1 //===- BufferizableOpInterface.cpp - Bufferizable Ops ---=----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h" 10 #include "mlir/Dialect/Bufferization/IR/Bufferization.h" 11 #include "mlir/Dialect/Func/IR/FuncOps.h" 12 #include "mlir/Dialect/MemRef/IR/MemRef.h" 13 #include "mlir/Dialect/Tensor/IR/Tensor.h" 14 #include "mlir/IR/AsmState.h" 15 #include "mlir/IR/BlockAndValueMapping.h" 16 #include "mlir/IR/BuiltinOps.h" 17 #include "mlir/IR/Operation.h" 18 #include "mlir/IR/TypeUtilities.h" 19 #include "mlir/IR/Value.h" 20 #include "llvm/Support/Debug.h" 21 22 //===----------------------------------------------------------------------===// 23 // BufferizableOpInterface 24 //===----------------------------------------------------------------------===// 25 26 namespace mlir { 27 namespace bufferization { 28 29 #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.cpp.inc" 30 31 } // namespace bufferization 32 } // namespace mlir 33 34 #define DEBUG_TYPE "bufferizable-op-interface" 35 #define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ") 36 #define LDBG(X) LLVM_DEBUG(DBGS() << (X)) 37 38 using namespace mlir; 39 using namespace bufferization; 40 41 /// Attribute name used to mark region arguments that can be bufferized 42 /// in-place during linalg comprehensive bufferization. 43 constexpr const ::llvm::StringLiteral 44 bufferization::BufferizableOpInterface::kInplaceableAttrName; 45 46 /// Return the owner of the given value. 47 static Operation *getOwnerOfValue(Value value) { 48 if (auto opResult = value.dyn_cast<OpResult>()) 49 return opResult.getDefiningOp(); 50 return value.cast<BlockArgument>().getOwner()->getParentOp(); 51 } 52 53 /// Create an AllocTensorOp for the given shaped value. If `copy` is set, the 54 /// shaped value is copied. Otherwise, a tensor with undefined contents is 55 /// allocated. 56 FailureOr<Value> bufferization::allocateTensorForShapedValue( 57 OpBuilder &b, Location loc, Value shapedValue, bool escape, 58 const BufferizationOptions &options, bool copy) { 59 Value tensor; 60 if (shapedValue.getType().isa<RankedTensorType>()) { 61 tensor = shapedValue; 62 } else if (shapedValue.getType().isa<MemRefType>()) { 63 tensor = b.create<ToTensorOp>(loc, shapedValue); 64 } else { 65 llvm_unreachable("expected RankedTensorType or MemRefType"); 66 } 67 RankedTensorType tensorType = tensor.getType().cast<RankedTensorType>(); 68 SmallVector<Value> dynamicSizes; 69 if (!copy) { 70 // Compute the dynamic part of the shape. 71 // First try to query the shape via ReifyRankedShapedTypeOpInterface. 72 bool reifiedShapes = false; 73 if (shapedValue.getType().isa<RankedTensorType>() && 74 shapedValue.isa<OpResult>()) { 75 if (auto rankedOp = dyn_cast_or_null<ReifyRankedShapedTypeOpInterface>( 76 shapedValue.getDefiningOp())) { 77 ReifiedRankedShapedTypeDims resultDims; 78 if (succeeded(rankedOp.reifyResultShapes(b, resultDims))) { 79 reifiedShapes = true; 80 auto &shape = 81 resultDims[shapedValue.cast<OpResult>().getResultNumber()]; 82 for (const auto &dim : enumerate(tensorType.getShape())) 83 if (ShapedType::isDynamic(dim.value())) 84 dynamicSizes.push_back(shape[dim.index()]); 85 } 86 } 87 } 88 89 // If the shape could not be reified, create DimOps. 90 if (!reifiedShapes) 91 populateDynamicDimSizes(b, loc, tensor, dynamicSizes); 92 } 93 94 // Create AllocTensorOp. 95 auto allocTensorOp = b.create<AllocTensorOp>(loc, tensorType, dynamicSizes, 96 copy ? tensor : Value()); 97 allocTensorOp->setAttr(BufferizationDialect::kEscapeAttrName, 98 b.getBoolArrayAttr({escape})); 99 100 // Add 'memory_space' attribute. Not needed if 'copy' operand is specified. 101 if (copy) 102 return allocTensorOp.getResult(); 103 FailureOr<BaseMemRefType> copyBufferType = getBufferType(tensor, options); 104 if (failed(copyBufferType)) 105 return failure(); 106 allocTensorOp.setMemorySpaceAttr( 107 b.getIntegerAttr(b.getIntegerType(64, /*isSigned=*/false), 108 copyBufferType->getMemorySpaceAsInt())); 109 return allocTensorOp.getResult(); 110 } 111 112 LogicalResult BufferizableOpInterface::resolveTensorOpOperandConflicts( 113 RewriterBase &rewriter, const AnalysisState &state) { 114 OpBuilder::InsertionGuard g(rewriter); 115 Operation *op = getOperation(); 116 SmallVector<OpOperand *> outOfPlaceOpOperands; 117 DenseSet<OpOperand *> copiedOpOperands; 118 DenseSet<OpOperand *> escapingOpOperandCopies; 119 SmallVector<OpResult> outOfPlaceOpResults; 120 DenseSet<OpResult> copiedOpResults; 121 DenseSet<OpResult> escapingOpResultCopies; 122 123 // Find all out-of-place OpOperands. 124 for (OpOperand &opOperand : op->getOpOperands()) { 125 Type operandType = opOperand.get().getType(); 126 if (!operandType.isa<TensorType>()) 127 continue; 128 if (state.isInPlace(opOperand)) 129 continue; 130 if (operandType.isa<UnrankedTensorType>()) 131 return op->emitError("copies of unranked tensors are not supported"); 132 133 SmallVector<OpResult> aliasingOpResults = 134 state.getAliasingOpResult(opOperand); 135 // Is the result yielded from a block? Or are deallocations turned off 136 // entirely? In either case, mark the allocation as "escaping", so that it 137 // will not be deallocated. 138 bool escape = !state.getOptions().createDeallocs || 139 llvm::any_of(aliasingOpResults, [&](Value v) { 140 return state.isTensorYielded(v); 141 }); 142 143 if (aliasingOpResults.size() == 1 && 144 !state.bufferizesToMemoryWrite(opOperand) && 145 state.getAliasingOpOperand(aliasingOpResults.front()).size() == 1) { 146 // The op itself does not write but may create exactly one alias. Instead 147 // of copying the OpOperand, copy the OpResult. The OpResult can sometimes 148 // be smaller than the OpOperand (e.g., in the case of an extract_slice, 149 // where the result is usually a smaller part of the source). 150 outOfPlaceOpResults.push_back(aliasingOpResults.front()); 151 if (!state.canOmitTensorCopy(opOperand)) 152 copiedOpResults.insert(aliasingOpResults.front()); 153 if (escape) 154 escapingOpResultCopies.insert(aliasingOpResults.front()); 155 } else { 156 // In all other cases, make a copy of the OpOperand. 157 outOfPlaceOpOperands.push_back(&opOperand); 158 if (!state.canOmitTensorCopy(opOperand)) 159 copiedOpOperands.insert(&opOperand); 160 if (escape) 161 escapingOpOperandCopies.insert(&opOperand); 162 } 163 } 164 165 // Insert copies of OpOperands. 166 rewriter.setInsertionPoint(op); 167 for (OpOperand *opOperand : outOfPlaceOpOperands) { 168 FailureOr<Value> copy = allocateTensorForShapedValue( 169 rewriter, op->getLoc(), opOperand->get(), 170 escapingOpOperandCopies.contains(opOperand), state.getOptions(), 171 copiedOpOperands.contains(opOperand)); 172 if (failed(copy)) 173 return failure(); 174 rewriter.updateRootInPlace(op, [&]() { opOperand->set(*copy); }); 175 } 176 177 // Insert copies of OpResults. 178 rewriter.setInsertionPointAfter(op); 179 for (OpResult opResult : outOfPlaceOpResults) { 180 FailureOr<Value> copy = allocateTensorForShapedValue( 181 rewriter, op->getLoc(), opResult, 182 escapingOpResultCopies.contains(opResult), state.getOptions(), 183 copiedOpResults.count(opResult)); 184 if (failed(copy)) 185 return failure(); 186 SmallVector<OpOperand *> uses = llvm::to_vector(llvm::map_range( 187 opResult.getUses(), [](OpOperand &use) { return &use; })); 188 for (OpOperand *use : uses) { 189 // Do not update the alloc_tensor op that we just created. 190 if (use->getOwner() != copy->getDefiningOp()) 191 rewriter.updateRootInPlace(use->getOwner(), [&]() { use->set(*copy); }); 192 } 193 } 194 195 return success(); 196 } 197 198 //===----------------------------------------------------------------------===// 199 // OpFilter 200 //===----------------------------------------------------------------------===// 201 202 bool OpFilter::isOpAllowed(Operation *op) const { 203 // All other ops: Allow/disallow according to filter. 204 bool isAllowed = !hasAllowRule(); 205 for (const Entry &entry : entries) { 206 bool filterResult = entry.fn(op); 207 switch (entry.type) { 208 case Entry::ALLOW: 209 isAllowed |= filterResult; 210 break; 211 case Entry::DENY: 212 if (filterResult) 213 // DENY filter matches. This op is no allowed. (Even if other ALLOW 214 // filters may match.) 215 return false; 216 }; 217 } 218 return isAllowed; 219 } 220 221 //===----------------------------------------------------------------------===// 222 // BufferizationOptions 223 //===----------------------------------------------------------------------===// 224 225 /// Default unknown type converter: Use a fully dynamic layout map. 226 static BaseMemRefType 227 defaultUnknownTypeConverter(Value value, unsigned memorySpace, 228 const BufferizationOptions &options) { 229 return getMemRefTypeWithFullyDynamicLayout(value.getType().cast<TensorType>(), 230 memorySpace); 231 } 232 233 // Default constructor for BufferizationOptions. 234 BufferizationOptions::BufferizationOptions() 235 : unknownTypeConverterFn(defaultUnknownTypeConverter) {} 236 237 bool BufferizationOptions::isOpAllowed(Operation *op) const { 238 // Special case: If function boundary bufferization is deactivated, do not 239 // allow ops that belong to the `func` dialect. 240 bool isFuncBoundaryOp = isa_and_nonnull<func::FuncDialect>(op->getDialect()); 241 if (!bufferizeFunctionBoundaries && isFuncBoundaryOp) 242 return false; 243 244 return opFilter.isOpAllowed(op); 245 } 246 247 BufferizableOpInterface 248 BufferizationOptions::dynCastBufferizableOp(Operation *op) const { 249 auto bufferizableOp = dyn_cast<BufferizableOpInterface>(op); 250 if (!bufferizableOp) 251 return nullptr; 252 if (!isOpAllowed(op)) 253 return nullptr; 254 return bufferizableOp; 255 } 256 257 BufferizableOpInterface 258 BufferizationOptions::dynCastBufferizableOp(Value value) const { 259 if (auto bufferizableOp = value.getDefiningOp<BufferizableOpInterface>()) 260 if (isOpAllowed(bufferizableOp.getOperation())) 261 return bufferizableOp; 262 return nullptr; 263 } 264 265 void BufferizationOptions::addDialectStateInitializer( 266 StringRef name, const DialectStateInitFn &fn) { 267 stateInitializers.push_back( 268 [=](AnalysisState &state) { state.insertDialectState(name, fn()); }); 269 } 270 271 //===----------------------------------------------------------------------===// 272 // Helper functions for BufferizableOpInterface 273 //===----------------------------------------------------------------------===// 274 275 static void setInsertionPointAfter(OpBuilder &b, Value value) { 276 if (auto bbArg = value.dyn_cast<BlockArgument>()) { 277 b.setInsertionPointToStart(bbArg.getOwner()); 278 } else { 279 b.setInsertionPointAfter(value.getDefiningOp()); 280 } 281 } 282 283 /// Determine which OpOperand* will alias with `result` if the op is bufferized 284 /// in place. Return an empty vector if the op is not bufferizable. 285 SmallVector<OpOperand *> 286 AnalysisState::getAliasingOpOperand(OpResult result) const { 287 if (Operation *op = result.getDefiningOp()) 288 if (auto bufferizableOp = getOptions().dynCastBufferizableOp(op)) 289 return bufferizableOp.getAliasingOpOperand(result, *this); 290 return {}; 291 } 292 293 /// Determine which OpResult will alias with `opOperand` if the op is bufferized 294 /// in place. Return an empty vector if the op is not bufferizable. 295 SmallVector<OpResult> 296 AnalysisState::getAliasingOpResult(OpOperand &opOperand) const { 297 if (auto bufferizableOp = 298 getOptions().dynCastBufferizableOp(opOperand.getOwner())) 299 return bufferizableOp.getAliasingOpResult(opOperand, *this); 300 return {}; 301 } 302 303 /// Return true if `opOperand` bufferizes to a memory read. Return `true` if the 304 /// op is not bufferizable. 305 bool AnalysisState::bufferizesToMemoryRead(OpOperand &opOperand) const { 306 if (auto bufferizableOp = 307 getOptions().dynCastBufferizableOp(opOperand.getOwner())) 308 return bufferizableOp.bufferizesToMemoryRead(opOperand, *this); 309 310 // Unknown op that returns a tensor. The inplace analysis does not support it. 311 // Conservatively return true. 312 return true; 313 } 314 315 /// Return true if `opOperand` bufferizes to a memory write. Return 316 /// `true` if the op is not bufferizable. 317 bool AnalysisState::bufferizesToMemoryWrite(OpOperand &opOperand) const { 318 if (auto bufferizableOp = 319 getOptions().dynCastBufferizableOp(opOperand.getOwner())) 320 return bufferizableOp.bufferizesToMemoryWrite(opOperand, *this); 321 322 // Unknown op that returns a tensor. The inplace analysis does not support it. 323 // Conservatively return true. 324 return true; 325 } 326 327 /// Return true if `opOperand` does neither read nor write but bufferizes to an 328 /// alias. Return false if the op is not bufferizable. 329 bool AnalysisState::bufferizesToAliasOnly(OpOperand &opOperand) const { 330 if (auto bufferizableOp = 331 getOptions().dynCastBufferizableOp(opOperand.getOwner())) 332 return bufferizableOp.bufferizesToAliasOnly(opOperand, *this); 333 334 // Unknown op that returns a tensor. The inplace analysis does not support it. 335 // Conservatively return false. 336 return false; 337 } 338 339 /// Return true if the given value is read by an op that bufferizes to a memory 340 /// read. Also takes into account ops that create an alias but do not read by 341 /// themselves (e.g., ExtractSliceOp). 342 bool AnalysisState::isValueRead(Value value) const { 343 assert(value.getType().isa<TensorType>() && "expected TensorType"); 344 SmallVector<OpOperand *> workingSet; 345 for (OpOperand &use : value.getUses()) 346 workingSet.push_back(&use); 347 348 while (!workingSet.empty()) { 349 OpOperand *uMaybeReading = workingSet.pop_back_val(); 350 // Skip over all ops that neither read nor write (but create an alias). 351 if (bufferizesToAliasOnly(*uMaybeReading)) 352 for (OpResult opResult : getAliasingOpResult(*uMaybeReading)) 353 for (OpOperand &use : opResult.getUses()) 354 workingSet.push_back(&use); 355 if (bufferizesToMemoryRead(*uMaybeReading)) 356 return true; 357 } 358 359 return false; 360 } 361 362 // Starting from `value`, follow the use-def chain in reverse, always selecting 363 // the aliasing OpOperands. Find and return Values for which `condition` 364 // evaluates to true. OpOperands of such matching Values are not traversed any 365 // further. 366 llvm::SetVector<Value> AnalysisState::findValueInReverseUseDefChain( 367 Value value, llvm::function_ref<bool(Value)> condition) const { 368 llvm::SetVector<Value> result, workingSet; 369 workingSet.insert(value); 370 371 while (!workingSet.empty()) { 372 Value value = workingSet.pop_back_val(); 373 if (condition(value) || value.isa<BlockArgument>()) { 374 result.insert(value); 375 continue; 376 } 377 378 OpResult opResult = value.cast<OpResult>(); 379 SmallVector<OpOperand *> opOperands = getAliasingOpOperand(opResult); 380 if (opOperands.empty() || !options.isOpAllowed(value.getDefiningOp())) { 381 result.insert(value); 382 continue; 383 } 384 385 for (OpOperand *o : opOperands) 386 workingSet.insert(o->get()); 387 } 388 389 return result; 390 } 391 392 // Find the Values of the last preceding write of a given Value. 393 llvm::SetVector<Value> 394 AnalysisState::findLastPrecedingWrite(Value value) const { 395 return findValueInReverseUseDefChain(value, [&](Value value) { 396 Operation *op = value.getDefiningOp(); 397 if (!op) 398 return true; 399 auto bufferizableOp = options.dynCastBufferizableOp(op); 400 if (!bufferizableOp) 401 return true; 402 return bufferizableOp.isMemoryWrite(value.cast<OpResult>(), *this); 403 }); 404 } 405 406 AnalysisState::AnalysisState(const BufferizationOptions &options) 407 : options(options) { 408 for (const BufferizationOptions::AnalysisStateInitFn &fn : 409 options.stateInitializers) 410 fn(*this); 411 } 412 413 bool AnalysisState::canOmitTensorCopy(OpOperand &opOperand) const { 414 // Do not copy if the tensor has undefined contents. 415 if (hasUndefinedContents(&opOperand)) 416 return true; 417 418 // Do not copy if the buffer of the tensor is entirely overwritten (with 419 // values that do not depend on the old tensor). 420 if (bufferizesToMemoryWrite(opOperand) && !bufferizesToMemoryRead(opOperand)) 421 return true; 422 423 // Do not copy if the tensor is never read. 424 SmallVector<OpResult> aliasingOpResults = getAliasingOpResult(opOperand); 425 if (!bufferizesToMemoryRead(opOperand) && 426 llvm::none_of(aliasingOpResults, 427 [&](OpResult opResult) { return isValueRead(opResult); })) 428 return true; 429 430 // Default: Cannot omit the copy. 431 return false; 432 } 433 434 bool AnalysisState::isInPlace(OpOperand &opOperand) const { 435 // ToMemrefOps are always in-place. 436 if (isa<ToMemrefOp>(opOperand.getOwner())) 437 return true; 438 439 // In the absence of analysis information, OpOperands that bufferize to a 440 // memory write are out-of-place, i.e., an alloc and copy is inserted. 441 return !bufferizesToMemoryWrite(opOperand); 442 } 443 444 bool AnalysisState::areEquivalentBufferizedValues(Value v1, Value v2) const { 445 // In the absence of analysis information, we do not know if the values are 446 // equivalent. The conservative answer is "false". 447 return false; 448 } 449 450 bool AnalysisState::areAliasingBufferizedValues(Value v1, Value v2) const { 451 // In the absence of analysis information, we do not know if the values may be 452 // aliasing. The conservative answer is "true". 453 return true; 454 } 455 456 bool AnalysisState::hasUndefinedContents(OpOperand *opOperand) const { 457 // In the absence of analysis information, the conservative answer is "false". 458 return false; 459 } 460 461 bool AnalysisState::isTensorYielded(Value tensor) const { 462 // In the absence of analysis information, the conservative answer is "true". 463 if (!tensor.getDefiningOp<AllocTensorOp>()) 464 return true; 465 466 // For AllocTensorOp results, we can do better: They do not alias with any 467 // preceding value, so we can follow SSA use-def chains and do a simple 468 // analysis. 469 SmallVector<OpOperand *> worklist; 470 for (OpOperand &use : tensor.getUses()) 471 worklist.push_back(&use); 472 473 while (!worklist.empty()) { 474 OpOperand *operand = worklist.pop_back_val(); 475 Operation *op = operand->getOwner(); 476 477 // If the op is not bufferizable, we can safely assume that the value is not 478 // yielded. (When bufferizing that op, it must handle such cases.) 479 if (!options.dynCastBufferizableOp(op)) 480 continue; 481 482 // We cannot analyze through ToMemrefOps, so we have to conservatively 483 // assume that the value is yielded. 484 if (isa<ToMemrefOp>(op)) 485 return true; 486 487 // Check if the op is returning/yielding. 488 if (isRegionReturnLike(op)) 489 return true; 490 491 // Add all aliasing OpResults to the worklist. 492 // Note: In the absence of detailed analysis information (e.g., there may be 493 // no function call analysis information), this `getAliasingOpResult` is 494 // conservative and may report additional OpResults as potentially aliasing. 495 for (OpResult opResult : getAliasingOpResult(*operand)) 496 for (OpOperand &use : opResult.getUses()) 497 worklist.push_back(&use); 498 } 499 500 // No ReturnLike op found: The value is not yielded. 501 return false; 502 } 503 504 // bufferization.to_memref is not allowed to change the rank. 505 static void ensureToMemrefOpIsValid(Value tensor, Type memrefType) { 506 #ifndef NDEBUG 507 auto rankedTensorType = tensor.getType().dyn_cast<RankedTensorType>(); 508 assert((!rankedTensorType || memrefType.cast<MemRefType>().getRank() == 509 rankedTensorType.getRank()) && 510 "to_memref would be invalid: mismatching ranks"); 511 #endif 512 } 513 514 FailureOr<Value> bufferization::getBuffer(RewriterBase &rewriter, Value value, 515 const BufferizationOptions &options) { 516 #ifndef NDEBUG 517 auto tensorType = value.getType().dyn_cast<TensorType>(); 518 assert(tensorType && "unexpected non-tensor type"); 519 #endif // NDEBUG 520 521 // Replace "%t = to_tensor %m" with %m. 522 if (auto toTensorOp = value.getDefiningOp<bufferization::ToTensorOp>()) 523 return toTensorOp.getMemref(); 524 525 // Insert to_memref op. 526 OpBuilder::InsertionGuard g(rewriter); 527 setInsertionPointAfter(rewriter, value); 528 FailureOr<BaseMemRefType> memrefType = getBufferType(value, options); 529 if (failed(memrefType)) 530 return failure(); 531 ensureToMemrefOpIsValid(value, *memrefType); 532 return rewriter 533 .create<bufferization::ToMemrefOp>(value.getLoc(), *memrefType, value) 534 .getResult(); 535 } 536 537 /// Return the buffer type for a given Value (tensor) after bufferization. 538 FailureOr<BaseMemRefType> 539 bufferization::getBufferType(Value value, const BufferizationOptions &options) { 540 assert(value.getType().isa<TensorType>() && "unexpected non-tensor type"); 541 Operation *op = getOwnerOfValue(value); 542 543 // ToTensorOp: Take buffer type directly from the op. 544 if (auto toTensorOp = value.getDefiningOp<bufferization::ToTensorOp>()) 545 return toTensorOp.getMemref().getType().cast<BaseMemRefType>(); 546 547 // If value is a bbArg of a bufferizable op: query op interface. 548 if (auto bbArg = value.dyn_cast<BlockArgument>()) 549 if (auto bufferizableOp = 550 options.dynCastBufferizableOp(bbArg.getOwner()->getParentOp())) 551 return bufferizableOp.getBufferType(bbArg, options); 552 553 // Check value is a new buffer allocation with a memory space attribute. In 554 // that case we can at least infer the memory space. 555 Optional<unsigned> memorySpace = None; 556 if (auto opResult = value.dyn_cast<OpResult>()) { 557 if (auto bufferizableOp = 558 options.dynCastBufferizableOp(opResult.getDefiningOp())) { 559 if (bufferizableOp.bufferizesToAllocation(opResult)) { 560 FailureOr<unsigned> queriedMemorySpace = 561 bufferizableOp.getMemorySpace(opResult); 562 if (!failed(queriedMemorySpace)) 563 memorySpace = *queriedMemorySpace; 564 } 565 } 566 } 567 568 // If we still do not know the memory space, use the default memory space (if 569 // any). 570 if (!memorySpace.hasValue()) 571 memorySpace = options.defaultMemorySpace; 572 573 // If we still do not know the memory space, report a failure. 574 if (!memorySpace.hasValue()) 575 return op->emitError("could not infer memory space"); 576 577 return getMemRefType(value, options, /*layout=*/{}, *memorySpace); 578 } 579 580 void bufferization::replaceOpWithBufferizedValues(RewriterBase &rewriter, 581 Operation *op, 582 ValueRange values) { 583 assert(values.size() == op->getNumResults() && 584 "expected one value per OpResult"); 585 OpBuilder::InsertionGuard g(rewriter); 586 587 // Replace all OpResults with the given values. 588 SmallVector<Value> replacements; 589 for (OpResult opResult : op->getOpResults()) { 590 Value replacement = values[opResult.getResultNumber()]; 591 if (opResult.getType().isa<TensorType>()) { 592 // The OpResult is a tensor. Such values are replaced with memrefs during 593 // bufferization. 594 assert((replacement.getType().isa<MemRefType>() || 595 replacement.getType().isa<UnrankedMemRefType>()) && 596 "tensor op result should be replaced with a memref value"); 597 // The existing uses of the OpResult still expect a tensor. Insert a 598 // ToTensorOp. Throughout bufferization, this ToTensorOp will gradually 599 // loose all of its users and eventually DCE away. 600 rewriter.setInsertionPointAfter(op); 601 replacement = rewriter.create<bufferization::ToTensorOp>( 602 replacement.getLoc(), replacement); 603 } 604 replacements.push_back(replacement); 605 } 606 607 rewriter.replaceOp(op, replacements); 608 } 609 610 //===----------------------------------------------------------------------===// 611 // Bufferization-specific scoped alloc/dealloc insertion support. 612 //===----------------------------------------------------------------------===// 613 614 /// Create a memref allocation with the given type and dynamic extents. 615 FailureOr<Value> BufferizationOptions::createAlloc(OpBuilder &b, Location loc, 616 MemRefType type, 617 ValueRange dynShape) const { 618 if (allocationFn) 619 return (*allocationFn)(b, loc, type, dynShape, bufferAlignment); 620 621 // Default bufferallocation via AllocOp. 622 if (bufferAlignment != 0) 623 return b 624 .create<memref::AllocOp>(loc, type, dynShape, 625 b.getI64IntegerAttr(bufferAlignment)) 626 .getResult(); 627 return b.create<memref::AllocOp>(loc, type, dynShape).getResult(); 628 } 629 630 /// Creates a memref deallocation. The given memref buffer must have been 631 /// allocated using `createAlloc`. 632 LogicalResult BufferizationOptions::createDealloc(OpBuilder &b, Location loc, 633 Value allocatedBuffer) const { 634 if (deallocationFn) 635 return (*deallocationFn)(b, loc, allocatedBuffer); 636 637 // Default buffer deallocation via DeallocOp. 638 b.create<memref::DeallocOp>(loc, allocatedBuffer); 639 return success(); 640 } 641 642 /// Create a memory copy between two memref buffers. 643 LogicalResult BufferizationOptions::createMemCpy(OpBuilder &b, Location loc, 644 Value from, Value to) const { 645 if (memCpyFn) 646 return (*memCpyFn)(b, loc, from, to); 647 648 b.create<memref::CopyOp>(loc, from, to); 649 return success(); 650 } 651 652 //===----------------------------------------------------------------------===// 653 // Bufferization-specific BlockAndValueMapping support with debugging. 654 //===----------------------------------------------------------------------===// 655 656 bool bufferization::isFunctionArgument(Value value) { 657 auto bbArg = value.dyn_cast<BlockArgument>(); 658 if (!bbArg) 659 return false; 660 return isa<func::FuncOp>(bbArg.getOwner()->getParentOp()); 661 } 662 663 BaseMemRefType bufferization::getMemRefType(Value value, 664 const BufferizationOptions &options, 665 MemRefLayoutAttrInterface layout, 666 unsigned memorySpace) { 667 auto tensorType = value.getType().cast<TensorType>(); 668 auto memorySpaceAttr = IntegerAttr::get( 669 IntegerType::get(tensorType.getContext(), 64), memorySpace); 670 671 // Case 1: Unranked memref type. 672 if (auto unrankedTensorType = tensorType.dyn_cast<UnrankedTensorType>()) { 673 assert(!layout && "UnrankedTensorType cannot have a layout map"); 674 return UnrankedMemRefType::get(unrankedTensorType.getElementType(), 675 memorySpaceAttr); 676 } 677 678 // Case 2: Ranked memref type with specified layout. 679 auto rankedTensorType = tensorType.cast<RankedTensorType>(); 680 if (layout) { 681 return MemRefType::get(rankedTensorType.getShape(), 682 rankedTensorType.getElementType(), layout, 683 memorySpaceAttr); 684 } 685 686 return options.unknownTypeConverterFn(value, memorySpace, options); 687 } 688 689 BaseMemRefType 690 bufferization::getMemRefTypeWithFullyDynamicLayout(TensorType tensorType, 691 unsigned memorySpace) { 692 // Case 1: Unranked memref type. 693 if (auto unrankedTensorType = tensorType.dyn_cast<UnrankedTensorType>()) { 694 return UnrankedMemRefType::get(unrankedTensorType.getElementType(), 695 memorySpace); 696 } 697 698 // Case 2: Ranked memref type. 699 auto memorySpaceAttr = IntegerAttr::get( 700 IntegerType::get(tensorType.getContext(), 64), memorySpace); 701 auto rankedTensorType = tensorType.cast<RankedTensorType>(); 702 int64_t dynamicOffset = ShapedType::kDynamicStrideOrOffset; 703 SmallVector<int64_t> dynamicStrides(rankedTensorType.getRank(), 704 ShapedType::kDynamicStrideOrOffset); 705 AffineMap stridedLayout = makeStridedLinearLayoutMap( 706 dynamicStrides, dynamicOffset, rankedTensorType.getContext()); 707 return MemRefType::get(rankedTensorType.getShape(), 708 rankedTensorType.getElementType(), stridedLayout, 709 memorySpaceAttr); 710 } 711 712 /// Return a MemRef type with a static identity layout (i.e., no layout map). If 713 /// the given tensor type is unranked, return an unranked MemRef type. 714 BaseMemRefType 715 bufferization::getMemRefTypeWithStaticIdentityLayout(TensorType tensorType, 716 unsigned memorySpace) { 717 // Case 1: Unranked memref type. 718 if (auto unrankedTensorType = tensorType.dyn_cast<UnrankedTensorType>()) { 719 return UnrankedMemRefType::get(unrankedTensorType.getElementType(), 720 memorySpace); 721 } 722 723 // Case 2: Ranked memref type. 724 auto rankedTensorType = tensorType.cast<RankedTensorType>(); 725 auto memorySpaceAttr = IntegerAttr::get( 726 IntegerType::get(tensorType.getContext(), 64), memorySpace); 727 MemRefLayoutAttrInterface layout = {}; 728 return MemRefType::get(rankedTensorType.getShape(), 729 rankedTensorType.getElementType(), layout, 730 memorySpaceAttr); 731 } 732