1 //===- Bufferize.cpp - Bufferization utilities ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "PassDetail.h" 10 11 #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h" 12 #include "mlir/Dialect/Bufferization/IR/Bufferization.h" 13 #include "mlir/Dialect/Bufferization/Transforms/Bufferize.h" 14 #include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h" 15 #include "mlir/Dialect/Bufferization/Transforms/OneShotModuleBufferize.h" 16 #include "mlir/Dialect/Bufferization/Transforms/Passes.h" 17 #include "mlir/Dialect/Func/IR/FuncOps.h" 18 #include "mlir/Dialect/MemRef/IR/MemRef.h" 19 #include "mlir/IR/Operation.h" 20 #include "mlir/Pass/PassManager.h" 21 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 22 #include "mlir/Transforms/Passes.h" 23 24 using namespace mlir; 25 using namespace mlir::bufferization; 26 27 //===----------------------------------------------------------------------===// 28 // BufferizeTypeConverter 29 //===----------------------------------------------------------------------===// 30 31 static Value materializeToTensor(OpBuilder &builder, TensorType type, 32 ValueRange inputs, Location loc) { 33 assert(inputs.size() == 1); 34 assert(inputs[0].getType().isa<BaseMemRefType>()); 35 return builder.create<bufferization::ToTensorOp>(loc, type, inputs[0]); 36 } 37 38 /// Registers conversions into BufferizeTypeConverter 39 BufferizeTypeConverter::BufferizeTypeConverter() { 40 // Keep all types unchanged. 41 addConversion([](Type type) { return type; }); 42 // Convert RankedTensorType to MemRefType. 43 addConversion([](RankedTensorType type) -> Type { 44 return MemRefType::get(type.getShape(), type.getElementType()); 45 }); 46 // Convert UnrankedTensorType to UnrankedMemRefType. 47 addConversion([](UnrankedTensorType type) -> Type { 48 return UnrankedMemRefType::get(type.getElementType(), 0); 49 }); 50 addArgumentMaterialization(materializeToTensor); 51 addSourceMaterialization(materializeToTensor); 52 addTargetMaterialization([](OpBuilder &builder, BaseMemRefType type, 53 ValueRange inputs, Location loc) -> Value { 54 assert(inputs.size() == 1 && "expected exactly one input"); 55 56 if (auto inputType = inputs[0].getType().dyn_cast<MemRefType>()) { 57 // MemRef to MemRef cast. 58 assert(inputType != type && "expected different types"); 59 // Unranked to ranked and ranked to unranked casts must be explicit. 60 auto rankedDestType = type.dyn_cast<MemRefType>(); 61 if (!rankedDestType) 62 return nullptr; 63 FailureOr<Value> replacement = 64 castOrReallocMemRefValue(builder, inputs[0], rankedDestType); 65 if (failed(replacement)) 66 return nullptr; 67 return *replacement; 68 } 69 70 if (inputs[0].getType().isa<TensorType>()) { 71 // Tensor to MemRef cast. 72 return builder.create<bufferization::ToMemrefOp>(loc, type, inputs[0]); 73 } 74 75 llvm_unreachable("only tensor/memref input types supported"); 76 }); 77 } 78 79 void mlir::bufferization::populateBufferizeMaterializationLegality( 80 ConversionTarget &target) { 81 target.addLegalOp<bufferization::ToTensorOp, bufferization::ToMemrefOp>(); 82 } 83 84 namespace { 85 // In a finalizing bufferize conversion, we know that all tensors have been 86 // converted to memrefs, thus, this op becomes an identity. 87 class BufferizeToTensorOp 88 : public OpConversionPattern<bufferization::ToTensorOp> { 89 public: 90 using OpConversionPattern::OpConversionPattern; 91 LogicalResult 92 matchAndRewrite(bufferization::ToTensorOp op, OpAdaptor adaptor, 93 ConversionPatternRewriter &rewriter) const override { 94 rewriter.replaceOp(op, adaptor.memref()); 95 return success(); 96 } 97 }; 98 } // namespace 99 100 namespace { 101 // In a finalizing bufferize conversion, we know that all tensors have been 102 // converted to memrefs, thus, this op becomes an identity. 103 class BufferizeToMemrefOp 104 : public OpConversionPattern<bufferization::ToMemrefOp> { 105 public: 106 using OpConversionPattern::OpConversionPattern; 107 LogicalResult 108 matchAndRewrite(bufferization::ToMemrefOp op, OpAdaptor adaptor, 109 ConversionPatternRewriter &rewriter) const override { 110 rewriter.replaceOp(op, adaptor.tensor()); 111 return success(); 112 } 113 }; 114 } // namespace 115 116 void mlir::bufferization::populateEliminateBufferizeMaterializationsPatterns( 117 BufferizeTypeConverter &typeConverter, RewritePatternSet &patterns) { 118 patterns.add<BufferizeToTensorOp, BufferizeToMemrefOp>(typeConverter, 119 patterns.getContext()); 120 } 121 122 namespace { 123 struct FinalizingBufferizePass 124 : public FinalizingBufferizeBase<FinalizingBufferizePass> { 125 using FinalizingBufferizeBase< 126 FinalizingBufferizePass>::FinalizingBufferizeBase; 127 128 void runOnOperation() override { 129 auto func = getOperation(); 130 auto *context = &getContext(); 131 132 BufferizeTypeConverter typeConverter; 133 RewritePatternSet patterns(context); 134 ConversionTarget target(*context); 135 136 populateEliminateBufferizeMaterializationsPatterns(typeConverter, patterns); 137 138 // If all result types are legal, and all block arguments are legal (ensured 139 // by func conversion above), then all types in the program are legal. 140 // 141 // We also check that the operand types are legal to avoid creating invalid 142 // IR. For example, this prevents 143 // populateEliminateBufferizeMaterializationsPatterns from updating the 144 // types of the operands to a return op without updating the enclosing 145 // function. 146 target.markUnknownOpDynamicallyLegal( 147 [&](Operation *op) { return typeConverter.isLegal(op); }); 148 149 if (failed(applyFullConversion(func, target, std::move(patterns)))) 150 signalPassFailure(); 151 } 152 }; 153 154 static BufferizationOptions::LayoutMapOption 155 parseLayoutMapOption(const std::string &s) { 156 if (s == "fully-dynamic-layout-map") 157 return BufferizationOptions::LayoutMapOption::FullyDynamicLayoutMap; 158 if (s == "identity-layout-map") 159 return BufferizationOptions::LayoutMapOption::IdentityLayoutMap; 160 if (s == "infer-layout-map") 161 return BufferizationOptions::LayoutMapOption::InferLayoutMap; 162 llvm_unreachable("invalid layout map option"); 163 } 164 165 struct OneShotBufferizePass 166 : public OneShotBufferizeBase<OneShotBufferizePass> { 167 OneShotBufferizePass() : OneShotBufferizeBase<OneShotBufferizePass>() {} 168 169 explicit OneShotBufferizePass(const OneShotBufferizationOptions &options) 170 : options(options) {} 171 172 void getDependentDialects(DialectRegistry ®istry) const override { 173 registry 174 .insert<bufferization::BufferizationDialect, memref::MemRefDialect>(); 175 registerAllocationOpInterfaceExternalModels(registry); 176 } 177 178 void runOnOperation() override { 179 OneShotBufferizationOptions opt; 180 if (!options) { 181 // Make new bufferization options if none were provided when creating the 182 // pass. 183 opt.dropEquivalentFuncResults = dropEquivalentFuncResults; 184 opt.allowReturnAllocs = allowReturnAllocs; 185 opt.allowUnknownOps = allowUnknownOps; 186 opt.alwaysAliasingWithDest = alwaysAliasingWithDest; 187 opt.analysisFuzzerSeed = analysisFuzzerSeed; 188 opt.createDeallocs = createDeallocs; 189 opt.functionBoundaryTypeConversion = 190 parseLayoutMapOption(functionBoundaryTypeConversion); 191 opt.printConflicts = printConflicts; 192 opt.testAnalysisOnly = testAnalysisOnly; 193 opt.bufferizeFunctionBoundaries = bufferizeFunctionBoundaries; 194 opt.promoteBufferResultsToOutParams = promoteBufferResultsToOutParams; 195 opt.unknownTypeConversion = parseLayoutMapOption(unknownTypeConversion); 196 197 OpFilter::Entry::FilterFn filterFn = 198 [&](Operation *op) { 199 // Filter may be specified via options. 200 if (this->dialectFilter.hasValue()) 201 return llvm::is_contained(this->dialectFilter, 202 op->getDialect()->getNamespace()); 203 // No filter specified: All other ops are allowed. 204 return true; 205 }; 206 opt.opFilter.allowOperation(filterFn); 207 } else { 208 opt = *options; 209 } 210 211 ModuleOp moduleOp = getOperation(); 212 if (opt.bufferizeFunctionBoundaries) { 213 if (failed(runOneShotModuleBufferize(moduleOp, opt))) { 214 signalPassFailure(); 215 return; 216 } 217 } else { 218 if (failed(runOneShotBufferize(moduleOp, opt))) { 219 signalPassFailure(); 220 return; 221 } 222 } 223 224 if (opt.testAnalysisOnly) 225 return; 226 227 OpPassManager cleanupPipeline("builtin.module"); 228 cleanupPipeline.addPass(createCanonicalizerPass()); 229 cleanupPipeline.addPass(createCSEPass()); 230 cleanupPipeline.addPass(createLoopInvariantCodeMotionPass()); 231 (void)runPipeline(cleanupPipeline, moduleOp); 232 } 233 234 private: 235 llvm::Optional<OneShotBufferizationOptions> options; 236 }; 237 } // namespace 238 239 namespace { 240 struct BufferizationBufferizePass 241 : public BufferizationBufferizeBase<BufferizationBufferizePass> { 242 void runOnOperation() override { 243 BufferizationOptions options = getPartialBufferizationOptions(); 244 options.opFilter.allowDialect<BufferizationDialect>(); 245 246 if (failed(bufferizeOp(getOperation(), options))) 247 signalPassFailure(); 248 } 249 250 void getDependentDialects(DialectRegistry ®istry) const override { 251 registry 252 .insert<bufferization::BufferizationDialect, memref::MemRefDialect>(); 253 } 254 }; 255 } // namespace 256 257 std::unique_ptr<Pass> mlir::bufferization::createBufferizationBufferizePass() { 258 return std::make_unique<BufferizationBufferizePass>(); 259 } 260 261 std::unique_ptr<Pass> mlir::bufferization::createOneShotBufferizePass() { 262 return std::make_unique<OneShotBufferizePass>(); 263 } 264 265 std::unique_ptr<Pass> mlir::bufferization::createOneShotBufferizePass( 266 const OneShotBufferizationOptions &options) { 267 return std::make_unique<OneShotBufferizePass>(options); 268 } 269 270 std::unique_ptr<OperationPass<func::FuncOp>> 271 mlir::bufferization::createFinalizingBufferizePass() { 272 return std::make_unique<FinalizingBufferizePass>(); 273 } 274 275 //===----------------------------------------------------------------------===// 276 // BufferizableOpInterface-based Bufferization 277 //===----------------------------------------------------------------------===// 278 279 static bool isaTensor(Type t) { return t.isa<TensorType>(); } 280 281 /// Return true if the given op has a tensor result or a tensor operand. 282 static bool hasTensorSemantics(Operation *op) { 283 if (auto funcOp = dyn_cast<FunctionOpInterface>(op)) { 284 bool hasTensorArg = any_of(funcOp.getArgumentTypes(), isaTensor); 285 bool hasTensorResult = any_of(funcOp.getResultTypes(), isaTensor); 286 return hasTensorArg || hasTensorResult; 287 } 288 289 bool hasTensorResult = any_of(op->getResultTypes(), isaTensor); 290 bool hasTensorOperand = any_of(op->getOperandTypes(), isaTensor); 291 return hasTensorResult || hasTensorOperand; 292 } 293 294 LogicalResult 295 bufferization::finalizeBuffers(Operation *op, 296 const BufferizationOptions &options) { 297 // Promote returned buffers to "out" parameters. 298 // TODO: Pass options to support custom dealloc ops. 299 if (options.promoteBufferResultsToOutParams && isa<ModuleOp>(op) && 300 failed(promoteBufferResultsToOutParams(cast<ModuleOp>(op)))) 301 return failure(); 302 303 return success(); 304 } 305 306 LogicalResult bufferization::bufferizeOp(Operation *op, 307 const AnalysisState &analysisState) { 308 // Catch incorrect API usage. 309 assert((analysisState.hasDialectState( 310 func::FuncDialect::getDialectNamespace()) || 311 !analysisState.getOptions().bufferizeFunctionBoundaries) && 312 "must use ModuleBufferize to bufferize function boundaries"); 313 314 BufferizationState bufferizationState(analysisState); 315 if (failed(bufferizeOp(op, bufferizationState))) 316 return failure(); 317 if (failed(finalizeBuffers(op, analysisState.getOptions()))) 318 return failure(); 319 return success(); 320 } 321 322 namespace { 323 /// A rewriter that keeps track of extra information during bufferization. 324 class BufferizationRewriter : public IRRewriter { 325 public: 326 BufferizationRewriter(MLIRContext *ctx, DenseSet<Operation *> &erasedOps, 327 DenseSet<Operation *> &toMemrefOps, 328 const BufferizationOptions &options, 329 const OpFilter *opFilter) 330 : IRRewriter(ctx), erasedOps(erasedOps), toMemrefOps(toMemrefOps), 331 options(options), opFilter(opFilter) {} 332 333 protected: 334 void notifyOperationRemoved(Operation *op) override { 335 IRRewriter::notifyOperationRemoved(op); 336 erasedOps.insert(op); 337 // Erase if present. 338 toMemrefOps.erase(op); 339 } 340 341 void notifyOperationInserted(Operation *op) override { 342 IRRewriter::notifyOperationInserted(op); 343 344 // Keep track of to_memref ops. 345 if (isa<ToMemrefOp>(op)) { 346 toMemrefOps.insert(op); 347 return; 348 } 349 350 // Skip to_tensor ops. 351 if (isa<ToTensorOp>(op)) 352 return; 353 354 // Skip non-tensor ops. 355 if (!hasTensorSemantics(op)) 356 return; 357 358 // Skip ops that are not allowed. 359 if (!options.isOpAllowed(op) || (opFilter && !opFilter->isOpAllowed(op))) 360 return; 361 362 // Adding new bufferizable ops is not allowed during bufferization. Such ops 363 // would not be analyzed and can lead to surprising behavior. 364 llvm_unreachable( 365 "creating new tensor ops is not allowed during bufferization"); 366 } 367 368 private: 369 /// A set of all erased ops. 370 DenseSet<Operation *> &erasedOps; 371 372 /// A set of all to_memref ops. 373 DenseSet<Operation *> &toMemrefOps; 374 375 /// The bufferization options. 376 /// Used for debug modes. 377 LLVM_ATTRIBUTE_UNUSED 378 const BufferizationOptions &options; 379 380 const OpFilter *opFilter; 381 }; 382 } // namespace 383 384 LogicalResult bufferization::bufferizeOp(Operation *op, 385 BufferizationState &bufferizationState, 386 const OpFilter *opFilter) { 387 const auto &options = bufferizationState.getOptions(); 388 assert(options.unknownTypeConversion != 389 BufferizationOptions::LayoutMapOption::InferLayoutMap && 390 "invalid layout map option"); 391 392 // Keep track of to_memref ops. 393 DenseSet<Operation *> toMemrefOps; 394 op->walk([&](ToMemrefOp toMemrefOp) { toMemrefOps.insert(toMemrefOp); }); 395 396 // Gather all bufferizable ops in top-to-bottom order. 397 // 398 // We should ideally know the exact memref type of all operands when 399 // bufferizing an op. (This is the case when bufferizing top-to-bottom.) 400 // Otherwise, we have to use a memref type with a fully dynamic layout map to 401 // avoid copies. We are currently missing patterns for layout maps to 402 // canonicalize away (or canonicalize to more precise layouts). 403 SmallVector<Operation *> worklist; 404 op->walk<WalkOrder::PreOrder>([&](Operation *op) { 405 if (hasTensorSemantics(op)) 406 worklist.push_back(op); 407 }); 408 409 // Keep track of all erased ops. 410 DenseSet<Operation *> erasedOps; 411 412 // Bufferize all ops. 413 BufferizationRewriter rewriter(op->getContext(), erasedOps, toMemrefOps, 414 bufferizationState.getOptions(), opFilter); 415 for (unsigned i = 0; i < worklist.size(); ++i) { 416 Operation *op = worklist[i]; 417 // Skip ops that were erased. 418 if (erasedOps.contains(op)) 419 continue; 420 // Skip ops that are not bufferizable or not allowed. 421 auto bufferizableOp = options.dynCastBufferizableOp(op); 422 if (!bufferizableOp) 423 continue; 424 if (opFilter && !opFilter->isOpAllowed(op)) 425 continue; 426 // Skip ops that no longer have tensor semantics. 427 if (!hasTensorSemantics(op)) 428 continue; 429 // Bufferize the op. 430 rewriter.setInsertionPoint(op); 431 if (failed(bufferizableOp.bufferize(rewriter, bufferizationState))) 432 return op->emitError("failed to bufferize op"); 433 } 434 435 // Fold all to_memref(to_tensor(x)) pairs. 436 for (Operation *op : toMemrefOps) { 437 rewriter.setInsertionPoint(op); 438 (void)bufferization::foldToMemrefToTensorPair(rewriter, 439 cast<ToMemrefOp>(op)); 440 } 441 442 /// Check the result of bufferization. Return an error if an op was not 443 /// bufferized, unless partial bufferization is allowed. 444 if (bufferizationState.getOptions().allowUnknownOps) 445 return success(); 446 447 for (Operation *op : worklist) { 448 // Skip ops that are entirely gone. 449 if (erasedOps.contains(op)) 450 continue; 451 // Ops that no longer have tensor semantics (because they were updated 452 // in-place) are allowed. 453 if (!hasTensorSemantics(op)) 454 continue; 455 // Continue ops that are not allowed. 456 if (!options.isOpAllowed(op)) 457 continue; 458 if (opFilter && !opFilter->isOpAllowed(op)) 459 continue; 460 // Ops without any uses and no side effects will fold away. 461 if (op->getUses().empty() && MemoryEffectOpInterface::hasNoEffect(op)) 462 continue; 463 return op->emitError("op was not bufferized"); 464 } 465 466 return success(); 467 } 468 469 namespace { 470 /// This a "no analysis, always copy" AnalysisState. In the absence of an 471 /// analysis, a buffer must be copied each time it is written to. Therefore, all 472 /// OpOperands that bufferize to a memory write must bufferize out-of-place. 473 class AlwaysCopyAnalysisState : public AnalysisState { 474 public: 475 AlwaysCopyAnalysisState(const BufferizationOptions &options) 476 : AnalysisState(options) { 477 // Note: Allocations must be deallocated with a subsequent run of the buffer 478 // deallocation pass. 479 assert(!options.createDeallocs && 480 "cannot create deallocs with AlwaysCopyBufferizationState"); 481 } 482 483 AlwaysCopyAnalysisState(const AlwaysCopyAnalysisState &) = delete; 484 485 virtual ~AlwaysCopyAnalysisState() = default; 486 487 /// Return `true` if the given OpResult has been decided to bufferize inplace. 488 bool isInPlace(OpOperand &opOperand) const override { 489 // OpOperands that bufferize to a memory write are out-of-place, i.e., an 490 // alloc and copy is inserted. 491 return !bufferizesToMemoryWrite(opOperand); 492 } 493 494 /// Return true if `v1` and `v2` bufferize to equivalent buffers. 495 bool areEquivalentBufferizedValues(Value v1, Value v2) const override { 496 // There is no analysis, so we do not know if the values are equivalent. The 497 // conservative answer is "false". 498 return false; 499 } 500 501 /// Return true if `v1` and `v2` may bufferize to aliasing buffers. 502 bool areAliasingBufferizedValues(Value v1, Value v2) const override { 503 // There is no analysis, so we do not know if the values are equivalent. The 504 // conservative answer is "true". 505 return true; 506 } 507 508 /// Return `true` if the given tensor has undefined contents. 509 bool hasUndefinedContents(OpOperand *opOperand) const override { 510 // There is no analysis, so the conservative answer is "false". 511 return false; 512 } 513 514 /// Return true if the given tensor (or an aliasing tensor) is yielded from 515 /// the containing block. Also include all aliasing tensors in the same block. 516 bool isTensorYielded(Value tensor) const override { 517 // There is no analysis, so conservatively answer "true". 518 return true; 519 } 520 }; 521 } // namespace 522 523 LogicalResult bufferization::bufferizeOp(Operation *op, 524 const BufferizationOptions &options) { 525 AlwaysCopyAnalysisState state(options); 526 return bufferizeOp(op, state); 527 } 528 529 BufferizationOptions bufferization::getPartialBufferizationOptions() { 530 BufferizationOptions options; 531 options.allowUnknownOps = true; 532 options.createDeallocs = false; 533 options.unknownTypeConversion = 534 BufferizationOptions::LayoutMapOption::IdentityLayoutMap; 535 return options; 536 } 537