1 //===- BufferizableOpInterface.cpp - Bufferizable Ops ---=----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h" 10 #include "mlir/Dialect/Bufferization/IR/Bufferization.h" 11 #include "mlir/Dialect/MemRef/IR/MemRef.h" 12 #include "mlir/IR/AsmState.h" 13 #include "mlir/IR/BlockAndValueMapping.h" 14 #include "mlir/IR/BuiltinOps.h" 15 #include "mlir/IR/Operation.h" 16 #include "mlir/IR/TypeUtilities.h" 17 #include "mlir/IR/Value.h" 18 #include "llvm/Support/Debug.h" 19 20 namespace mlir { 21 namespace bufferization { 22 23 #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.cpp.inc" 24 25 } // namespace bufferization 26 } // namespace mlir 27 28 #define DEBUG_TYPE "bufferizable-op-interface" 29 #define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ") 30 #define LDBG(X) LLVM_DEBUG(DBGS() << (X)) 31 32 using namespace mlir; 33 using namespace bufferization; 34 35 /// Attribute name used to mark the bufferization layout for region 36 /// arguments during linalg comprehensive bufferization. 37 constexpr const ::llvm::StringLiteral 38 bufferization::BufferizableOpInterface::kBufferLayoutAttrName; 39 40 /// Attribute name used to mark region arguments that can be bufferized 41 /// in-place during linalg comprehensive bufferization. 42 constexpr const ::llvm::StringLiteral 43 bufferization::BufferizableOpInterface::kInplaceableAttrName; 44 45 //===----------------------------------------------------------------------===// 46 // BufferizationOptions 47 //===----------------------------------------------------------------------===// 48 49 // Default constructor for BufferizationOptions. 50 BufferizationOptions::BufferizationOptions() = default; 51 52 BufferizableOpInterface 53 BufferizationOptions::dynCastBufferizableOp(Operation *op) const { 54 if (isOpAllowed(op)) 55 return dyn_cast<BufferizableOpInterface>(op); 56 return nullptr; 57 } 58 59 BufferizableOpInterface 60 BufferizationOptions::dynCastBufferizableOp(Value value) const { 61 if (auto bufferizableOp = value.getDefiningOp<BufferizableOpInterface>()) 62 if (isOpAllowed(bufferizableOp.getOperation())) 63 return bufferizableOp; 64 return nullptr; 65 } 66 67 //===----------------------------------------------------------------------===// 68 // Helper functions for BufferizableOpInterface 69 //===----------------------------------------------------------------------===// 70 71 static void setInsertionPointAfter(OpBuilder &b, Value value) { 72 if (auto bbArg = value.dyn_cast<BlockArgument>()) { 73 b.setInsertionPointToStart(bbArg.getOwner()); 74 } else { 75 b.setInsertionPointAfter(value.getDefiningOp()); 76 } 77 } 78 79 /// Determine which OpOperand* will alias with `result` if the op is bufferized 80 /// in place. Return an empty vector if the op is not bufferizable. 81 SmallVector<OpOperand *> 82 BufferizationState::getAliasingOpOperand(OpResult result) const { 83 if (Operation *op = result.getDefiningOp()) 84 if (auto bufferizableOp = dyn_cast<BufferizableOpInterface>(op)) 85 return bufferizableOp.getAliasingOpOperand(result, *this); 86 return {}; 87 } 88 89 /// Determine which OpResult will alias with `opOperand` if the op is bufferized 90 /// in place. Return an empty vector if the op is not bufferizable. 91 SmallVector<OpResult> 92 BufferizationState::getAliasingOpResult(OpOperand &opOperand) const { 93 if (auto bufferizableOp = 94 dyn_cast<BufferizableOpInterface>(opOperand.getOwner())) 95 return bufferizableOp.getAliasingOpResult(opOperand, *this); 96 return {}; 97 } 98 99 /// Return true if `opOperand` bufferizes to a memory read. Return `true` if the 100 /// op is not bufferizable. 101 bool BufferizationState::bufferizesToMemoryRead(OpOperand &opOperand) const { 102 if (auto bufferizableOp = 103 dyn_cast<BufferizableOpInterface>(opOperand.getOwner())) 104 return bufferizableOp.bufferizesToMemoryRead(opOperand, *this); 105 106 // Unknown op that returns a tensor. The inplace analysis does not support it. 107 // Conservatively return true. 108 return true; 109 } 110 111 /// Return true if `opOperand` bufferizes to a memory write. Return 112 /// `true` if the op is not bufferizable. 113 bool BufferizationState::bufferizesToMemoryWrite(OpOperand &opOperand) const { 114 if (auto bufferizableOp = 115 dyn_cast<BufferizableOpInterface>(opOperand.getOwner())) 116 return bufferizableOp.bufferizesToMemoryWrite(opOperand, *this); 117 118 // Unknown op that returns a tensor. The inplace analysis does not support it. 119 // Conservatively return true. 120 return true; 121 } 122 123 /// Return true if `opOperand` does neither read nor write but bufferizes to an 124 /// alias. Return false if the op is not bufferizable. 125 bool BufferizationState::bufferizesToAliasOnly(OpOperand &opOperand) const { 126 if (auto bufferizableOp = 127 dyn_cast<BufferizableOpInterface>(opOperand.getOwner())) 128 return bufferizableOp.bufferizesToAliasOnly(opOperand, *this); 129 130 // Unknown op that returns a tensor. The inplace analysis does not support it. 131 // Conservatively return false. 132 return false; 133 } 134 135 /// Return true if the given value is read by an op that bufferizes to a memory 136 /// read. Also takes into account ops that create an alias but do not read by 137 /// themselves (e.g., ExtractSliceOp). 138 bool BufferizationState::isValueRead(Value value) const { 139 assert(value.getType().isa<TensorType>() && "expected TensorType"); 140 SmallVector<OpOperand *> workingSet; 141 for (OpOperand &use : value.getUses()) 142 workingSet.push_back(&use); 143 144 while (!workingSet.empty()) { 145 OpOperand *uMaybeReading = workingSet.pop_back_val(); 146 // Skip over all ops that neither read nor write (but create an alias). 147 if (bufferizesToAliasOnly(*uMaybeReading)) 148 for (OpResult opResult : getAliasingOpResult(*uMaybeReading)) 149 for (OpOperand &use : opResult.getUses()) 150 workingSet.push_back(&use); 151 if (bufferizesToMemoryRead(*uMaybeReading)) 152 return true; 153 } 154 155 return false; 156 } 157 158 // Starting from `value`, follow the use-def chain in reverse, always selecting 159 // the aliasing OpOperands. Find and return Values for which `condition` 160 // evaluates to true. OpOperands of such matching Values are not traversed any 161 // further. 162 llvm::SetVector<Value> BufferizationState::findValueInReverseUseDefChain( 163 Value value, llvm::function_ref<bool(Value)> condition) const { 164 llvm::SetVector<Value> result, workingSet; 165 workingSet.insert(value); 166 167 while (!workingSet.empty()) { 168 Value value = workingSet.pop_back_val(); 169 if (condition(value) || value.isa<BlockArgument>()) { 170 result.insert(value); 171 continue; 172 } 173 174 OpResult opResult = value.cast<OpResult>(); 175 SmallVector<OpOperand *> opOperands = getAliasingOpOperand(opResult); 176 if (opOperands.empty() || !options.isOpAllowed(value.getDefiningOp())) { 177 result.insert(value); 178 continue; 179 } 180 181 for (OpOperand *o : opOperands) 182 workingSet.insert(o->get()); 183 } 184 185 return result; 186 } 187 188 // Find the Values of the last preceding write of a given Value. 189 llvm::SetVector<Value> 190 BufferizationState::findLastPrecedingWrite(Value value) const { 191 return findValueInReverseUseDefChain(value, [&](Value value) { 192 Operation *op = value.getDefiningOp(); 193 if (!op) 194 return true; 195 auto bufferizableOp = options.dynCastBufferizableOp(op); 196 if (!bufferizableOp) 197 return true; 198 return bufferizableOp.isMemoryWrite(value.cast<OpResult>(), *this); 199 }); 200 } 201 202 BufferizationState::BufferizationState(const BufferizationOptions &options) 203 : options(options) {} 204 205 // bufferization.to_memref is not allowed to change the rank. 206 static void ensureToMemrefOpIsValid(Value tensor, Type memrefType) { 207 #ifndef NDEBUG 208 auto rankedTensorType = tensor.getType().dyn_cast<RankedTensorType>(); 209 assert((!rankedTensorType || memrefType.cast<MemRefType>().getRank() == 210 rankedTensorType.getRank()) && 211 "to_memref would be invalid: mismatching ranks"); 212 #endif 213 } 214 215 static Value lookupBuffer(RewriterBase &rewriter, Value tensor, 216 const BufferizationOptions &options) { 217 auto tensorType = tensor.getType().dyn_cast<TensorType>(); 218 assert(tensorType && "unexpected non-tensor type"); 219 220 // Replace "%t = to_tensor %m" with %m. 221 if (auto toTensorOp = tensor.getDefiningOp<bufferization::ToTensorOp>()) 222 return toTensorOp.memref(); 223 224 // Insert to_memref op. 225 OpBuilder::InsertionGuard g(rewriter); 226 setInsertionPointAfter(rewriter, tensor); 227 Type memrefType = getMemRefType(tensorType, options); 228 ensureToMemrefOpIsValid(tensor, memrefType); 229 return rewriter.create<bufferization::ToMemrefOp>(tensor.getLoc(), memrefType, 230 tensor); 231 } 232 233 /// Return the result buffer (memref) for a given OpResult (tensor). Allocate 234 /// a new buffer and copy over data from the existing buffer if out-of-place 235 /// bufferization is necessary. 236 FailureOr<Value> BufferizationState::getBuffer( 237 RewriterBase &rewriter, OpOperand &opOperand, bool forceInPlace, 238 Optional<Operation *> customCopyInsertionPoint) const { 239 OpBuilder::InsertionGuard guard(rewriter); 240 Operation *op = opOperand.getOwner(); 241 Location loc = op->getLoc(); 242 Value operand = opOperand.get(); 243 Value operandBuffer = lookupBuffer(rewriter, operand, options); 244 245 if (forceInPlace || isInPlace(opOperand)) 246 return operandBuffer; 247 248 // Bufferizing out-of-place: Allocate a new buffer. 249 // Move insertion point right after `operandBuffer`. That is where the 250 // allocation should be inserted (in the absence of allocation hoisting). 251 setInsertionPointAfter(rewriter, operandBuffer); 252 // Allocate the result buffer. 253 FailureOr<Value> resultBuffer = createAlloc(rewriter, loc, operandBuffer, 254 options.createDeallocs, options); 255 if (failed(resultBuffer)) 256 return failure(); 257 // Do not copy if the last preceding writes of `operand` are ops that do 258 // not write (skipping ops that merely create aliases). E.g., InitTensorOp. 259 // Note: If `findLastPrecedingWrite` reaches the end of the reverse SSA 260 // use-def chain, it returns that value, regardless of whether it is a 261 // memory write or not. 262 SetVector<Value> lastWrites = findLastPrecedingWrite(operand); 263 if (llvm::none_of(lastWrites, [&](Value lastWrite) { 264 if (auto bufferizableOp = options.dynCastBufferizableOp(lastWrite)) 265 return bufferizableOp.isMemoryWrite(lastWrite.cast<OpResult>(), 266 *this); 267 return true; 268 })) 269 return resultBuffer; 270 // Do not copy if the copied data is never read. 271 SmallVector<OpResult> aliasingOpResults = getAliasingOpResult(opOperand); 272 if (!aliasingOpResults.empty() && !bufferizesToMemoryRead(opOperand) && 273 llvm::none_of(aliasingOpResults, 274 [&](OpResult opResult) { return isValueRead(opResult); })) 275 return resultBuffer; 276 // Do not copy if this op does not read the data, but writes it. 277 if (bufferizesToMemoryWrite(opOperand) && !bufferizesToMemoryRead(opOperand)) 278 return resultBuffer; 279 280 if (customCopyInsertionPoint) { 281 rewriter.setInsertionPoint(*customCopyInsertionPoint); 282 } else { 283 // The copy happens right before the op that is bufferized. 284 rewriter.setInsertionPoint(op); 285 } 286 if (failed( 287 createMemCpy(rewriter, loc, operandBuffer, *resultBuffer, options))) 288 return failure(); 289 290 return resultBuffer; 291 } 292 293 void bufferization::replaceOpWithBufferizedValues(RewriterBase &rewriter, 294 Operation *op, 295 ValueRange values) { 296 OpBuilder::InsertionGuard g(rewriter); 297 298 // Replace all OpResults with the given values. 299 for (OpResult opResult : op->getOpResults()) { 300 // Skip OpResult if it has no uses. 301 if (opResult.getUses().empty()) 302 continue; 303 304 Value replacement = values[opResult.getResultNumber()]; 305 if (opResult.getType().isa<TensorType>()) { 306 // The OpResult is a tensor. Such values are replaced with memrefs during 307 // bufferization. 308 assert((replacement.getType().isa<MemRefType>() || 309 replacement.getType().isa<UnrankedMemRefType>()) && 310 "tensor op result should be replaced with a memref value"); 311 // The existing uses of the OpResult still expect a tensor. Insert a 312 // ToTensorOp. Throughout bufferization, this ToTensorOp will gradually 313 // loose all of its users and eventually DCE away. 314 rewriter.setInsertionPointAfter(op); 315 replacement = rewriter.create<bufferization::ToTensorOp>( 316 replacement.getLoc(), replacement); 317 } 318 opResult.replaceAllUsesWith(replacement); 319 } 320 321 rewriter.eraseOp(op); 322 } 323 324 AlwaysCopyBufferizationState::AlwaysCopyBufferizationState( 325 const BufferizationOptions &options) 326 : BufferizationState(options) {} 327 328 /// Return `true` if the given OpResult has been decided to bufferize inplace. 329 bool AlwaysCopyBufferizationState::isInPlace(OpOperand &opOperand) const { 330 // OpOperands that bufferize to a memory write are out-of-place, i.e., an 331 // alloc and copy is inserted. 332 return !bufferizesToMemoryWrite(opOperand); 333 } 334 335 /// Return true if `v1` and `v2` bufferize to equivalent buffers. 336 bool AlwaysCopyBufferizationState::areEquivalentBufferizedValues( 337 Value v1, Value v2) const { 338 // There is no analysis, so we do not know if the values are equivalent. The 339 // conservative answer is "false". 340 return false; 341 } 342 343 //===----------------------------------------------------------------------===// 344 // Bufferization-specific scoped alloc/dealloc insertion support. 345 //===----------------------------------------------------------------------===// 346 347 /// Move the insertion point of the given builder to the beginning of a 348 /// surrounding block as much as possible, while not crossing any allocation 349 /// hoisting barriers. 350 static void moveInsertionPointToAllocationHoistingBarrier(OpBuilder &b) { 351 Operation *op = b.getInsertionBlock()->getParentOp(); 352 while (op) { 353 if (auto bufferizableOp = dyn_cast<BufferizableOpInterface>(op)) 354 if (bufferizableOp.isAllocationHoistingBarrier()) 355 break; 356 op = op->getParentOp(); 357 } 358 359 if (!op) { 360 // No allocation hoisting barrier found. Hoist to FuncOp. 361 op = b.getInsertionBlock()->getParentOp(); 362 if (!isa<FuncOp>(op)) 363 op = op->getParentOfType<FuncOp>(); 364 assert(op && "could not find enclosing FuncOp"); 365 } 366 367 // TODO: Handle cases where allocation hoisting barrier has more than one 368 // region or block. 369 assert(op->getNumRegions() == 1 && 370 "allocation hoisting barriers with >1 regions not supported"); 371 assert(op->getRegion(0).getBlocks().size() == 1 && 372 "allocation hoisting barriers with >1 blocks not supported"); 373 b.setInsertionPointToStart(&(op->getRegion(0).front())); 374 } 375 376 /// Compute the type of the `memref` to use for allocating the buffer for 377 /// `shapedValue`. Also returns (by reference in `dynShape`), the value for the 378 /// dynamic dimensions in the returned `memref` type. The function may also set 379 /// the insertion point to an earlier location, where the allocation should 380 /// happen ("allocation hoisting"). 381 static MemRefType getAllocationTypeAndShape(OpBuilder &b, Location loc, 382 Value shapedValue, 383 SmallVectorImpl<Value> &dynShape) { 384 MemRefType allocMemRefType = 385 getContiguousMemRefType(shapedValue.getType().cast<ShapedType>()); 386 387 // Compute the dynamic part of the shape. 388 bool reifiedShapes = false; 389 if (auto rankedOp = dyn_cast_or_null<ReifyRankedShapedTypeOpInterface>( 390 shapedValue.getDefiningOp())) { 391 ReifiedRankedShapedTypeDims resultDims; 392 if (succeeded(rankedOp.reifyResultShapes(b, resultDims))) { 393 reifiedShapes = true; 394 OpResult resultValue = shapedValue.dyn_cast<OpResult>(); 395 auto &shape = resultDims[resultValue.getResultNumber()]; 396 for (const auto &dim : enumerate(allocMemRefType.getShape())) 397 if (ShapedType::isDynamic(dim.value())) 398 dynShape.push_back(shape[dim.index()]); 399 } 400 } 401 402 if (!reifiedShapes) { 403 for (const auto &dim : enumerate(allocMemRefType.getShape())) 404 if (ShapedType::isDynamic(dim.value())) { 405 assert((shapedValue.getType().isa<UnrankedMemRefType>() || 406 shapedValue.getType().isa<MemRefType>()) && 407 "expected MemRef type"); 408 dynShape.push_back( 409 b.create<memref::DimOp>(loc, shapedValue, dim.index())); 410 } 411 } 412 413 // If the buffer is statically shaped, try to hoist it to the first enclosing 414 // parallel region. 415 // TODO: also hoist in the dynamic case. For now this relies on subsequent 416 // calls to LICM and buffer hoisting which will most likely not succeed. 417 // TODO: when packing, allocate a static bounding box which will enable more 418 // hoisting. 419 if (dynShape.empty()) 420 moveInsertionPointToAllocationHoistingBarrier(b); 421 422 return allocMemRefType; 423 } 424 425 /// Create an AllocOp/DeallocOp pair, where the AllocOp is after 426 /// `shapedValue.getDefiningOp` (or at the top of the block in case of a 427 /// bbArg) and the DeallocOp is at the end of the block. 428 FailureOr<Value> 429 bufferization::createAlloc(OpBuilder &b, Location loc, Value shapedValue, 430 bool deallocMemref, 431 const BufferizationOptions &options) { 432 // Take a guard before anything else. 433 OpBuilder::InsertionGuard g(b); 434 435 // 1. Create memory allocation. 436 assert(shapedValue.getType().isa<ShapedType>()); 437 MemRefType memRefType = shapedValue.getType().dyn_cast<MemRefType>(); 438 SmallVector<Value> dynShape; 439 // Note: getAllocationTypeAndShape also sets the insertion point. 440 MemRefType allocMemRefType = 441 getAllocationTypeAndShape(b, loc, shapedValue, dynShape); 442 FailureOr<Value> allocated = 443 createAlloc(b, loc, allocMemRefType, dynShape, options); 444 if (failed(allocated)) 445 return failure(); 446 Value casted = allocated.getValue(); 447 if (memRefType && memRefType != allocMemRefType) { 448 assert(memref::CastOp::areCastCompatible(allocated.getValue().getType(), 449 memRefType) && 450 "createAlloc: cast incompatible"); 451 casted = b.create<memref::CastOp>(loc, memRefType, allocated.getValue()); 452 } 453 454 if (deallocMemref) { 455 // 2. Create memory deallocation. 456 b.setInsertionPoint(allocated.getValue().getParentBlock()->getTerminator()); 457 if (failed(createDealloc(b, loc, allocated.getValue(), options))) 458 return failure(); 459 } 460 461 return casted; 462 } 463 464 /// Create a memref allocation with the given type and dynamic extents. 465 FailureOr<Value> 466 bufferization::createAlloc(OpBuilder &b, Location loc, MemRefType type, 467 ValueRange dynShape, 468 const BufferizationOptions &options) { 469 if (options.allocationFn) 470 return (*options.allocationFn)(b, loc, type, dynShape, 471 options.bufferAlignment); 472 473 // Default bufferallocation via AllocOp. 474 Value allocated = b.create<memref::AllocOp>( 475 loc, type, dynShape, b.getI64IntegerAttr(options.bufferAlignment)); 476 return allocated; 477 } 478 479 /// Create a memref allocation with the given type and dynamic extents. May also 480 /// deallocate the memref again. 481 FailureOr<Value> 482 bufferization::createAlloc(OpBuilder &b, Location loc, MemRefType type, 483 ValueRange dynShape, bool deallocMemref, 484 const BufferizationOptions &options) { 485 OpBuilder::InsertionGuard g(b); 486 487 FailureOr<Value> alloc = createAlloc(b, loc, type, dynShape, options); 488 if (failed(alloc)) 489 return failure(); 490 491 if (deallocMemref) { 492 // Dealloc at the end of the block. 493 b.setInsertionPoint(alloc.getValue().getParentBlock()->getTerminator()); 494 if (failed(createDealloc(b, loc, *alloc, options))) 495 return failure(); 496 } 497 498 return alloc; 499 } 500 501 /// Create a memref deallocation. 502 LogicalResult 503 bufferization::createDealloc(OpBuilder &b, Location loc, Value allocatedBuffer, 504 const BufferizationOptions &options) { 505 if (options.deallocationFn) 506 return (*options.deallocationFn)(b, loc, allocatedBuffer); 507 508 // Default buffer deallocation via DeallocOp. 509 b.create<memref::DeallocOp>(loc, allocatedBuffer); 510 return success(); 511 } 512 513 /// Create a memory copy between two memref buffers. 514 LogicalResult bufferization::createMemCpy(OpBuilder &b, Location loc, 515 Value from, Value to, 516 const BufferizationOptions &options) { 517 if (options.memCpyFn) 518 return (*options.memCpyFn)(b, loc, from, to); 519 520 b.create<memref::CopyOp>(loc, from, to); 521 return success(); 522 } 523 524 //===----------------------------------------------------------------------===// 525 // Bufferization-specific BlockAndValueMapping support with debugging. 526 //===----------------------------------------------------------------------===// 527 528 bool bufferization::isFunctionArgument(Value value) { 529 auto bbArg = value.dyn_cast<BlockArgument>(); 530 if (!bbArg) 531 return false; 532 return isa<FuncOp>(bbArg.getOwner()->getParentOp()); 533 } 534 535 MemRefType bufferization::getContiguousMemRefType(ShapedType shapedType, 536 Attribute memorySpace) { 537 MemRefLayoutAttrInterface layout = {}; 538 return MemRefType::get(shapedType.getShape(), shapedType.getElementType(), 539 layout, memorySpace); 540 } 541 542 BaseMemRefType bufferization::getMemRefType(TensorType tensorType, 543 const BufferizationOptions &options, 544 MemRefLayoutAttrInterface layout, 545 Attribute memorySpace) { 546 // Case 1: Unranked memref type. 547 if (auto unrankedTensorType = tensorType.dyn_cast<UnrankedTensorType>()) { 548 assert(!layout && "UnrankedTensorType cannot have a layout map"); 549 return UnrankedMemRefType::get(unrankedTensorType.getElementType(), 550 memorySpace); 551 } 552 553 // Case 2: Ranked memref type with specified layout. If fully dynamic layout 554 // maps are not requested, generate a type with `layout`, which is empty (no 555 // layout map) by default. 556 auto rankedTensorType = tensorType.cast<RankedTensorType>(); 557 if (layout || !options.fullyDynamicLayoutMaps) { 558 return MemRefType::get(rankedTensorType.getShape(), 559 rankedTensorType.getElementType(), layout, 560 memorySpace); 561 } 562 563 // Case 3: Ranked memref type with unspecified layout. Choose the most dynamic 564 // one. 565 // TODO: address space decisions to connect with the actual alloc. 566 int64_t dynamicOffset = ShapedType::kDynamicStrideOrOffset; 567 SmallVector<int64_t> dynamicStrides(rankedTensorType.getRank(), 568 ShapedType::kDynamicStrideOrOffset); 569 AffineMap stridedLayout = makeStridedLinearLayoutMap( 570 dynamicStrides, dynamicOffset, rankedTensorType.getContext()); 571 return MemRefType::get(rankedTensorType.getShape(), 572 rankedTensorType.getElementType(), stridedLayout, 573 memorySpace); 574 } 575