1 //===----------------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
10 #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
11 #include "mlir/Dialect/Bufferization/IR/Bufferization.h"
12 #include "mlir/Dialect/Func/IR/FuncOps.h"
13 #include "mlir/Dialect/MemRef/IR/MemRef.h"
14 #include "mlir/Dialect/MemRef/Utils/MemRefUtils.h"
15 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
16 #include "mlir/Dialect/Tensor/IR/Tensor.h"
17 #include "mlir/IR/Matchers.h"
18 
19 using namespace mlir;
20 using namespace mlir::bufferization;
21 
22 //===----------------------------------------------------------------------===//
23 // Helper functions
24 //===----------------------------------------------------------------------===//
25 
26 FailureOr<Value>
27 mlir::bufferization::castOrReallocMemRefValue(OpBuilder &b, Value value,
28                                               MemRefType destType) {
29   auto srcType = value.getType().cast<MemRefType>();
30 
31   // Element type, rank and memory space must match.
32   if (srcType.getElementType() != destType.getElementType())
33     return failure();
34   if (srcType.getMemorySpaceAsInt() != destType.getMemorySpaceAsInt())
35     return failure();
36   if (srcType.getRank() != destType.getRank())
37     return failure();
38 
39   // In case the affine maps are different, we may need to use a copy if we go
40   // from dynamic to static offset or stride (the canonicalization cannot know
41   // at this point that it is really cast compatible).
42   auto isGuaranteedCastCompatible = [](MemRefType source, MemRefType target) {
43     int64_t sourceOffset, targetOffset;
44     SmallVector<int64_t, 4> sourceStrides, targetStrides;
45     if (failed(getStridesAndOffset(source, sourceStrides, sourceOffset)) ||
46         failed(getStridesAndOffset(target, targetStrides, targetOffset)))
47       return false;
48     auto dynamicToStatic = [](int64_t a, int64_t b) {
49       return a == MemRefType::getDynamicStrideOrOffset() &&
50              b != MemRefType::getDynamicStrideOrOffset();
51     };
52     if (dynamicToStatic(sourceOffset, targetOffset))
53       return false;
54     for (auto it : zip(sourceStrides, targetStrides))
55       if (dynamicToStatic(std::get<0>(it), std::get<1>(it)))
56         return false;
57     return true;
58   };
59 
60   // Note: If `areCastCompatible`, a cast is valid, but may fail at runtime. To
61   // ensure that we only generate casts that always succeed at runtime, we check
62   // a fix extra conditions in `isGuaranteedCastCompatible`.
63   if (memref::CastOp::areCastCompatible(srcType, destType) &&
64       isGuaranteedCastCompatible(srcType, destType)) {
65     Value casted = b.create<memref::CastOp>(value.getLoc(), destType, value);
66     return casted;
67   }
68 
69   auto loc = value.getLoc();
70   SmallVector<Value, 4> dynamicOperands;
71   for (int i = 0; i < destType.getRank(); ++i) {
72     if (destType.getShape()[i] != ShapedType::kDynamicSize)
73       continue;
74     auto index = b.createOrFold<arith::ConstantIndexOp>(loc, i);
75     Value size = b.create<memref::DimOp>(loc, value, index);
76     dynamicOperands.push_back(size);
77   }
78   // TODO: Use alloc/memcpy callback from BufferizationOptions if called via
79   // BufferizableOpInterface impl of ToMemrefOp.
80   Value copy = b.create<memref::AllocOp>(loc, destType, dynamicOperands);
81   b.create<memref::CopyOp>(loc, value, copy);
82   return copy;
83 }
84 
85 /// Try to fold to_memref(to_tensor(x)). If x's type and the result type of the
86 /// to_memref op are different, a memref.cast is needed.
87 LogicalResult
88 mlir::bufferization::foldToMemrefToTensorPair(RewriterBase &rewriter,
89                                               ToMemrefOp toMemref) {
90   auto memrefToTensor = toMemref.getTensor().getDefiningOp<ToTensorOp>();
91   if (!memrefToTensor)
92     return failure();
93 
94   Type srcType = memrefToTensor.getMemref().getType();
95   Type destType = toMemref.getType();
96 
97   // Directly rewrite if the type did not change.
98   if (srcType == destType) {
99     rewriter.replaceOp(toMemref, memrefToTensor.getMemref());
100     return success();
101   }
102 
103   auto rankedSrcType = srcType.dyn_cast<MemRefType>();
104   auto rankedDestType = destType.dyn_cast<MemRefType>();
105   auto unrankedSrcType = srcType.dyn_cast<UnrankedMemRefType>();
106 
107   // Ranked memref -> Ranked memref cast.
108   if (rankedSrcType && rankedDestType) {
109     FailureOr<Value> replacement = castOrReallocMemRefValue(
110         rewriter, memrefToTensor.getMemref(), rankedDestType);
111     if (failed(replacement))
112       return failure();
113 
114     rewriter.replaceOp(toMemref, *replacement);
115     return success();
116   }
117 
118   // Unranked memref -> Ranked memref cast: May require a copy.
119   // TODO: Not implemented at the moment.
120   if (unrankedSrcType && rankedDestType)
121     return failure();
122 
123   // Unranked memref -> unranked memref cast
124   // Ranked memref -> unranked memref cast: No copy needed.
125   assert(memref::CastOp::areCastCompatible(srcType, destType) &&
126          "expected that types are cast compatible");
127   rewriter.replaceOpWithNewOp<memref::CastOp>(toMemref, destType,
128                                               memrefToTensor.getMemref());
129   return success();
130 }
131 
132 void mlir::bufferization::populateDynamicDimSizes(
133     OpBuilder &b, Location loc, Value shapedValue,
134     SmallVector<Value> &dynamicDims) {
135   auto shapedType = shapedValue.getType().cast<ShapedType>();
136   for (int64_t i = 0; i < shapedType.getRank(); ++i) {
137     if (shapedType.isDynamicDim(i)) {
138       if (shapedType.isa<MemRefType>()) {
139         dynamicDims.push_back(b.create<memref::DimOp>(loc, shapedValue, i));
140       } else {
141         assert(shapedType.isa<RankedTensorType>() && "expected tensor");
142         dynamicDims.push_back(b.create<tensor::DimOp>(loc, shapedValue, i));
143       }
144     }
145   }
146 }
147 
148 //===----------------------------------------------------------------------===//
149 // AllocTensorOp
150 //===----------------------------------------------------------------------===//
151 
152 LogicalResult AllocTensorOp::bufferize(RewriterBase &rewriter,
153                                        const BufferizationOptions &options) {
154   OpBuilder::InsertionGuard g(rewriter);
155   Operation *op = this->getOperation();
156   Location loc = getLoc();
157 
158   // Nothing to do for dead AllocTensorOps.
159   if (getOperation()->getUses().empty()) {
160     rewriter.eraseOp(getOperation());
161     return success();
162   }
163 
164   // Get "copy" buffer.
165   Value copyBuffer;
166   if (getCopy()) {
167     FailureOr<Value> maybeCopyBuffer = getBuffer(rewriter, getCopy(), options);
168     if (failed(maybeCopyBuffer))
169       return failure();
170     copyBuffer = *maybeCopyBuffer;
171   }
172 
173   // Compute memory space of this allocation.
174   unsigned memorySpace;
175   if (getMemorySpace().has_value()) {
176     memorySpace = *getMemorySpace();
177   } else if (getCopy()) {
178     memorySpace =
179         copyBuffer.getType().cast<BaseMemRefType>().getMemorySpaceAsInt();
180   } else if (options.defaultMemorySpace.has_value()) {
181     memorySpace = *options.defaultMemorySpace;
182   } else {
183     return op->emitError("could not infer memory space");
184   }
185 
186   // Create memory allocation.
187   auto allocType =
188       MemRefType::get(getType().getShape(), getType().getElementType(),
189                       AffineMap(), memorySpace);
190   SmallVector<Value> dynamicDims = getDynamicSizes();
191   if (getCopy()) {
192     assert(dynamicDims.empty() && "expected either `copy` or `dynamicDims`");
193     populateDynamicDimSizes(rewriter, loc, copyBuffer, dynamicDims);
194   }
195   FailureOr<Value> alloc =
196       options.createAlloc(rewriter, loc, allocType, dynamicDims);
197   if (failed(alloc))
198     return failure();
199 
200   // Create memory copy (if any).
201   if (getCopy()) {
202     if (failed(options.createMemCpy(rewriter, loc, copyBuffer, *alloc)))
203       return failure();
204   }
205 
206   // Should the buffer be deallocated?
207   bool dealloc =
208       shouldDeallocateOpResult(getResult().cast<OpResult>(), options);
209 
210   // Replace op.
211   replaceOpWithBufferizedValues(rewriter, getOperation(), *alloc);
212 
213   // Create buffer deallocation (if requested).
214   if (!dealloc)
215     return success();
216 
217   rewriter.setInsertionPoint(rewriter.getInsertionBlock()->getTerminator());
218   if (failed(options.createDealloc(rewriter, loc, *alloc)))
219     return failure();
220   return success();
221 }
222 
223 bool AllocTensorOp::isMemoryWrite(OpResult opResult,
224                                   const AnalysisState &state) {
225   // AllocTensorOps do not write unless they have a `copy` value.
226   return static_cast<bool>(getCopy());
227 }
228 
229 bool AllocTensorOp::bufferizesToMemoryRead(OpOperand &opOperand,
230                                            const AnalysisState &state) {
231   assert(opOperand.getOperandNumber() == getNumOperands() - 1 &&
232          "expected copy operand");
233   return true;
234 }
235 
236 bool AllocTensorOp::bufferizesToMemoryWrite(OpOperand &opOperand,
237                                             const AnalysisState &state) {
238   assert(opOperand.getOperandNumber() == getNumOperands() - 1 &&
239          "expected copy operand");
240   return false;
241 }
242 
243 SmallVector<OpResult>
244 AllocTensorOp::getAliasingOpResult(OpOperand &opOperand,
245                                    const AnalysisState &state) {
246   // This is a new allocation. It does not alias with any other buffer.
247   return {};
248 }
249 
250 LogicalResult AllocTensorOp::verify() {
251   if (getCopy() && !getDynamicSizes().empty())
252     return emitError("dynamic sizes not needed when copying a tensor");
253   if (!getCopy() && getType().getNumDynamicDims() !=
254                         static_cast<int64_t>(getDynamicSizes().size()))
255     return emitError("expected ")
256            << getType().getNumDynamicDims() << " dynamic sizes";
257   if (getCopy() && getCopy().getType() != getType())
258     return emitError("expected that `copy` and return type match");
259 
260   // For sparse tensor allocation, we require that none of its
261   // uses escapes the function boundary directly.
262   if (sparse_tensor::getSparseTensorEncoding(getType())) {
263     for (auto &use : getOperation()->getUses())
264       if (isa<func::ReturnOp, func::CallOp, func::CallIndirectOp>(
265               use.getOwner()))
266         return emitError("sparse tensor allocation should not escape function");
267   }
268 
269   return success();
270 }
271 
272 void AllocTensorOp::build(OpBuilder &builder, OperationState &result,
273                           RankedTensorType type, ValueRange dynamicSizes) {
274   build(builder, result, type, dynamicSizes, /*copy=*/Value(),
275         /*memory_space=*/IntegerAttr());
276 }
277 
278 void AllocTensorOp::build(OpBuilder &builder, OperationState &result,
279                           RankedTensorType type, ValueRange dynamicSizes,
280                           Value copy) {
281   build(builder, result, type, dynamicSizes, copy,
282         /*memory_space=*/IntegerAttr());
283 }
284 
285 namespace {
286 /// Change the type of the result of a `bufferization.alloc_tensor` by making
287 /// the result type statically sized along dimension that in the original
288 /// operation where defined as dynamic, but the size was defined using a
289 /// `constant` op. For example:
290 ///
291 ///  %c5 = arith.constant 5: index
292 ///  %0 = bufferization.alloc_tensor(%arg0, %c5) : tensor<?x?xf32>
293 ///
294 ///  to
295 ///
296 ///  %0 = bufferization.alloc_tensor(%arg0) : tensor<?x5xf32>
297 struct ReplaceStaticShapeDims : OpRewritePattern<AllocTensorOp> {
298   using OpRewritePattern<AllocTensorOp>::OpRewritePattern;
299 
300   LogicalResult matchAndRewrite(AllocTensorOp op,
301                                 PatternRewriter &rewriter) const override {
302     if (op.getCopy())
303       return failure();
304     SmallVector<int64_t> newShape = llvm::to_vector(op.getType().getShape());
305     SmallVector<Value> newDynamicSizes;
306     unsigned int dynValCounter = 0;
307     for (int64_t i = 0; i < op.getType().getRank(); ++i) {
308       if (!op.isDynamicDim(i))
309         continue;
310       Value value = op.getDynamicSizes()[dynValCounter++];
311       APInt intVal;
312       if (matchPattern(value, m_ConstantInt(&intVal))) {
313         newShape[i] = intVal.getSExtValue();
314       } else {
315         newDynamicSizes.push_back(value);
316       }
317     }
318     RankedTensorType newType = RankedTensorType::get(
319         newShape, op.getType().getElementType(), op.getType().getEncoding());
320     if (newType == op.getType())
321       return failure();
322     auto newOp = rewriter.create<AllocTensorOp>(
323         op.getLoc(), newType, newDynamicSizes, /*copy=*/Value());
324     rewriter.replaceOpWithNewOp<tensor::CastOp>(op, op.getType(), newOp);
325     return success();
326   }
327 };
328 
329 struct FoldDimOfAllocTensorOp : public OpRewritePattern<tensor::DimOp> {
330   using OpRewritePattern<tensor::DimOp>::OpRewritePattern;
331 
332   LogicalResult matchAndRewrite(tensor::DimOp dimOp,
333                                 PatternRewriter &rewriter) const override {
334     Optional<int64_t> maybeConstantIndex = dimOp.getConstantIndex();
335     auto allocTensorOp = dimOp.getSource().getDefiningOp<AllocTensorOp>();
336     if (!allocTensorOp || !maybeConstantIndex)
337       return failure();
338     if (!allocTensorOp.getType().isDynamicDim(*maybeConstantIndex))
339       return failure();
340     rewriter.replaceOp(
341         dimOp, allocTensorOp.getDynamicSize(rewriter, *maybeConstantIndex));
342     return success();
343   }
344 };
345 } // namespace
346 
347 void AllocTensorOp::getCanonicalizationPatterns(RewritePatternSet &results,
348                                                 MLIRContext *ctx) {
349   results.add<FoldDimOfAllocTensorOp, ReplaceStaticShapeDims>(ctx);
350 }
351 
352 LogicalResult AllocTensorOp::reifyResultShapes(
353     OpBuilder &builder, ReifiedRankedShapedTypeDims &reifiedReturnShapes) {
354   auto shapes = llvm::to_vector<4>(llvm::map_range(
355       llvm::seq<int64_t>(0, getType().getRank()), [&](int64_t dim) -> Value {
356         if (isDynamicDim(dim))
357           return getDynamicSize(builder, dim);
358         return builder.create<arith::ConstantIndexOp>(getLoc(),
359                                                       getStaticSize(dim));
360       }));
361   reifiedReturnShapes.emplace_back(std::move(shapes));
362   return success();
363 }
364 
365 ParseResult AllocTensorOp::parse(OpAsmParser &parser, OperationState &result) {
366   SmallVector<OpAsmParser::UnresolvedOperand> dynamicSizesOperands;
367   if (parser.parseLParen() || parser.parseOperandList(dynamicSizesOperands) ||
368       parser.parseRParen())
369     return failure();
370   ParseResult copyKeyword = parser.parseOptionalKeyword("copy");
371   OpAsmParser::UnresolvedOperand copyOperand;
372   if (copyKeyword.succeeded())
373     if (parser.parseLParen() || parser.parseOperand(copyOperand) ||
374         parser.parseRParen())
375       return failure();
376   if (parser.parseOptionalAttrDict(result.attributes) || parser.parseColon())
377     return failure();
378 
379   TensorType type;
380   if (parser.parseCustomTypeWithFallback(type))
381     return failure();
382   result.addTypes(type);
383 
384   Type indexType = parser.getBuilder().getIndexType();
385   if (parser.resolveOperands(dynamicSizesOperands, indexType, result.operands))
386     return failure();
387   if (copyKeyword.succeeded())
388     if (parser.resolveOperand(copyOperand, type, result.operands))
389       return failure();
390   result.addAttribute(AllocTensorOp::getOperandSegmentSizeAttr(),
391                       parser.getBuilder().getI32VectorAttr(
392                           {static_cast<int32_t>(dynamicSizesOperands.size()),
393                            static_cast<int32_t>(copyKeyword.succeeded())}));
394   return success();
395 }
396 
397 void AllocTensorOp::print(OpAsmPrinter &p) {
398   p << "(" << getDynamicSizes() << ")";
399   if (getCopy())
400     p << " copy(" << getCopy() << ")";
401   p.printOptionalAttrDict((*this)->getAttrs(), /*elidedAttrs=*/{
402                               AllocTensorOp::getOperandSegmentSizeAttr()});
403   p << " : ";
404   auto type = getResult().getType();
405   if (auto validType = type.dyn_cast<::mlir::TensorType>())
406     p.printStrippedAttrOrType(validType);
407   else
408     p << type;
409 }
410 
411 Value AllocTensorOp::getDynamicSize(OpBuilder &b, unsigned idx) {
412   assert(isDynamicDim(idx) && "expected dynamic dim");
413   if (getCopy())
414     return b.create<tensor::DimOp>(getLoc(), getCopy(), idx);
415   return getOperand(getIndexOfDynamicSize(idx));
416 }
417 
418 //===----------------------------------------------------------------------===//
419 // CloneOp
420 //===----------------------------------------------------------------------===//
421 
422 void CloneOp::getEffects(
423     SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
424         &effects) {
425   effects.emplace_back(MemoryEffects::Read::get(), getInput(),
426                        SideEffects::DefaultResource::get());
427   effects.emplace_back(MemoryEffects::Write::get(), getOutput(),
428                        SideEffects::DefaultResource::get());
429   effects.emplace_back(MemoryEffects::Allocate::get(), getOutput(),
430                        SideEffects::DefaultResource::get());
431 }
432 
433 OpFoldResult CloneOp::fold(ArrayRef<Attribute> operands) {
434   return succeeded(memref::foldMemRefCast(*this)) ? getResult() : Value();
435 }
436 
437 namespace {
438 
439 /// Merge the clone and its source (by converting the clone to a cast) when
440 /// possible.
441 struct SimplifyClones : public OpRewritePattern<CloneOp> {
442   using OpRewritePattern<CloneOp>::OpRewritePattern;
443 
444   LogicalResult matchAndRewrite(CloneOp cloneOp,
445                                 PatternRewriter &rewriter) const override {
446     if (cloneOp.use_empty()) {
447       rewriter.eraseOp(cloneOp);
448       return success();
449     }
450 
451     Value source = cloneOp.getInput();
452 
453     // This only finds dealloc operations for the immediate value. It should
454     // also consider aliases. That would also make the safety check below
455     // redundant.
456     llvm::Optional<Operation *> maybeCloneDeallocOp =
457         memref::findDealloc(cloneOp.getOutput());
458     // Skip if either of them has > 1 deallocate operations.
459     if (!maybeCloneDeallocOp.has_value())
460       return failure();
461     llvm::Optional<Operation *> maybeSourceDeallocOp =
462         memref::findDealloc(source);
463     if (!maybeSourceDeallocOp.has_value())
464       return failure();
465     Operation *cloneDeallocOp = *maybeCloneDeallocOp;
466     Operation *sourceDeallocOp = *maybeSourceDeallocOp;
467 
468     // If both are deallocated in the same block, their in-block lifetimes
469     // might not fully overlap, so we cannot decide which one to drop.
470     if (cloneDeallocOp && sourceDeallocOp &&
471         cloneDeallocOp->getBlock() == sourceDeallocOp->getBlock())
472       return failure();
473 
474     Block *currentBlock = cloneOp->getBlock();
475     Operation *redundantDealloc = nullptr;
476     if (cloneDeallocOp && cloneDeallocOp->getBlock() == currentBlock) {
477       redundantDealloc = cloneDeallocOp;
478     } else if (sourceDeallocOp && sourceDeallocOp->getBlock() == currentBlock) {
479       redundantDealloc = sourceDeallocOp;
480     }
481 
482     if (!redundantDealloc)
483       return failure();
484 
485     // Safety check that there are no other deallocations inbetween
486     // cloneOp and redundantDealloc, as otherwise we might deallocate an alias
487     // of source before the uses of the clone. With alias information, we could
488     // restrict this to only fail of the dealloc's operand is an alias
489     // of the source.
490     for (Operation *pos = cloneOp->getNextNode(); pos != redundantDealloc;
491          pos = pos->getNextNode()) {
492       auto effectInterface = dyn_cast<MemoryEffectOpInterface>(pos);
493       if (!effectInterface)
494         continue;
495       if (effectInterface.hasEffect<MemoryEffects::Free>())
496         return failure();
497     }
498 
499     rewriter.replaceOpWithNewOp<memref::CastOp>(cloneOp, cloneOp.getType(),
500                                                 source);
501     rewriter.eraseOp(redundantDealloc);
502     return success();
503   }
504 };
505 
506 } // namespace
507 
508 void CloneOp::getCanonicalizationPatterns(RewritePatternSet &results,
509                                           MLIRContext *context) {
510   results.add<SimplifyClones>(context);
511 }
512 
513 //===----------------------------------------------------------------------===//
514 // DeallocTensorOp
515 //===----------------------------------------------------------------------===//
516 
517 LogicalResult DeallocTensorOp::bufferize(RewriterBase &rewriter,
518                                          const BufferizationOptions &options) {
519   FailureOr<Value> buffer = getBuffer(rewriter, getTensor(), options);
520   if (failed(buffer))
521     return failure();
522   if (failed(options.createDealloc(rewriter, getLoc(), *buffer)))
523     return failure();
524   rewriter.eraseOp(getOperation());
525   return success();
526 }
527 
528 //===----------------------------------------------------------------------===//
529 // ToTensorOp
530 //===----------------------------------------------------------------------===//
531 
532 OpFoldResult ToTensorOp::fold(ArrayRef<Attribute>) {
533   if (auto toMemref = getMemref().getDefiningOp<ToMemrefOp>())
534     // Approximate alias analysis by conservatively folding only when no there
535     // is no interleaved operation.
536     if (toMemref->getBlock() == this->getOperation()->getBlock() &&
537         toMemref->getNextNode() == this->getOperation())
538       return toMemref.getTensor();
539   return {};
540 }
541 
542 namespace {
543 struct DimOfToTensorFolder : public OpRewritePattern<tensor::DimOp> {
544   using OpRewritePattern<tensor::DimOp>::OpRewritePattern;
545 
546   LogicalResult matchAndRewrite(tensor::DimOp dimOp,
547                                 PatternRewriter &rewriter) const override {
548     auto memrefToTensorOp = dimOp.getSource().getDefiningOp<ToTensorOp>();
549     if (!memrefToTensorOp)
550       return failure();
551 
552     rewriter.replaceOpWithNewOp<memref::DimOp>(
553         dimOp, memrefToTensorOp.getMemref(), dimOp.getIndex());
554     return success();
555   }
556 };
557 } // namespace
558 
559 void ToTensorOp::getCanonicalizationPatterns(RewritePatternSet &results,
560                                              MLIRContext *context) {
561   results.add<DimOfToTensorFolder>(context);
562 }
563 
564 //===----------------------------------------------------------------------===//
565 // ToMemrefOp
566 //===----------------------------------------------------------------------===//
567 
568 OpFoldResult ToMemrefOp::fold(ArrayRef<Attribute>) {
569   if (auto memrefToTensor = getTensor().getDefiningOp<ToTensorOp>())
570     if (memrefToTensor.getMemref().getType() == getType())
571       return memrefToTensor.getMemref();
572   return {};
573 }
574 
575 namespace {
576 
577 /// Replace tensor.cast + to_memref by to_memref + memref.cast.
578 struct ToMemrefOfCast : public OpRewritePattern<ToMemrefOp> {
579   using OpRewritePattern<ToMemrefOp>::OpRewritePattern;
580 
581   LogicalResult matchAndRewrite(ToMemrefOp toMemref,
582                                 PatternRewriter &rewriter) const final {
583     auto tensorCastOperand =
584         toMemref.getOperand().getDefiningOp<tensor::CastOp>();
585     if (!tensorCastOperand)
586       return failure();
587     auto srcTensorType =
588         tensorCastOperand.getOperand().getType().dyn_cast<RankedTensorType>();
589     if (!srcTensorType)
590       return failure();
591     auto memrefType = MemRefType::get(srcTensorType.getShape(),
592                                       srcTensorType.getElementType());
593     Value memref = rewriter.create<ToMemrefOp>(toMemref.getLoc(), memrefType,
594                                                tensorCastOperand.getOperand());
595     rewriter.replaceOpWithNewOp<memref::CastOp>(toMemref, toMemref.getType(),
596                                                 memref);
597     return success();
598   }
599 };
600 
601 /// Canonicalize bufferization.to_tensor + bufferization.to_memref. Insert a
602 /// cast if necessary.
603 struct ToMemrefToTensorFolding : public OpRewritePattern<ToMemrefOp> {
604   using OpRewritePattern<ToMemrefOp>::OpRewritePattern;
605 
606   LogicalResult matchAndRewrite(ToMemrefOp toMemref,
607                                 PatternRewriter &rewriter) const final {
608     return foldToMemrefToTensorPair(rewriter, toMemref);
609   }
610 };
611 
612 /// Fold a load on a to_memref operation into an tensor.extract on the
613 /// corresponding tensor.
614 struct LoadOfToMemref : public OpRewritePattern<memref::LoadOp> {
615   using OpRewritePattern<memref::LoadOp>::OpRewritePattern;
616 
617   LogicalResult matchAndRewrite(memref::LoadOp load,
618                                 PatternRewriter &rewriter) const override {
619     auto toMemref = load.getMemref().getDefiningOp<ToMemrefOp>();
620     if (!toMemref)
621       return failure();
622 
623     rewriter.replaceOpWithNewOp<tensor::ExtractOp>(load, toMemref.getTensor(),
624                                                    load.getIndices());
625     return success();
626   }
627 };
628 
629 /// Fold dim of a to_memref into the dim of the tensor.
630 struct DimOfCastOp : public OpRewritePattern<memref::DimOp> {
631   using OpRewritePattern<memref::DimOp>::OpRewritePattern;
632 
633   LogicalResult matchAndRewrite(memref::DimOp dimOp,
634                                 PatternRewriter &rewriter) const override {
635     auto castOp = dimOp.getSource().getDefiningOp<ToMemrefOp>();
636     if (!castOp)
637       return failure();
638     Value newSource = castOp.getOperand();
639     rewriter.replaceOpWithNewOp<tensor::DimOp>(dimOp, newSource,
640                                                dimOp.getIndex());
641     return success();
642   }
643 };
644 
645 } // namespace
646 
647 void ToMemrefOp::getCanonicalizationPatterns(RewritePatternSet &results,
648                                              MLIRContext *context) {
649   results.add<DimOfCastOp, LoadOfToMemref, ToMemrefOfCast,
650               ToMemrefToTensorFolding>(context);
651 }
652 
653 LogicalResult ToMemrefOp::bufferize(RewriterBase &rewriter,
654                                     const BufferizationOptions &options) {
655   // Fold to_memref(to_tensor(x)) to x. Insert a cast if necessary.
656   (void)foldToMemrefToTensorPair(rewriter, *this);
657   // Note: The return value of `bufferize` indicates whether there was an error
658   // or not. (And not whether the pattern matched or not.)
659   return success();
660 }
661 
662 Optional<Operation *> CloneOp::buildDealloc(OpBuilder &builder, Value alloc) {
663   return builder.create<memref::DeallocOp>(alloc.getLoc(), alloc)
664       .getOperation();
665 }
666 
667 Optional<Value> CloneOp::buildClone(OpBuilder &builder, Value alloc) {
668   return builder.create<CloneOp>(alloc.getLoc(), alloc).getResult();
669 }
670 
671 //===----------------------------------------------------------------------===//
672 // TableGen'd op method definitions
673 //===----------------------------------------------------------------------===//
674 
675 #define GET_OP_CLASSES
676 #include "mlir/Dialect/Bufferization/IR/BufferizationOps.cpp.inc"
677