1 //===----------------------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 10 #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h" 11 #include "mlir/Dialect/Bufferization/IR/Bufferization.h" 12 #include "mlir/Dialect/Func/IR/FuncOps.h" 13 #include "mlir/Dialect/MemRef/IR/MemRef.h" 14 #include "mlir/Dialect/MemRef/Utils/MemRefUtils.h" 15 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" 16 #include "mlir/Dialect/Tensor/IR/Tensor.h" 17 #include "mlir/IR/Matchers.h" 18 19 using namespace mlir; 20 using namespace mlir::bufferization; 21 22 //===----------------------------------------------------------------------===// 23 // Helper functions 24 //===----------------------------------------------------------------------===// 25 26 FailureOr<Value> 27 mlir::bufferization::castOrReallocMemRefValue(OpBuilder &b, Value value, 28 MemRefType destType) { 29 auto srcType = value.getType().cast<MemRefType>(); 30 31 // Element type, rank and memory space must match. 32 if (srcType.getElementType() != destType.getElementType()) 33 return failure(); 34 if (srcType.getMemorySpaceAsInt() != destType.getMemorySpaceAsInt()) 35 return failure(); 36 if (srcType.getRank() != destType.getRank()) 37 return failure(); 38 39 // In case the affine maps are different, we may need to use a copy if we go 40 // from dynamic to static offset or stride (the canonicalization cannot know 41 // at this point that it is really cast compatible). 42 auto isGuaranteedCastCompatible = [](MemRefType source, MemRefType target) { 43 int64_t sourceOffset, targetOffset; 44 SmallVector<int64_t, 4> sourceStrides, targetStrides; 45 if (failed(getStridesAndOffset(source, sourceStrides, sourceOffset)) || 46 failed(getStridesAndOffset(target, targetStrides, targetOffset))) 47 return false; 48 auto dynamicToStatic = [](int64_t a, int64_t b) { 49 return a == MemRefType::getDynamicStrideOrOffset() && 50 b != MemRefType::getDynamicStrideOrOffset(); 51 }; 52 if (dynamicToStatic(sourceOffset, targetOffset)) 53 return false; 54 for (auto it : zip(sourceStrides, targetStrides)) 55 if (dynamicToStatic(std::get<0>(it), std::get<1>(it))) 56 return false; 57 return true; 58 }; 59 60 // Note: If `areCastCompatible`, a cast is valid, but may fail at runtime. To 61 // ensure that we only generate casts that always succeed at runtime, we check 62 // a fix extra conditions in `isGuaranteedCastCompatible`. 63 if (memref::CastOp::areCastCompatible(srcType, destType) && 64 isGuaranteedCastCompatible(srcType, destType)) { 65 Value casted = b.create<memref::CastOp>(value.getLoc(), destType, value); 66 return casted; 67 } 68 69 auto loc = value.getLoc(); 70 SmallVector<Value, 4> dynamicOperands; 71 for (int i = 0; i < destType.getRank(); ++i) { 72 if (destType.getShape()[i] != ShapedType::kDynamicSize) 73 continue; 74 auto index = b.createOrFold<arith::ConstantIndexOp>(loc, i); 75 Value size = b.create<memref::DimOp>(loc, value, index); 76 dynamicOperands.push_back(size); 77 } 78 // TODO: Use alloc/memcpy callback from BufferizationOptions if called via 79 // BufferizableOpInterface impl of ToMemrefOp. 80 Value copy = b.create<memref::AllocOp>(loc, destType, dynamicOperands); 81 b.create<memref::CopyOp>(loc, value, copy); 82 return copy; 83 } 84 85 /// Try to fold to_memref(to_tensor(x)). If x's type and the result type of the 86 /// to_memref op are different, a memref.cast is needed. 87 LogicalResult 88 mlir::bufferization::foldToMemrefToTensorPair(RewriterBase &rewriter, 89 ToMemrefOp toMemref) { 90 auto memrefToTensor = toMemref.getTensor().getDefiningOp<ToTensorOp>(); 91 if (!memrefToTensor) 92 return failure(); 93 94 Type srcType = memrefToTensor.getMemref().getType(); 95 Type destType = toMemref.getType(); 96 97 // Directly rewrite if the type did not change. 98 if (srcType == destType) { 99 rewriter.replaceOp(toMemref, memrefToTensor.getMemref()); 100 return success(); 101 } 102 103 auto rankedSrcType = srcType.dyn_cast<MemRefType>(); 104 auto rankedDestType = destType.dyn_cast<MemRefType>(); 105 auto unrankedSrcType = srcType.dyn_cast<UnrankedMemRefType>(); 106 107 // Ranked memref -> Ranked memref cast. 108 if (rankedSrcType && rankedDestType) { 109 FailureOr<Value> replacement = castOrReallocMemRefValue( 110 rewriter, memrefToTensor.getMemref(), rankedDestType); 111 if (failed(replacement)) 112 return failure(); 113 114 rewriter.replaceOp(toMemref, *replacement); 115 return success(); 116 } 117 118 // Unranked memref -> Ranked memref cast: May require a copy. 119 // TODO: Not implemented at the moment. 120 if (unrankedSrcType && rankedDestType) 121 return failure(); 122 123 // Unranked memref -> unranked memref cast 124 // Ranked memref -> unranked memref cast: No copy needed. 125 assert(memref::CastOp::areCastCompatible(srcType, destType) && 126 "expected that types are cast compatible"); 127 rewriter.replaceOpWithNewOp<memref::CastOp>(toMemref, destType, 128 memrefToTensor.getMemref()); 129 return success(); 130 } 131 132 void mlir::bufferization::populateDynamicDimSizes( 133 OpBuilder &b, Location loc, Value shapedValue, 134 SmallVector<Value> &dynamicDims) { 135 auto shapedType = shapedValue.getType().cast<ShapedType>(); 136 for (int64_t i = 0; i < shapedType.getRank(); ++i) { 137 if (shapedType.isDynamicDim(i)) { 138 if (shapedType.isa<MemRefType>()) { 139 dynamicDims.push_back(b.create<memref::DimOp>(loc, shapedValue, i)); 140 } else { 141 assert(shapedType.isa<RankedTensorType>() && "expected tensor"); 142 dynamicDims.push_back(b.create<tensor::DimOp>(loc, shapedValue, i)); 143 } 144 } 145 } 146 } 147 148 //===----------------------------------------------------------------------===// 149 // AllocTensorOp 150 //===----------------------------------------------------------------------===// 151 152 LogicalResult AllocTensorOp::bufferize(RewriterBase &rewriter, 153 const BufferizationOptions &options) { 154 OpBuilder::InsertionGuard g(rewriter); 155 Operation *op = this->getOperation(); 156 Location loc = getLoc(); 157 158 // Nothing to do for dead AllocTensorOps. 159 if (getOperation()->getUses().empty()) { 160 rewriter.eraseOp(getOperation()); 161 return success(); 162 } 163 164 // Get "copy" buffer. 165 Value copyBuffer; 166 if (getCopy()) { 167 FailureOr<Value> maybeCopyBuffer = getBuffer(rewriter, getCopy(), options); 168 if (failed(maybeCopyBuffer)) 169 return failure(); 170 copyBuffer = *maybeCopyBuffer; 171 } 172 173 // Compute memory space of this allocation. 174 unsigned memorySpace; 175 if (getMemorySpace().has_value()) { 176 memorySpace = *getMemorySpace(); 177 } else if (getCopy()) { 178 memorySpace = 179 copyBuffer.getType().cast<BaseMemRefType>().getMemorySpaceAsInt(); 180 } else if (options.defaultMemorySpace.has_value()) { 181 memorySpace = *options.defaultMemorySpace; 182 } else { 183 return op->emitError("could not infer memory space"); 184 } 185 186 // Create memory allocation. 187 auto allocType = 188 MemRefType::get(getType().getShape(), getType().getElementType(), 189 AffineMap(), memorySpace); 190 SmallVector<Value> dynamicDims = getDynamicSizes(); 191 if (getCopy()) { 192 assert(dynamicDims.empty() && "expected either `copy` or `dynamicDims`"); 193 populateDynamicDimSizes(rewriter, loc, copyBuffer, dynamicDims); 194 } 195 FailureOr<Value> alloc = 196 options.createAlloc(rewriter, loc, allocType, dynamicDims); 197 if (failed(alloc)) 198 return failure(); 199 200 // Create memory copy (if any). 201 if (getCopy()) { 202 if (failed(options.createMemCpy(rewriter, loc, copyBuffer, *alloc))) 203 return failure(); 204 } 205 206 // Should the buffer be deallocated? 207 bool dealloc = 208 shouldDeallocateOpResult(getResult().cast<OpResult>(), options); 209 210 // Replace op. 211 replaceOpWithBufferizedValues(rewriter, getOperation(), *alloc); 212 213 // Create buffer deallocation (if requested). 214 if (!dealloc) 215 return success(); 216 217 rewriter.setInsertionPoint(rewriter.getInsertionBlock()->getTerminator()); 218 if (failed(options.createDealloc(rewriter, loc, *alloc))) 219 return failure(); 220 return success(); 221 } 222 223 bool AllocTensorOp::isMemoryWrite(OpResult opResult, 224 const AnalysisState &state) { 225 // AllocTensorOps do not write unless they have a `copy` value. 226 return static_cast<bool>(getCopy()); 227 } 228 229 bool AllocTensorOp::bufferizesToMemoryRead(OpOperand &opOperand, 230 const AnalysisState &state) { 231 assert(opOperand.getOperandNumber() == getNumOperands() - 1 && 232 "expected copy operand"); 233 return true; 234 } 235 236 bool AllocTensorOp::bufferizesToMemoryWrite(OpOperand &opOperand, 237 const AnalysisState &state) { 238 assert(opOperand.getOperandNumber() == getNumOperands() - 1 && 239 "expected copy operand"); 240 return false; 241 } 242 243 SmallVector<OpResult> 244 AllocTensorOp::getAliasingOpResult(OpOperand &opOperand, 245 const AnalysisState &state) { 246 // This is a new allocation. It does not alias with any other buffer. 247 return {}; 248 } 249 250 LogicalResult AllocTensorOp::verify() { 251 if (getCopy() && !getDynamicSizes().empty()) 252 return emitError("dynamic sizes not needed when copying a tensor"); 253 if (!getCopy() && getType().getNumDynamicDims() != 254 static_cast<int64_t>(getDynamicSizes().size())) 255 return emitError("expected ") 256 << getType().getNumDynamicDims() << " dynamic sizes"; 257 if (getCopy() && getCopy().getType() != getType()) 258 return emitError("expected that `copy` and return type match"); 259 260 // For sparse tensor allocation, we require that none of its 261 // uses escapes the function boundary directly. 262 if (sparse_tensor::getSparseTensorEncoding(getType())) { 263 for (auto &use : getOperation()->getUses()) 264 if (isa<func::ReturnOp, func::CallOp, func::CallIndirectOp>( 265 use.getOwner())) 266 return emitError("sparse tensor allocation should not escape function"); 267 } 268 269 return success(); 270 } 271 272 void AllocTensorOp::build(OpBuilder &builder, OperationState &result, 273 RankedTensorType type, ValueRange dynamicSizes) { 274 build(builder, result, type, dynamicSizes, /*copy=*/Value(), 275 /*memory_space=*/IntegerAttr()); 276 } 277 278 void AllocTensorOp::build(OpBuilder &builder, OperationState &result, 279 RankedTensorType type, ValueRange dynamicSizes, 280 Value copy) { 281 build(builder, result, type, dynamicSizes, copy, 282 /*memory_space=*/IntegerAttr()); 283 } 284 285 namespace { 286 /// Change the type of the result of a `bufferization.alloc_tensor` by making 287 /// the result type statically sized along dimension that in the original 288 /// operation where defined as dynamic, but the size was defined using a 289 /// `constant` op. For example: 290 /// 291 /// %c5 = arith.constant 5: index 292 /// %0 = bufferization.alloc_tensor(%arg0, %c5) : tensor<?x?xf32> 293 /// 294 /// to 295 /// 296 /// %0 = bufferization.alloc_tensor(%arg0) : tensor<?x5xf32> 297 struct ReplaceStaticShapeDims : OpRewritePattern<AllocTensorOp> { 298 using OpRewritePattern<AllocTensorOp>::OpRewritePattern; 299 300 LogicalResult matchAndRewrite(AllocTensorOp op, 301 PatternRewriter &rewriter) const override { 302 if (op.getCopy()) 303 return failure(); 304 SmallVector<int64_t> newShape = llvm::to_vector(op.getType().getShape()); 305 SmallVector<Value> newDynamicSizes; 306 unsigned int dynValCounter = 0; 307 for (int64_t i = 0; i < op.getType().getRank(); ++i) { 308 if (!op.isDynamicDim(i)) 309 continue; 310 Value value = op.getDynamicSizes()[dynValCounter++]; 311 APInt intVal; 312 if (matchPattern(value, m_ConstantInt(&intVal))) { 313 newShape[i] = intVal.getSExtValue(); 314 } else { 315 newDynamicSizes.push_back(value); 316 } 317 } 318 RankedTensorType newType = RankedTensorType::get( 319 newShape, op.getType().getElementType(), op.getType().getEncoding()); 320 if (newType == op.getType()) 321 return failure(); 322 auto newOp = rewriter.create<AllocTensorOp>( 323 op.getLoc(), newType, newDynamicSizes, /*copy=*/Value()); 324 rewriter.replaceOpWithNewOp<tensor::CastOp>(op, op.getType(), newOp); 325 return success(); 326 } 327 }; 328 329 struct FoldDimOfAllocTensorOp : public OpRewritePattern<tensor::DimOp> { 330 using OpRewritePattern<tensor::DimOp>::OpRewritePattern; 331 332 LogicalResult matchAndRewrite(tensor::DimOp dimOp, 333 PatternRewriter &rewriter) const override { 334 Optional<int64_t> maybeConstantIndex = dimOp.getConstantIndex(); 335 auto allocTensorOp = dimOp.getSource().getDefiningOp<AllocTensorOp>(); 336 if (!allocTensorOp || !maybeConstantIndex) 337 return failure(); 338 if (!allocTensorOp.getType().isDynamicDim(*maybeConstantIndex)) 339 return failure(); 340 rewriter.replaceOp( 341 dimOp, allocTensorOp.getDynamicSize(rewriter, *maybeConstantIndex)); 342 return success(); 343 } 344 }; 345 } // namespace 346 347 void AllocTensorOp::getCanonicalizationPatterns(RewritePatternSet &results, 348 MLIRContext *ctx) { 349 results.add<FoldDimOfAllocTensorOp, ReplaceStaticShapeDims>(ctx); 350 } 351 352 LogicalResult AllocTensorOp::reifyResultShapes( 353 OpBuilder &builder, ReifiedRankedShapedTypeDims &reifiedReturnShapes) { 354 auto shapes = llvm::to_vector<4>(llvm::map_range( 355 llvm::seq<int64_t>(0, getType().getRank()), [&](int64_t dim) -> Value { 356 if (isDynamicDim(dim)) 357 return getDynamicSize(builder, dim); 358 return builder.create<arith::ConstantIndexOp>(getLoc(), 359 getStaticSize(dim)); 360 })); 361 reifiedReturnShapes.emplace_back(std::move(shapes)); 362 return success(); 363 } 364 365 ParseResult AllocTensorOp::parse(OpAsmParser &parser, OperationState &result) { 366 SmallVector<OpAsmParser::UnresolvedOperand> dynamicSizesOperands; 367 if (parser.parseLParen() || parser.parseOperandList(dynamicSizesOperands) || 368 parser.parseRParen()) 369 return failure(); 370 ParseResult copyKeyword = parser.parseOptionalKeyword("copy"); 371 OpAsmParser::UnresolvedOperand copyOperand; 372 if (copyKeyword.succeeded()) 373 if (parser.parseLParen() || parser.parseOperand(copyOperand) || 374 parser.parseRParen()) 375 return failure(); 376 if (parser.parseOptionalAttrDict(result.attributes) || parser.parseColon()) 377 return failure(); 378 379 TensorType type; 380 if (parser.parseCustomTypeWithFallback(type)) 381 return failure(); 382 result.addTypes(type); 383 384 Type indexType = parser.getBuilder().getIndexType(); 385 if (parser.resolveOperands(dynamicSizesOperands, indexType, result.operands)) 386 return failure(); 387 if (copyKeyword.succeeded()) 388 if (parser.resolveOperand(copyOperand, type, result.operands)) 389 return failure(); 390 result.addAttribute(AllocTensorOp::getOperandSegmentSizeAttr(), 391 parser.getBuilder().getI32VectorAttr( 392 {static_cast<int32_t>(dynamicSizesOperands.size()), 393 static_cast<int32_t>(copyKeyword.succeeded())})); 394 return success(); 395 } 396 397 void AllocTensorOp::print(OpAsmPrinter &p) { 398 p << "(" << getDynamicSizes() << ")"; 399 if (getCopy()) 400 p << " copy(" << getCopy() << ")"; 401 p.printOptionalAttrDict((*this)->getAttrs(), /*elidedAttrs=*/{ 402 AllocTensorOp::getOperandSegmentSizeAttr()}); 403 p << " : "; 404 auto type = getResult().getType(); 405 if (auto validType = type.dyn_cast<::mlir::TensorType>()) 406 p.printStrippedAttrOrType(validType); 407 else 408 p << type; 409 } 410 411 Value AllocTensorOp::getDynamicSize(OpBuilder &b, unsigned idx) { 412 assert(isDynamicDim(idx) && "expected dynamic dim"); 413 if (getCopy()) 414 return b.create<tensor::DimOp>(getLoc(), getCopy(), idx); 415 return getOperand(getIndexOfDynamicSize(idx)); 416 } 417 418 //===----------------------------------------------------------------------===// 419 // CloneOp 420 //===----------------------------------------------------------------------===// 421 422 void CloneOp::getEffects( 423 SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> 424 &effects) { 425 effects.emplace_back(MemoryEffects::Read::get(), getInput(), 426 SideEffects::DefaultResource::get()); 427 effects.emplace_back(MemoryEffects::Write::get(), getOutput(), 428 SideEffects::DefaultResource::get()); 429 effects.emplace_back(MemoryEffects::Allocate::get(), getOutput(), 430 SideEffects::DefaultResource::get()); 431 } 432 433 OpFoldResult CloneOp::fold(ArrayRef<Attribute> operands) { 434 return succeeded(memref::foldMemRefCast(*this)) ? getResult() : Value(); 435 } 436 437 namespace { 438 439 /// Merge the clone and its source (by converting the clone to a cast) when 440 /// possible. 441 struct SimplifyClones : public OpRewritePattern<CloneOp> { 442 using OpRewritePattern<CloneOp>::OpRewritePattern; 443 444 LogicalResult matchAndRewrite(CloneOp cloneOp, 445 PatternRewriter &rewriter) const override { 446 if (cloneOp.use_empty()) { 447 rewriter.eraseOp(cloneOp); 448 return success(); 449 } 450 451 Value source = cloneOp.getInput(); 452 453 // This only finds dealloc operations for the immediate value. It should 454 // also consider aliases. That would also make the safety check below 455 // redundant. 456 llvm::Optional<Operation *> maybeCloneDeallocOp = 457 memref::findDealloc(cloneOp.getOutput()); 458 // Skip if either of them has > 1 deallocate operations. 459 if (!maybeCloneDeallocOp.has_value()) 460 return failure(); 461 llvm::Optional<Operation *> maybeSourceDeallocOp = 462 memref::findDealloc(source); 463 if (!maybeSourceDeallocOp.has_value()) 464 return failure(); 465 Operation *cloneDeallocOp = *maybeCloneDeallocOp; 466 Operation *sourceDeallocOp = *maybeSourceDeallocOp; 467 468 // If both are deallocated in the same block, their in-block lifetimes 469 // might not fully overlap, so we cannot decide which one to drop. 470 if (cloneDeallocOp && sourceDeallocOp && 471 cloneDeallocOp->getBlock() == sourceDeallocOp->getBlock()) 472 return failure(); 473 474 Block *currentBlock = cloneOp->getBlock(); 475 Operation *redundantDealloc = nullptr; 476 if (cloneDeallocOp && cloneDeallocOp->getBlock() == currentBlock) { 477 redundantDealloc = cloneDeallocOp; 478 } else if (sourceDeallocOp && sourceDeallocOp->getBlock() == currentBlock) { 479 redundantDealloc = sourceDeallocOp; 480 } 481 482 if (!redundantDealloc) 483 return failure(); 484 485 // Safety check that there are no other deallocations inbetween 486 // cloneOp and redundantDealloc, as otherwise we might deallocate an alias 487 // of source before the uses of the clone. With alias information, we could 488 // restrict this to only fail of the dealloc's operand is an alias 489 // of the source. 490 for (Operation *pos = cloneOp->getNextNode(); pos != redundantDealloc; 491 pos = pos->getNextNode()) { 492 auto effectInterface = dyn_cast<MemoryEffectOpInterface>(pos); 493 if (!effectInterface) 494 continue; 495 if (effectInterface.hasEffect<MemoryEffects::Free>()) 496 return failure(); 497 } 498 499 rewriter.replaceOpWithNewOp<memref::CastOp>(cloneOp, cloneOp.getType(), 500 source); 501 rewriter.eraseOp(redundantDealloc); 502 return success(); 503 } 504 }; 505 506 } // namespace 507 508 void CloneOp::getCanonicalizationPatterns(RewritePatternSet &results, 509 MLIRContext *context) { 510 results.add<SimplifyClones>(context); 511 } 512 513 //===----------------------------------------------------------------------===// 514 // DeallocTensorOp 515 //===----------------------------------------------------------------------===// 516 517 LogicalResult DeallocTensorOp::bufferize(RewriterBase &rewriter, 518 const BufferizationOptions &options) { 519 FailureOr<Value> buffer = getBuffer(rewriter, getTensor(), options); 520 if (failed(buffer)) 521 return failure(); 522 if (failed(options.createDealloc(rewriter, getLoc(), *buffer))) 523 return failure(); 524 rewriter.eraseOp(getOperation()); 525 return success(); 526 } 527 528 //===----------------------------------------------------------------------===// 529 // ToTensorOp 530 //===----------------------------------------------------------------------===// 531 532 OpFoldResult ToTensorOp::fold(ArrayRef<Attribute>) { 533 if (auto toMemref = getMemref().getDefiningOp<ToMemrefOp>()) 534 // Approximate alias analysis by conservatively folding only when no there 535 // is no interleaved operation. 536 if (toMemref->getBlock() == this->getOperation()->getBlock() && 537 toMemref->getNextNode() == this->getOperation()) 538 return toMemref.getTensor(); 539 return {}; 540 } 541 542 namespace { 543 struct DimOfToTensorFolder : public OpRewritePattern<tensor::DimOp> { 544 using OpRewritePattern<tensor::DimOp>::OpRewritePattern; 545 546 LogicalResult matchAndRewrite(tensor::DimOp dimOp, 547 PatternRewriter &rewriter) const override { 548 auto memrefToTensorOp = dimOp.getSource().getDefiningOp<ToTensorOp>(); 549 if (!memrefToTensorOp) 550 return failure(); 551 552 rewriter.replaceOpWithNewOp<memref::DimOp>( 553 dimOp, memrefToTensorOp.getMemref(), dimOp.getIndex()); 554 return success(); 555 } 556 }; 557 } // namespace 558 559 void ToTensorOp::getCanonicalizationPatterns(RewritePatternSet &results, 560 MLIRContext *context) { 561 results.add<DimOfToTensorFolder>(context); 562 } 563 564 //===----------------------------------------------------------------------===// 565 // ToMemrefOp 566 //===----------------------------------------------------------------------===// 567 568 OpFoldResult ToMemrefOp::fold(ArrayRef<Attribute>) { 569 if (auto memrefToTensor = getTensor().getDefiningOp<ToTensorOp>()) 570 if (memrefToTensor.getMemref().getType() == getType()) 571 return memrefToTensor.getMemref(); 572 return {}; 573 } 574 575 namespace { 576 577 /// Replace tensor.cast + to_memref by to_memref + memref.cast. 578 struct ToMemrefOfCast : public OpRewritePattern<ToMemrefOp> { 579 using OpRewritePattern<ToMemrefOp>::OpRewritePattern; 580 581 LogicalResult matchAndRewrite(ToMemrefOp toMemref, 582 PatternRewriter &rewriter) const final { 583 auto tensorCastOperand = 584 toMemref.getOperand().getDefiningOp<tensor::CastOp>(); 585 if (!tensorCastOperand) 586 return failure(); 587 auto srcTensorType = 588 tensorCastOperand.getOperand().getType().dyn_cast<RankedTensorType>(); 589 if (!srcTensorType) 590 return failure(); 591 auto memrefType = MemRefType::get(srcTensorType.getShape(), 592 srcTensorType.getElementType()); 593 Value memref = rewriter.create<ToMemrefOp>(toMemref.getLoc(), memrefType, 594 tensorCastOperand.getOperand()); 595 rewriter.replaceOpWithNewOp<memref::CastOp>(toMemref, toMemref.getType(), 596 memref); 597 return success(); 598 } 599 }; 600 601 /// Canonicalize bufferization.to_tensor + bufferization.to_memref. Insert a 602 /// cast if necessary. 603 struct ToMemrefToTensorFolding : public OpRewritePattern<ToMemrefOp> { 604 using OpRewritePattern<ToMemrefOp>::OpRewritePattern; 605 606 LogicalResult matchAndRewrite(ToMemrefOp toMemref, 607 PatternRewriter &rewriter) const final { 608 return foldToMemrefToTensorPair(rewriter, toMemref); 609 } 610 }; 611 612 /// Fold a load on a to_memref operation into an tensor.extract on the 613 /// corresponding tensor. 614 struct LoadOfToMemref : public OpRewritePattern<memref::LoadOp> { 615 using OpRewritePattern<memref::LoadOp>::OpRewritePattern; 616 617 LogicalResult matchAndRewrite(memref::LoadOp load, 618 PatternRewriter &rewriter) const override { 619 auto toMemref = load.getMemref().getDefiningOp<ToMemrefOp>(); 620 if (!toMemref) 621 return failure(); 622 623 rewriter.replaceOpWithNewOp<tensor::ExtractOp>(load, toMemref.getTensor(), 624 load.getIndices()); 625 return success(); 626 } 627 }; 628 629 /// Fold dim of a to_memref into the dim of the tensor. 630 struct DimOfCastOp : public OpRewritePattern<memref::DimOp> { 631 using OpRewritePattern<memref::DimOp>::OpRewritePattern; 632 633 LogicalResult matchAndRewrite(memref::DimOp dimOp, 634 PatternRewriter &rewriter) const override { 635 auto castOp = dimOp.getSource().getDefiningOp<ToMemrefOp>(); 636 if (!castOp) 637 return failure(); 638 Value newSource = castOp.getOperand(); 639 rewriter.replaceOpWithNewOp<tensor::DimOp>(dimOp, newSource, 640 dimOp.getIndex()); 641 return success(); 642 } 643 }; 644 645 } // namespace 646 647 void ToMemrefOp::getCanonicalizationPatterns(RewritePatternSet &results, 648 MLIRContext *context) { 649 results.add<DimOfCastOp, LoadOfToMemref, ToMemrefOfCast, 650 ToMemrefToTensorFolding>(context); 651 } 652 653 LogicalResult ToMemrefOp::bufferize(RewriterBase &rewriter, 654 const BufferizationOptions &options) { 655 // Fold to_memref(to_tensor(x)) to x. Insert a cast if necessary. 656 (void)foldToMemrefToTensorPair(rewriter, *this); 657 // Note: The return value of `bufferize` indicates whether there was an error 658 // or not. (And not whether the pattern matched or not.) 659 return success(); 660 } 661 662 Optional<Operation *> CloneOp::buildDealloc(OpBuilder &builder, Value alloc) { 663 return builder.create<memref::DeallocOp>(alloc.getLoc(), alloc) 664 .getOperation(); 665 } 666 667 Optional<Value> CloneOp::buildClone(OpBuilder &builder, Value alloc) { 668 return builder.create<CloneOp>(alloc.getLoc(), alloc).getResult(); 669 } 670 671 //===----------------------------------------------------------------------===// 672 // TableGen'd op method definitions 673 //===----------------------------------------------------------------------===// 674 675 #define GET_OP_CLASSES 676 #include "mlir/Dialect/Bufferization/IR/BufferizationOps.cpp.inc" 677