[0], rankedDestType);
65       if (failed(replacement))
66         return nullptr;
67       return *replacement;
68     }
69 
70     if (inputs[0].getType().isa<TensorType>()) {
71       // Tensor to MemRef cast.
72       return builder.create<bufferization::ToMemrefOp>(loc, type, inputs[0]);
73     }
74 
75     llvm_unreachable("only tensor/memref input types supported");
76   });
77 }
78 
79 void mlir::bufferization::populateBufferizeMaterializationLegality(
80     ConversionTarget &target) {
81   target.addLegalOp<bufferization::ToTensorOp, bufferization::ToMemrefOp>();
82 }
83 
84 namespace {
85 // In a finalizing bufferize conversion, we know that all tensors have been
86 // converted to memrefs, thus, this op becomes an identity.
87 class BufferizeToTensorOp
88     : public OpConversionPattern<bufferization::ToTensorOp> {
89 public:
90   using OpConversionPattern::OpConversionPattern;
91   LogicalResult
92   matchAndRewrite(bufferization::ToTensorOp op, OpAdaptor adaptor,
93                   ConversionPatternRewriter &rewriter) const override {
94     rewriter.replaceOp(op, adaptor.memref());
95     return success();
96   }
97 };
98 } // namespace
99 
100 namespace {
101 // In a finalizing bufferize conversion, we know that all tensors have been
102 // converted to memrefs, thus, this op becomes an identity.
103 class BufferizeToMemrefOp
104     : public OpConversionPattern<bufferization::ToMemrefOp> {
105 public:
106   using OpConversionPattern::OpConversionPattern;
107   LogicalResult
108   matchAndRewrite(bufferization::ToMemrefOp op, OpAdaptor adaptor,
109                   ConversionPatternRewriter &rewriter) const override {
110     rewriter.replaceOp(op, adaptor.tensor());
111     return success();
112   }
113 };
114 } // namespace
115 
116 void mlir::bufferization::populateEliminateBufferizeMaterializationsPatterns(
117     BufferizeTypeConverter &typeConverter, RewritePatternSet &patterns) {
118   patterns.add<BufferizeToTensorOp, BufferizeToMemrefOp>(typeConverter,
119                                                          patterns.getContext());
120 }
121 
122 namespace {
123 struct FinalizingBufferizePass
124     : public FinalizingBufferizeBase<FinalizingBufferizePass> {
125   using FinalizingBufferizeBase<
126       FinalizingBufferizePass>::FinalizingBufferizeBase;
127 
128   void runOnOperation() override {
129     auto func = getOperation();
130     auto *context = &getContext();
131 
132     BufferizeTypeConverter typeConverter;
133     RewritePatternSet patterns(context);
134     ConversionTarget target(*context);
135 
136     populateEliminateBufferizeMaterializationsPatterns(typeConverter, patterns);
137 
138     // If all result types are legal, and all block arguments are legal (ensured
139     // by func conversion above), then all types in the program are legal.
140     //
141     // We also check that the operand types are legal to avoid creating invalid
142     // IR. For example, this prevents
143     // populateEliminateBufferizeMaterializationsPatterns from updating the
144     // types of the operands to a return op without updating the enclosing
145     // function.
146     target.markUnknownOpDynamicallyLegal(
147         [&](Operation *op) { return typeConverter.isLegal(op); });
148 
149     if (failed(applyFullConversion(func, target, std::move(patterns))))
150       signalPassFailure();
151   }
152 };
153 
154 static BufferizationOptions::LayoutMapOption
155 parseLayoutMapOption(const std::string &s) {
156   if (s == "fully-dynamic-layout-map")
157     return BufferizationOptions::LayoutMapOption::FullyDynamicLayoutMap;
158   if (s == "identity-layout-map")
159     return BufferizationOptions::LayoutMapOption::IdentityLayoutMap;
160   if (s == "infer-layout-map")
161     return BufferizationOptions::LayoutMapOption::InferLayoutMap;
162   llvm_unreachable("invalid layout map option");
163 }
164 
165 struct OneShotBufferizePass
166     : public OneShotBufferizeBase<OneShotBufferizePass> {
167   OneShotBufferizePass() : OneShotBufferizeBase<OneShotBufferizePass>() {}
168 
169   explicit OneShotBufferizePass(const OneShotBufferizationOptions &options)
170       : options(options) {}
171 
172   void getDependentDialects(DialectRegistry &registry) const override {
173     registry
174         .insert<bufferization::BufferizationDialect, memref::MemRefDialect>();
175     registerAllocationOpInterfaceExternalModels(registry);
176   }
177 
178   void runOnOperation() override {
179     OneShotBufferizationOptions opt;
180     if (!options) {
181       // Make new bufferization options if none were provided when creating the
182       // pass.
183       opt.dropEquivalentFuncResults = dropEquivalentFuncResults;
184       opt.allowReturnAllocs = allowReturnAllocs;
185       opt.allowUnknownOps = allowUnknownOps;
186       opt.alwaysAliasingWithDest = alwaysAliasingWithDest;
187       opt.analysisFuzzerSeed = analysisFuzzerSeed;
188       opt.createDeallocs = createDeallocs;
189       opt.functionBoundaryTypeConversion =
190           parseLayoutMapOption(functionBoundaryTypeConversion);
191       opt.printConflicts = printConflicts;
192       opt.testAnalysisOnly = testAnalysisOnly;
193       opt.bufferizeFunctionBoundaries = bufferizeFunctionBoundaries;
194       opt.unknownTypeConversion = parseLayoutMapOption(unknownTypeConversion);
195 
196       OpFilter::Entry::FilterFn filterFn =
197           [&](Operation *op) {
198             // Filter may be specified via options.
199             if (this->dialectFilter.hasValue())
200               return llvm::is_contained(this->dialectFilter,
201                                         op->getDialect()->getNamespace());
202             // No filter specified: All other ops are allowed.
203             return true;
204           };
205       opt.opFilter.allowOperation(filterFn);
206     } else {
207       opt = *options;
208     }
209 
210     ModuleOp moduleOp = getOperation();
211     if (opt.bufferizeFunctionBoundaries) {
212       if (failed(runOneShotModuleBufferize(moduleOp, opt))) {
213         signalPassFailure();
214         return;
215       }
216     } else {
217       if (failed(runOneShotBufferize(moduleOp, opt))) {
218         signalPassFailure();
219         return;
220       }
221     }
222 
223     if (opt.testAnalysisOnly)
224       return;
225 
226     OpPassManager cleanupPipeline("builtin.module");
227     cleanupPipeline.addPass(createCanonicalizerPass());
228     cleanupPipeline.addPass(createCSEPass());
229     cleanupPipeline.addPass(createLoopInvariantCodeMotionPass());
230     (void)runPipeline(cleanupPipeline, moduleOp);
231   }
232 
233 private:
234   llvm::Optional<OneShotBufferizationOptions> options;
235 };
236 } // namespace
237 
238 namespace {
239 struct BufferizationBufferizePass
240     : public BufferizationBufferizeBase<BufferizationBufferizePass> {
241   void runOnOperation() override {
242     BufferizationOptions options = getPartialBufferizationOptions();
243     options.opFilter.allowDialect<BufferizationDialect>();
244 
245     if (failed(bufferizeOp(getOperation(), options)))
246       signalPassFailure();
247   }
248 
249   void getDependentDialects(DialectRegistry &registry) const override {
250     registry
251         .insert<bufferization::BufferizationDialect, memref::MemRefDialect>();
252   }
253 };
254 } // namespace
255 
256 std::unique_ptr<Pass> mlir::bufferization::createBufferizationBufferizePass() {
257   return std::make_unique<BufferizationBufferizePass>();
258 }
259 
260 std::unique_ptr<Pass> mlir::bufferization::createOneShotBufferizePass() {
261   return std::make_unique<OneShotBufferizePass>();
262 }
263 
264 std::unique_ptr<Pass> mlir::bufferization::createOneShotBufferizePass(
265     const OneShotBufferizationOptions &options) {
266   return std::make_unique<OneShotBufferizePass>(options);
267 }
268 
269 std::unique_ptr<OperationPass<func::FuncOp>>
270 mlir::bufferization::createFinalizingBufferizePass() {
271   return std::make_unique<FinalizingBufferizePass>();
272 }
273 
274 //===----------------------------------------------------------------------===//
275 // BufferizableOpInterface-based Bufferization
276 //===----------------------------------------------------------------------===//
277 
278 static bool isaTensor(Type t) { return t.isa<TensorType>(); }
279 
280 /// Return true if the given op has a tensor result or a tensor operand.
281 static bool hasTensorSemantics(Operation *op) {
282   if (auto funcOp = dyn_cast<FunctionOpInterface>(op)) {
283     bool hasTensorArg = any_of(funcOp.getArgumentTypes(), isaTensor);
284     bool hasTensorResult = any_of(funcOp.getResultTypes(), isaTensor);
285     return hasTensorArg || hasTensorResult;
286   }
287 
288   bool hasTensorResult = any_of(op->getResultTypes(), isaTensor);
289   bool hasTensorOperand = any_of(op->getOperandTypes(), isaTensor);
290   return hasTensorResult || hasTensorOperand;
291 }
292 
293 LogicalResult bufferization::bufferizeOp(Operation *op,
294                                          const AnalysisState &analysisState) {
295   // Catch incorrect API usage.
296   assert((analysisState.hasDialectState(
297               func::FuncDialect::getDialectNamespace()) ||
298           !analysisState.getOptions().bufferizeFunctionBoundaries) &&
299          "must use ModuleBufferize to bufferize function boundaries");
300 
301   BufferizationState bufferizationState(analysisState);
302   if (failed(bufferizeOp(op, bufferizationState)))
303     return failure();
304   return success();
305 }
306 
307 namespace {
308 /// A rewriter that keeps track of extra information during bufferization.
309 class BufferizationRewriter : public IRRewriter {
310 public:
311   BufferizationRewriter(MLIRContext *ctx, DenseSet<Operation *> &erasedOps,
312                         DenseSet<Operation *> &toMemrefOps,
313                         const BufferizationOptions &options,
314                         const OpFilter *opFilter)
315       : IRRewriter(ctx), erasedOps(erasedOps), toMemrefOps(toMemrefOps),
316         options(options), opFilter(opFilter) {}
317 
318 protected:
319   void notifyOperationRemoved(Operation *op) override {
320     IRRewriter::notifyOperationRemoved(op);
321     erasedOps.insert(op);
322     // Erase if present.
323     toMemrefOps.erase(op);
324   }
325 
326   void notifyOperationInserted(Operation *op) override {
327     IRRewriter::notifyOperationInserted(op);
328 
329     // Keep track of to_memref ops.
330     if (isa<ToMemrefOp>(op)) {
331       toMemrefOps.insert(op);
332       return;
333     }
334 
335     // Skip to_tensor ops.
336     if (isa<ToTensorOp>(op))
337       return;
338 
339     // Skip non-tensor ops.
340     if (!hasTensorSemantics(op))
341       return;
342 
343     // Skip ops that are not allowed.
344     if (!options.isOpAllowed(op) || (opFilter && !opFilter->isOpAllowed(op)))
345       return;
346 
347     // Adding new bufferizable ops is not allowed during bufferization. Such ops
348     // would not be analyzed and can lead to surprising behavior.
349     llvm_unreachable(
350         "creating new tensor ops is not allowed during bufferization");
351   }
352 
353 private:
354   /// A set of all erased ops.
355   DenseSet<Operation *> &erasedOps;
356 
357   /// A set of all to_memref ops.
358   DenseSet<Operation *> &toMemrefOps;
359 
360   /// The bufferization options.
361   /// Used for debug modes.
362   LLVM_ATTRIBUTE_UNUSED
363   const BufferizationOptions &options;
364 
365   const OpFilter *opFilter;
366 };
367 } // namespace
368 
369 LogicalResult bufferization::bufferizeOp(Operation *op,
370                                          BufferizationState &bufferizationState,
371                                          const OpFilter *opFilter) {
372   const auto &options = bufferizationState.getOptions();
373   assert(options.unknownTypeConversion !=
374              BufferizationOptions::LayoutMapOption::InferLayoutMap &&
375          "invalid layout map option");
376 
377   // Keep track of to_memref ops.
378   DenseSet<Operation *> toMemrefOps;
379   op->walk([&](ToMemrefOp toMemrefOp) { toMemrefOps.insert(toMemrefOp); });
380 
381   // Gather all bufferizable ops in top-to-bottom order.
382   //
383   // We should ideally know the exact memref type of all operands when
384   // bufferizing an op. (This is the case when bufferizing top-to-bottom.)
385   // Otherwise, we have to use a memref type with a fully dynamic layout map to
386   // avoid copies. We are currently missing patterns for layout maps to
387   // canonicalize away (or canonicalize to more precise layouts).
388   SmallVector<Operation *> worklist;
389   op->walk<WalkOrder::PreOrder>([&](Operation *op) {
390     if (hasTensorSemantics(op))
391       worklist.push_back(op);
392   });
393 
394   // Keep track of all erased ops.
395   DenseSet<Operation *> erasedOps;
396 
397   // Bufferize all ops.
398   BufferizationRewriter rewriter(op->getContext(), erasedOps, toMemrefOps,
399                                  bufferizationState.getOptions(), opFilter);
400   for (unsigned i = 0; i < worklist.size(); ++i) {
401     Operation *op = worklist[i];
402     // Skip ops that were erased.
403     if (erasedOps.contains(op))
404       continue;
405     // Skip ops that are not bufferizable or not allowed.
406     auto bufferizableOp = options.dynCastBufferizableOp(op);
407     if (!bufferizableOp)
408       continue;
409     if (opFilter && !opFilter->isOpAllowed(op))
410       continue;
411     // Skip ops that no longer have tensor semantics.
412     if (!hasTensorSemantics(op))
413       continue;
414     // Bufferize the op.
415     rewriter.setInsertionPoint(op);
416     if (failed(bufferizableOp.bufferize(rewriter, bufferizationState)))
417       return op->emitError("failed to bufferize op");
418   }
419 
420   // Fold all to_memref(to_tensor(x)) pairs.
421   for (Operation *op : toMemrefOps) {
422     rewriter.setInsertionPoint(op);
423     (void)bufferization::foldToMemrefToTensorPair(rewriter,
424                                                   cast<ToMemrefOp>(op));
425   }
426 
427   /// Check the result of bufferization. Return an error if an op was not
428   /// bufferized, unless partial bufferization is allowed.
429   if (bufferizationState.getOptions().allowUnknownOps)
430     return success();
431 
432   for (Operation *op : worklist) {
433     // Skip ops that are entirely gone.
434     if (erasedOps.contains(op))
435       continue;
436     // Ops that no longer have tensor semantics (because they were updated
437     // in-place) are allowed.
438     if (!hasTensorSemantics(op))
439       continue;
440     // Continue ops that are not allowed.
441     if (!options.isOpAllowed(op))
442       continue;
443     if (opFilter && !opFilter->isOpAllowed(op))
444       continue;
445     // Ops without any uses and no side effects will fold away.
446     if (op->getUses().empty() && MemoryEffectOpInterface::hasNoEffect(op))
447       continue;
448     return op->emitError("op was not bufferized");
449   }
450 
451   return success();
452 }
453 
454 namespace {
455 /// This a "no analysis, always copy" AnalysisState. In the absence of an
456 /// analysis, a buffer must be copied each time it is written to. Therefore, all
457 /// OpOperands that bufferize to a memory write must bufferize out-of-place.
458 class AlwaysCopyAnalysisState : public AnalysisState {
459 public:
460   AlwaysCopyAnalysisState(const BufferizationOptions &options)
461       : AnalysisState(options) {
462     // Note: Allocations must be deallocated with a subsequent run of the buffer
463     // deallocation pass.
464     assert(!options.createDeallocs &&
465            "cannot create deallocs with AlwaysCopyBufferizationState");
466   }
467 
468   AlwaysCopyAnalysisState(const AlwaysCopyAnalysisState &) = delete;
469 
470   virtual ~AlwaysCopyAnalysisState() = default;
471 
472   /// Return `true` if the given OpResult has been decided to bufferize inplace.
473   bool isInPlace(OpOperand &opOperand) const override {
474     // OpOperands that bufferize to a memory write are out-of-place, i.e., an
475     // alloc and copy is inserted.
476     return !bufferizesToMemoryWrite(opOperand);
477   }
478 
479   /// Return true if `v1` and `v2` bufferize to equivalent buffers.
480   bool areEquivalentBufferizedValues(Value v1, Value v2) const override {
481     // There is no analysis, so we do not know if the values are equivalent. The
482     // conservative answer is "false".
483     return false;
484   }
485 
486   /// Return true if `v1` and `v2` may bufferize to aliasing buffers.
487   bool areAliasingBufferizedValues(Value v1, Value v2) const override {
488     // There is no analysis, so we do not know if the values are equivalent. The
489     // conservative answer is "true".
490     return true;
491   }
492 
493   /// Return `true` if the given tensor has undefined contents.
494   bool hasUndefinedContents(OpOperand *opOperand) const override {
495     // There is no analysis, so the conservative answer is "false".
496     return false;
497   }
498 
499   /// Return true if the given tensor (or an aliasing tensor) is yielded from
500   /// the containing block. Also include all aliasing tensors in the same block.
501   bool isTensorYielded(Value tensor) const override {
502     // There is no analysis, so conservatively answer "true".
503     return true;
504   }
505 };
506 } // namespace
507 
508 LogicalResult bufferization::bufferizeOp(Operation *op,
509                                          const BufferizationOptions &options) {
510   AlwaysCopyAnalysisState state(options);
511   return bufferizeOp(op, state);
512 }
513 
514 BufferizationOptions bufferization::getPartialBufferizationOptions() {
515   BufferizationOptions options;
516   options.allowUnknownOps = true;
517   options.createDeallocs = false;
518   options.unknownTypeConversion =
519       BufferizationOptions::LayoutMapOption::IdentityLayoutMap;
520   return options;
521 }
522