1 //===- Bufferize.cpp - Bufferization utilities ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "PassDetail.h"
10 
11 #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
12 #include "mlir/Dialect/Bufferization/IR/Bufferization.h"
13 #include "mlir/Dialect/Bufferization/Transforms/Bufferize.h"
14 #include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h"
15 #include "mlir/Dialect/Bufferization/Transforms/OneShotModuleBufferize.h"
16 #include "mlir/Dialect/Bufferization/Transforms/Passes.h"
17 #include "mlir/Dialect/Func/IR/FuncOps.h"
18 #include "mlir/Dialect/MemRef/IR/MemRef.h"
19 #include "mlir/IR/Operation.h"
20 #include "mlir/Pass/PassManager.h"
21 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
22 #include "mlir/Transforms/Passes.h"
23 
24 using namespace mlir;
25 using namespace mlir::bufferization;
26 
27 //===----------------------------------------------------------------------===//
28 // BufferizeTypeConverter
29 //===----------------------------------------------------------------------===//
30 
31 static Value materializeToTensor(OpBuilder &builder, TensorType type,
32                                  ValueRange inputs, Location loc) {
33   assert(inputs.size() == 1);
34   assert(inputs[0].getType().isa<BaseMemRefType>());
35   return builder.create<bufferization::ToTensorOp>(loc, type, inputs[0]);
36 }
37 
38 /// Registers conversions into BufferizeTypeConverter
39 BufferizeTypeConverter::BufferizeTypeConverter() {
40   // Keep all types unchanged.
41   addConversion([](Type type) { return type; });
42   // Convert RankedTensorType to MemRefType.
43   addConversion([](RankedTensorType type) -> Type {
44     return MemRefType::get(type.getShape(), type.getElementType());
45   });
46   // Convert UnrankedTensorType to UnrankedMemRefType.
47   addConversion([](UnrankedTensorType type) -> Type {
48     return UnrankedMemRefType::get(type.getElementType(), 0);
49   });
50   addArgumentMaterialization(materializeToTensor);
51   addSourceMaterialization(materializeToTensor);
52   addTargetMaterialization([](OpBuilder &builder, BaseMemRefType type,
53                               ValueRange inputs, Location loc) -> Value {
54     assert(inputs.size() == 1 && "expected exactly one input");
55 
56     if (auto inputType = inputs[0].getType().dyn_cast<MemRefType>()) {
57       // MemRef to MemRef cast.
58       assert(inputType != type && "expected different types");
59       // Unranked to ranked and ranked to unranked casts must be explicit.
60       auto rankedDestType = type.dyn_cast<MemRefType>();
61       if (!rankedDestType)
62         return nullptr;
63       FailureOr<Value> replacement =
64           castOrReallocMemRefValue(builder, inputs[0], rankedDestType);
65       if (failed(replacement))
66         return nullptr;
67       return *replacement;
68     }
69 
70     if (inputs[0].getType().isa<TensorType>()) {
71       // Tensor to MemRef cast.
72       return builder.create<bufferization::ToMemrefOp>(loc, type, inputs[0]);
73     }
74 
75     llvm_unreachable("only tensor/memref input types supported");
76   });
77 }
78 
79 void mlir::bufferization::populateBufferizeMaterializationLegality(
80     ConversionTarget &target) {
81   target.addLegalOp<bufferization::ToTensorOp, bufferization::ToMemrefOp>();
82 }
83 
84 namespace {
85 // In a finalizing bufferize conversion, we know that all tensors have been
86 // converted to memrefs, thus, this op becomes an identity.
87 class BufferizeToTensorOp
88     : public OpConversionPattern<bufferization::ToTensorOp> {
89 public:
90   using OpConversionPattern::OpConversionPattern;
91   LogicalResult
92   matchAndRewrite(bufferization::ToTensorOp op, OpAdaptor adaptor,
93                   ConversionPatternRewriter &rewriter) const override {
94     rewriter.replaceOp(op, adaptor.memref());
95     return success();
96   }
97 };
98 } // namespace
99 
100 namespace {
101 // In a finalizing bufferize conversion, we know that all tensors have been
102 // converted to memrefs, thus, this op becomes an identity.
103 class BufferizeToMemrefOp
104     : public OpConversionPattern<bufferization::ToMemrefOp> {
105 public:
106   using OpConversionPattern::OpConversionPattern;
107   LogicalResult
108   matchAndRewrite(bufferization::ToMemrefOp op, OpAdaptor adaptor,
109                   ConversionPatternRewriter &rewriter) const override {
110     rewriter.replaceOp(op, adaptor.tensor());
111     return success();
112   }
113 };
114 } // namespace
115 
116 void mlir::bufferization::populateEliminateBufferizeMaterializationsPatterns(
117     BufferizeTypeConverter &typeConverter, RewritePatternSet &patterns) {
118   patterns.add<BufferizeToTensorOp, BufferizeToMemrefOp>(typeConverter,
119                                                          patterns.getContext());
120 }
121 
122 namespace {
123 struct FinalizingBufferizePass
124     : public FinalizingBufferizeBase<FinalizingBufferizePass> {
125   using FinalizingBufferizeBase<
126       FinalizingBufferizePass>::FinalizingBufferizeBase;
127 
128   void runOnOperation() override {
129     auto func = getOperation();
130     auto *context = &getContext();
131 
132     BufferizeTypeConverter typeConverter;
133     RewritePatternSet patterns(context);
134     ConversionTarget target(*context);
135 
136     populateEliminateBufferizeMaterializationsPatterns(typeConverter, patterns);
137 
138     // If all result types are legal, and all block arguments are legal (ensured
139     // by func conversion above), then all types in the program are legal.
140     //
141     // We also check that the operand types are legal to avoid creating invalid
142     // IR. For example, this prevents
143     // populateEliminateBufferizeMaterializationsPatterns from updating the
144     // types of the operands to a return op without updating the enclosing
145     // function.
146     target.markUnknownOpDynamicallyLegal(
147         [&](Operation *op) { return typeConverter.isLegal(op); });
148 
149     if (failed(applyFullConversion(func, target, std::move(patterns))))
150       signalPassFailure();
151   }
152 };
153 
154 struct OneShotBufferizePass
155     : public OneShotBufferizeBase<OneShotBufferizePass> {
156   OneShotBufferizePass() : OneShotBufferizeBase<OneShotBufferizePass>() {}
157 
158   explicit OneShotBufferizePass(const OneShotBufferizationOptions &options)
159       : options(options) {}
160 
161   void getDependentDialects(DialectRegistry &registry) const override {
162     registry
163         .insert<bufferization::BufferizationDialect, memref::MemRefDialect>();
164     registerAllocationOpInterfaceExternalModels(registry);
165   }
166 
167   void runOnOperation() override {
168     OneShotBufferizationOptions opt;
169     if (!options) {
170       // Make new bufferization options if none were provided when creating the
171       // pass.
172       opt.dropEquivalentFuncResults = dropEquivalentFuncResults;
173       opt.allowReturnAllocs = allowReturnAllocs;
174       opt.allowUnknownOps = allowUnknownOps;
175       opt.alwaysAliasingWithDest = alwaysAliasingWithDest;
176       opt.analysisFuzzerSeed = analysisFuzzerSeed;
177       opt.createDeallocs = createDeallocs;
178       opt.fullyDynamicLayoutMaps = fullyDynamicLayoutMaps;
179       opt.printConflicts = printConflicts;
180       opt.testAnalysisOnly = testAnalysisOnly;
181       opt.bufferizeFunctionBoundaries = bufferizeFunctionBoundaries;
182       opt.promoteBufferResultsToOutParams = promoteBufferResultsToOutParams;
183 
184       BufferizationOptions::OpFilterEntry::FilterFn filterFn =
185           [&](Operation *op) {
186             // Filter may be specified via options.
187             if (this->dialectFilter.hasValue())
188               return llvm::find(this->dialectFilter,
189                                 op->getDialect()->getNamespace()) !=
190                      this->dialectFilter.end();
191             // No filter specified: All other ops are allowed.
192             return true;
193           };
194       opt.allowOperationInFilter(filterFn);
195     } else {
196       opt = *options;
197     }
198 
199     ModuleOp moduleOp = getOperation();
200     if (opt.bufferizeFunctionBoundaries) {
201       if (failed(runOneShotModuleBufferize(moduleOp, opt))) {
202         signalPassFailure();
203         return;
204       }
205     } else {
206       if (failed(runOneShotBufferize(moduleOp, opt))) {
207         signalPassFailure();
208         return;
209       }
210     }
211 
212     if (opt.testAnalysisOnly)
213       return;
214 
215     OpPassManager cleanupPipeline("builtin.module");
216     cleanupPipeline.addPass(createCanonicalizerPass());
217     cleanupPipeline.addPass(createCSEPass());
218     cleanupPipeline.addPass(createLoopInvariantCodeMotionPass());
219     (void)runPipeline(cleanupPipeline, moduleOp);
220   }
221 
222 private:
223   llvm::Optional<OneShotBufferizationOptions> options;
224 };
225 } // namespace
226 
227 std::unique_ptr<Pass> mlir::bufferization::createOneShotBufferizePass() {
228   return std::make_unique<OneShotBufferizePass>();
229 }
230 
231 std::unique_ptr<Pass> mlir::bufferization::createOneShotBufferizePass(
232     const OneShotBufferizationOptions &options) {
233   return std::make_unique<OneShotBufferizePass>(options);
234 }
235 
236 std::unique_ptr<OperationPass<func::FuncOp>>
237 mlir::bufferization::createFinalizingBufferizePass() {
238   return std::make_unique<FinalizingBufferizePass>();
239 }
240 
241 //===----------------------------------------------------------------------===//
242 // BufferizableOpInterface-based Bufferization
243 //===----------------------------------------------------------------------===//
244 
245 static bool isaTensor(Type t) { return t.isa<TensorType>(); }
246 
247 /// Return true if the given op has a tensor result or a tensor operand.
248 static bool hasTensorSemantics(Operation *op) {
249   if (auto funcOp = dyn_cast<FunctionOpInterface>(op)) {
250     bool hasTensorArg = any_of(funcOp.getArgumentTypes(), isaTensor);
251     bool hasTensorResult = any_of(funcOp.getResultTypes(), isaTensor);
252     return hasTensorArg || hasTensorResult;
253   }
254 
255   bool hasTensorResult = any_of(op->getResultTypes(), isaTensor);
256   bool hasTensorOperand = any_of(op->getOperandTypes(), isaTensor);
257   return hasTensorResult || hasTensorOperand;
258 }
259 
260 LogicalResult
261 bufferization::finalizeBuffers(Operation *op,
262                                const BufferizationOptions &options) {
263   // Hoist buffers.
264   if (failed(hoistBufferAllocations(op, options)))
265     return failure();
266 
267   // Create allocation ops for "leaking buffers", i.e., buffer allocations that
268   // escape block boundaries. If there are no leaking allocs, `hasLeakingAllocs`
269   // is set to `false`.
270   bool hasLeakingAllocs = false;
271   if (failed(createAllocDeallocOps(op, options, /*onlyLeakingAllocs=*/true,
272                                    &hasLeakingAllocs)))
273     return failure();
274 
275   if (hasLeakingAllocs) {
276     // Promote returned buffers to "out" parameters.
277     // TODO: Pass options to support custom dealloc ops.
278     if (options.promoteBufferResultsToOutParams && isa<ModuleOp>(op) &&
279         failed(promoteBufferResultsToOutParams(cast<ModuleOp>(op))))
280       return failure();
281 
282     // Create deallocation ops for all "leaking buffers" and all buffer
283     // allocations that were added during the above promotion process.
284     // TODO: Pass options to support custom dealloc ops.
285     if (options.createDeallocs && failed(deallocateBuffers(op)))
286       return failure();
287   }
288 
289   // Deallocate all remaining buffers at the end of their parent blocks.
290   if (failed(createAllocDeallocOps(op, options)))
291     return failure();
292 
293   return success();
294 }
295 
296 LogicalResult bufferization::bufferizeOp(Operation *op,
297                                          const AnalysisState &analysisState) {
298   // Catch incorrect API usage.
299   assert((analysisState.hasDialectState(
300               func::FuncDialect::getDialectNamespace()) ||
301           !analysisState.getOptions().bufferizeFunctionBoundaries) &&
302          "must use ModuleBufferize to bufferize function boundaries");
303 
304   BufferizationState bufferizationState(analysisState);
305   if (failed(bufferizeOp(op, bufferizationState)))
306     return failure();
307   if (failed(finalizeBuffers(op, analysisState.getOptions())))
308     return failure();
309   return success();
310 }
311 
312 namespace {
313 /// A rewriter that keeps track of extra information during bufferization.
314 class BufferizationRewriter : public IRRewriter {
315 public:
316   BufferizationRewriter(MLIRContext *ctx, DenseSet<Operation *> &erasedOps,
317                         DenseSet<Operation *> &toMemrefOps,
318                         const BufferizationOptions &options)
319       : IRRewriter(ctx), erasedOps(erasedOps), toMemrefOps(toMemrefOps),
320         options(options) {}
321 
322 protected:
323   void notifyOperationRemoved(Operation *op) override {
324     IRRewriter::notifyOperationRemoved(op);
325     erasedOps.insert(op);
326     // Erase if present.
327     toMemrefOps.erase(op);
328   }
329 
330   void notifyOperationInserted(Operation *op) override {
331     IRRewriter::notifyOperationInserted(op);
332 
333     // Keep track of to_memref ops.
334     if (isa<ToMemrefOp>(op)) {
335       toMemrefOps.insert(op);
336       return;
337     }
338 
339     // Skip to_tensor ops.
340     if (isa<ToTensorOp>(op))
341       return;
342 
343     // Adding new bufferizable ops is not allowed during bufferization. Such ops
344     // would not be analyzed and can lead to surprising behavior.
345     assert((!hasTensorSemantics(op) || !options.isOpAllowed(op)) &&
346            "creating new tensor ops is not allowed during bufferization");
347   }
348 
349 private:
350   /// A set of all erased ops.
351   DenseSet<Operation *> &erasedOps;
352 
353   /// A set of all to_memref ops.
354   DenseSet<Operation *> &toMemrefOps;
355 
356   /// The bufferization options.
357   const BufferizationOptions &options;
358 };
359 } // namespace
360 
361 LogicalResult
362 bufferization::bufferizeOp(Operation *op,
363                            BufferizationState &bufferizationState) {
364   const auto &options = bufferizationState.getOptions();
365 
366   // Keep track of to_memref ops.
367   DenseSet<Operation *> toMemrefOps;
368   op->walk([&](ToMemrefOp toMemrefOp) { toMemrefOps.insert(toMemrefOp); });
369 
370   // Gather all bufferizable ops in top-to-bottom order.
371   //
372   // We should ideally know the exact memref type of all operands when
373   // bufferizing an op. (This is the case when bufferizing top-to-bottom.)
374   // Otherwise, we have to use a memref type with a fully dynamic layout map,
375   // which has to canonicalize away. This is less efficient.
376   //
377   // If "fullyDynamicLayoutMaps = false", we would have to insert buffer copies
378   // to fold ("finalize") to_memref(to_tensor(x)) ops with non-cast-compatible
379   // layout maps when doing a traversal other than top-to-bottom. These would
380   // not easily fold away.
381   SmallVector<Operation *> worklist;
382   op->walk<WalkOrder::PreOrder>([&](Operation *op) {
383     if (hasTensorSemantics(op))
384       worklist.push_back(op);
385   });
386 
387   // Keep track of all erased ops.
388   DenseSet<Operation *> erasedOps;
389 
390   // Bufferize all ops.
391   BufferizationRewriter rewriter(op->getContext(), erasedOps, toMemrefOps,
392                                  bufferizationState.getOptions());
393   for (unsigned i = 0; i < worklist.size(); ++i) {
394     Operation *op = worklist[i];
395     // Skip ops that were erased.
396     if (erasedOps.contains(op))
397       continue;
398     // Skip ops that are not bufferizable or not allowed.
399     auto bufferizableOp = options.dynCastBufferizableOp(op);
400     if (!bufferizableOp)
401       continue;
402     // Skip ops that no longer have tensor semantics.
403     if (!hasTensorSemantics(op))
404       continue;
405     // Bufferize the op.
406     rewriter.setInsertionPoint(op);
407     (void)bufferizableOp.bufferize(rewriter, bufferizationState);
408   }
409 
410   // Fold all to_memref(to_tensor(x)) pairs.
411   for (Operation *op : toMemrefOps) {
412     rewriter.setInsertionPoint(op);
413     (void)bufferization::foldToMemrefToTensorPair(rewriter,
414                                                   cast<ToMemrefOp>(op));
415   }
416 
417   /// Check the result of bufferization. Return an error if an op was not
418   /// bufferized, unless partial bufferization is allowed.
419   if (bufferizationState.getOptions().allowUnknownOps)
420     return success();
421 
422   for (Operation *op : worklist) {
423     // Skip ops that are entirely gone.
424     if (erasedOps.contains(op))
425       continue;
426     // Ops that no longer have tensor semantics (because they were updated
427     // in-place) are allowed.
428     if (!hasTensorSemantics(op))
429       continue;
430     // Continue ops that are not allowed.
431     if (!options.isOpAllowed(op))
432       continue;
433     // Ops without any uses and no side effects will fold away.
434     if (op->getUses().empty() && MemoryEffectOpInterface::hasNoEffect(op))
435       continue;
436     return op->emitError("op was not bufferized");
437   }
438 
439   return success();
440 }
441 
442 namespace {
443 /// This a "no analysis, always copy" AnalysisState. In the absence of an
444 /// analysis, a buffer must be copied each time it is written to. Therefore, all
445 /// OpOperands that bufferize to a memory write must bufferize out-of-place.
446 class AlwaysCopyAnalysisState : public AnalysisState {
447 public:
448   AlwaysCopyAnalysisState(const BufferizationOptions &options)
449       : AnalysisState(options) {}
450 
451   AlwaysCopyAnalysisState(const AlwaysCopyAnalysisState &) = delete;
452 
453   virtual ~AlwaysCopyAnalysisState() = default;
454 
455   /// Return `true` if the given OpResult has been decided to bufferize inplace.
456   bool isInPlace(OpOperand &opOperand) const override {
457     // OpOperands that bufferize to a memory write are out-of-place, i.e., an
458     // alloc and copy is inserted.
459     return !bufferizesToMemoryWrite(opOperand);
460   }
461 
462   /// Return true if `v1` and `v2` bufferize to equivalent buffers.
463   bool areEquivalentBufferizedValues(Value v1, Value v2) const override {
464     // There is no analysis, so we do not know if the values are equivalent. The
465     // conservative answer is "false".
466     return false;
467   }
468 };
469 } // namespace
470 
471 LogicalResult bufferization::bufferizeOp(Operation *op,
472                                          const BufferizationOptions &options) {
473   AlwaysCopyAnalysisState state(options);
474   return bufferizeOp(op, state);
475 }
476 
477 BufferizationOptions bufferization::getPartialBufferizationOptions() {
478   BufferizationOptions options;
479   options.allowUnknownOps = true;
480   options.createDeallocs = false;
481   options.fullyDynamicLayoutMaps = false;
482   return options;
483 }
484