1 //===- Bufferize.cpp - Bufferization utilities ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "PassDetail.h"
10 
11 #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
12 #include "mlir/Dialect/Bufferization/IR/Bufferization.h"
13 #include "mlir/Dialect/Bufferization/Transforms/Bufferize.h"
14 #include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h"
15 #include "mlir/Dialect/Bufferization/Transforms/Passes.h"
16 #include "mlir/Dialect/Func/IR/FuncOps.h"
17 #include "mlir/IR/Operation.h"
18 #include "mlir/Pass/PassManager.h"
19 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
20 #include "mlir/Transforms/Passes.h"
21 
22 using namespace mlir;
23 using namespace mlir::bufferization;
24 
25 //===----------------------------------------------------------------------===//
26 // BufferizeTypeConverter
27 //===----------------------------------------------------------------------===//
28 
29 static Value materializeToTensor(OpBuilder &builder, TensorType type,
30                                  ValueRange inputs, Location loc) {
31   assert(inputs.size() == 1);
32   assert(inputs[0].getType().isa<BaseMemRefType>());
33   return builder.create<bufferization::ToTensorOp>(loc, type, inputs[0]);
34 }
35 
36 /// Registers conversions into BufferizeTypeConverter
37 BufferizeTypeConverter::BufferizeTypeConverter() {
38   // Keep all types unchanged.
39   addConversion([](Type type) { return type; });
40   // Convert RankedTensorType to MemRefType.
41   addConversion([](RankedTensorType type) -> Type {
42     return MemRefType::get(type.getShape(), type.getElementType());
43   });
44   // Convert UnrankedTensorType to UnrankedMemRefType.
45   addConversion([](UnrankedTensorType type) -> Type {
46     return UnrankedMemRefType::get(type.getElementType(), 0);
47   });
48   addArgumentMaterialization(materializeToTensor);
49   addSourceMaterialization(materializeToTensor);
50   addTargetMaterialization([](OpBuilder &builder, BaseMemRefType type,
51                               ValueRange inputs, Location loc) -> Value {
52     assert(inputs.size() == 1 && "expected exactly one input");
53 
54     if (auto inputType = inputs[0].getType().dyn_cast<MemRefType>()) {
55       // MemRef to MemRef cast.
56       assert(inputType != type && "expected different types");
57       // Unranked to ranked and ranked to unranked casts must be explicit.
58       auto rankedDestType = type.dyn_cast<MemRefType>();
59       if (!rankedDestType)
60         return nullptr;
61       FailureOr<Value> replacement =
62           castOrReallocMemRefValue(builder, inputs[0], rankedDestType);
63       if (failed(replacement))
64         return nullptr;
65       return *replacement;
66     }
67 
68     if (inputs[0].getType().isa<TensorType>()) {
69       // Tensor to MemRef cast.
70       return builder.create<bufferization::ToMemrefOp>(loc, type, inputs[0]);
71     }
72 
73     llvm_unreachable("only tensor/memref input types supported");
74   });
75 }
76 
77 void mlir::bufferization::populateBufferizeMaterializationLegality(
78     ConversionTarget &target) {
79   target.addLegalOp<bufferization::ToTensorOp, bufferization::ToMemrefOp>();
80 }
81 
82 namespace {
83 // In a finalizing bufferize conversion, we know that all tensors have been
84 // converted to memrefs, thus, this op becomes an identity.
85 class BufferizeToTensorOp
86     : public OpConversionPattern<bufferization::ToTensorOp> {
87 public:
88   using OpConversionPattern::OpConversionPattern;
89   LogicalResult
90   matchAndRewrite(bufferization::ToTensorOp op, OpAdaptor adaptor,
91                   ConversionPatternRewriter &rewriter) const override {
92     rewriter.replaceOp(op, adaptor.memref());
93     return success();
94   }
95 };
96 } // namespace
97 
98 namespace {
99 // In a finalizing bufferize conversion, we know that all tensors have been
100 // converted to memrefs, thus, this op becomes an identity.
101 class BufferizeToMemrefOp
102     : public OpConversionPattern<bufferization::ToMemrefOp> {
103 public:
104   using OpConversionPattern::OpConversionPattern;
105   LogicalResult
106   matchAndRewrite(bufferization::ToMemrefOp op, OpAdaptor adaptor,
107                   ConversionPatternRewriter &rewriter) const override {
108     rewriter.replaceOp(op, adaptor.tensor());
109     return success();
110   }
111 };
112 } // namespace
113 
114 void mlir::bufferization::populateEliminateBufferizeMaterializationsPatterns(
115     BufferizeTypeConverter &typeConverter, RewritePatternSet &patterns) {
116   patterns.add<BufferizeToTensorOp, BufferizeToMemrefOp>(typeConverter,
117                                                          patterns.getContext());
118 }
119 
120 namespace {
121 struct FinalizingBufferizePass
122     : public FinalizingBufferizeBase<FinalizingBufferizePass> {
123   using FinalizingBufferizeBase<
124       FinalizingBufferizePass>::FinalizingBufferizeBase;
125 
126   void runOnOperation() override {
127     auto func = getOperation();
128     auto *context = &getContext();
129 
130     BufferizeTypeConverter typeConverter;
131     RewritePatternSet patterns(context);
132     ConversionTarget target(*context);
133 
134     populateEliminateBufferizeMaterializationsPatterns(typeConverter, patterns);
135 
136     // If all result types are legal, and all block arguments are legal (ensured
137     // by func conversion above), then all types in the program are legal.
138     //
139     // We also check that the operand types are legal to avoid creating invalid
140     // IR. For example, this prevents
141     // populateEliminateBufferizeMaterializationsPatterns from updating the
142     // types of the operands to a return op without updating the enclosing
143     // function.
144     target.markUnknownOpDynamicallyLegal(
145         [&](Operation *op) { return typeConverter.isLegal(op); });
146 
147     if (failed(applyFullConversion(func, target, std::move(patterns))))
148       signalPassFailure();
149   }
150 };
151 
152 struct OneShotBufferizePass
153     : public OneShotBufferizeBase<OneShotBufferizePass> {
154   OneShotBufferizePass() : OneShotBufferizeBase<OneShotBufferizePass>() {}
155 
156   explicit OneShotBufferizePass(const OneShotBufferizationOptions &options)
157       : options(options) {}
158 
159   void getDependentDialects(DialectRegistry &registry) const override {
160     registry.insert<bufferization::BufferizationDialect>();
161   }
162 
163   void runOnOperation() override {
164     OneShotBufferizationOptions opt;
165     if (!options) {
166       // Make new bufferization options if none were provided when creating the
167       // pass.
168       opt.allowReturnMemref = allowReturnMemref;
169       opt.allowUnknownOps = allowUnknownOps;
170       opt.analysisFuzzerSeed = analysisFuzzerSeed;
171       opt.createDeallocs = createDeallocs;
172       opt.fullyDynamicLayoutMaps = fullyDynamicLayoutMaps;
173       opt.printConflicts = printConflicts;
174       opt.testAnalysisOnly = testAnalysisOnly;
175 
176       BufferizationOptions::OpFilterEntry::FilterFn filterFn =
177           [&](Operation *op) {
178             // Disallow non-func dialect ops. I.e., no ops related to function
179             // calls.
180             if (isa<func::FuncDialect>(op->getDialect()))
181               return false;
182             // Filter may be specified via options.
183             if (this->dialectFilter.hasValue())
184               return llvm::find(this->dialectFilter,
185                                 op->getDialect()->getNamespace()) !=
186                      this->dialectFilter.end();
187             // No filter specified: All other ops are allowed.
188             return true;
189           };
190       opt.allowOperationInFilter(filterFn);
191     } else {
192       opt = *options;
193     }
194 
195     ModuleOp moduleOp = getOperation();
196     if (failed(runOneShotBufferize(moduleOp, opt))) {
197       signalPassFailure();
198       return;
199     }
200 
201     if (opt.testAnalysisOnly)
202       return;
203 
204     OpPassManager cleanupPipeline("builtin.module");
205     cleanupPipeline.addPass(createCanonicalizerPass());
206     cleanupPipeline.addPass(createCSEPass());
207     cleanupPipeline.addPass(createLoopInvariantCodeMotionPass());
208     (void)runPipeline(cleanupPipeline, moduleOp);
209   }
210 
211 private:
212   llvm::Optional<OneShotBufferizationOptions> options;
213 };
214 } // namespace
215 
216 std::unique_ptr<Pass> mlir::bufferization::createOneShotBufferizePass() {
217   return std::make_unique<OneShotBufferizePass>();
218 }
219 
220 std::unique_ptr<Pass> mlir::bufferization::createOneShotBufferizePass(
221     const OneShotBufferizationOptions &options) {
222   return std::make_unique<OneShotBufferizePass>(options);
223 }
224 
225 std::unique_ptr<OperationPass<FuncOp>>
226 mlir::bufferization::createFinalizingBufferizePass() {
227   return std::make_unique<FinalizingBufferizePass>();
228 }
229 
230 //===----------------------------------------------------------------------===//
231 // BufferizableOpInterface-based Bufferization
232 //===----------------------------------------------------------------------===//
233 
234 static bool isaTensor(Type t) { return t.isa<TensorType>(); }
235 
236 /// Return true if the given op has a tensor result or a tensor operand.
237 static bool hasTensorSemantics(Operation *op) {
238   bool hasTensorResult = any_of(op->getResultTypes(), isaTensor);
239   bool hasTensorOperand = any_of(op->getOperandTypes(), isaTensor);
240   return hasTensorResult || hasTensorOperand;
241 }
242 
243 /// Rewrite pattern that bufferizes bufferizable ops.
244 struct BufferizationPattern
245     : public OpInterfaceRewritePattern<BufferizableOpInterface> {
246   BufferizationPattern(MLIRContext *context, BufferizationState &state,
247                        PatternBenefit benefit = 1)
248       : OpInterfaceRewritePattern<BufferizableOpInterface>(context, benefit),
249         state(&state) {}
250 
251   LogicalResult matchAndRewrite(BufferizableOpInterface bufferizableOp,
252                                 PatternRewriter &rewriter) const override {
253     const BufferizationOptions &options = state->getOptions();
254 
255     // No tensors => no buffers.
256     if (!hasTensorSemantics(bufferizableOp.getOperation()))
257       return failure();
258     if (!options.isOpAllowed(bufferizableOp.getOperation()))
259       return failure();
260     return bufferizableOp.bufferize(rewriter, *state);
261   }
262 
263 private:
264   BufferizationState *const state;
265 };
266 
267 /// Check the result of bufferization. Return an error if an op was not
268 /// bufferized, unless partial bufferization is allowed.
269 static LogicalResult
270 checkBufferizationResult(Operation *op, const BufferizationOptions &options) {
271   if (!options.allowUnknownOps) {
272     // Check if all ops were bufferized.
273     LogicalResult status = success();
274     op->walk([&](Operation *op) {
275       if (!hasTensorSemantics(op))
276         return WalkResult::advance();
277 
278       // Bufferization dialect ops will canonicalize away if all other ops are
279       // bufferized.
280       if (isa<bufferization::ToMemrefOp, bufferization::ToTensorOp>(op))
281         return WalkResult::advance();
282 
283       // Ops that are not in the allow list can be ignored.
284       if (!options.isOpAllowed(op))
285         return WalkResult::advance();
286 
287       // Ops without any uses and no side effects will fold away.
288       if (op->getUses().empty() && MemoryEffectOpInterface::hasNoEffect(op))
289         return WalkResult::advance();
290 
291       status = op->emitError("op was not bufferized");
292       return WalkResult::interrupt();
293     });
294 
295     if (failed(status))
296       return status;
297   }
298 
299   return success();
300 }
301 
302 LogicalResult bufferization::bufferizeOp(Operation *op,
303                                          const AnalysisState &analysisState) {
304   BufferizationState bufferizationState(analysisState);
305   if (failed(bufferizeOp(op, bufferizationState)))
306     return failure();
307   if (failed(finalizeBuffers(op, analysisState.getOptions())))
308     return failure();
309   return success();
310 }
311 
312 LogicalResult
313 bufferization::bufferizeOp(Operation *op,
314                            BufferizationState &bufferizationState) {
315   // Bufferize the op and its nested ops.
316   RewritePatternSet patterns(op->getContext());
317   patterns.add<BufferizationPattern>(patterns.getContext(), bufferizationState);
318 
319   // Bufferize ops top-to-bottom. When creating a new op, we should ideally
320   // know the exact memref type of all operands. Otherwise, we have to use a
321   // memref type with a fully dynamic layout map, which has to canonicalize
322   // away. This is less efficient.
323   //
324   // Note: If "fullyDynamicLayoutMaps = false", we may have to insert buffer
325   // copies to fold ("finalize") to_memref(to_tensor(x)) ops with non-cast-
326   // compatible layout maps when doing a traversal other than top-to-bottom.
327   // There are currently no canonicalization patterns to fold these away.
328   GreedyRewriteConfig config;
329   config.useTopDownTraversal = true;
330 
331   // TODO: Perform a preorder walk instead of the greedy pattern rewriter. This
332   // would be more efficient because every bufferization pattern is guaranteed
333   // to apply only a single time (otherwise, an assertion would be triggered).
334   // However, there are restrictions wrt. erasing ops during a preorder walk,
335   // which would likely require a larger refactoring.
336   if (failed(applyPatternsAndFoldGreedily(op, std::move(patterns), config)))
337     return failure();
338 
339   if (failed(checkBufferizationResult(op, bufferizationState.getOptions())))
340     return failure();
341 
342   return success();
343 }
344 
345 namespace {
346 /// This a "no analysis, always copy" AnalysisState. In the absence of an
347 /// analysis, a buffer must be copied each time it is written to. Therefore, all
348 /// OpOperands that bufferize to a memory write must bufferize out-of-place.
349 class AlwaysCopyAnalysisState : public AnalysisState {
350 public:
351   AlwaysCopyAnalysisState(const BufferizationOptions &options)
352       : AnalysisState(options) {}
353 
354   AlwaysCopyAnalysisState(const AlwaysCopyAnalysisState &) = delete;
355 
356   virtual ~AlwaysCopyAnalysisState() = default;
357 
358   /// Return `true` if the given OpResult has been decided to bufferize inplace.
359   bool isInPlace(OpOperand &opOperand) const override {
360     // OpOperands that bufferize to a memory write are out-of-place, i.e., an
361     // alloc and copy is inserted.
362     return !bufferizesToMemoryWrite(opOperand);
363   }
364 
365   /// Return true if `v1` and `v2` bufferize to equivalent buffers.
366   bool areEquivalentBufferizedValues(Value v1, Value v2) const override {
367     // There is no analysis, so we do not know if the values are equivalent. The
368     // conservative answer is "false".
369     return false;
370   }
371 };
372 } // namespace
373 
374 LogicalResult bufferization::bufferizeOp(Operation *op,
375                                          const BufferizationOptions &options) {
376   AlwaysCopyAnalysisState state(options);
377   return bufferizeOp(op, state);
378 }
379 
380 BufferizationOptions bufferization::getPartialBufferizationOptions() {
381   BufferizationOptions options;
382   options.allowReturnMemref = true;
383   options.allowUnknownOps = true;
384   options.createDeallocs = false;
385   options.fullyDynamicLayoutMaps = false;
386   return options;
387 }
388