1 //===- BufferizableOpInterface.cpp - Bufferizable Ops ---=----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h" 10 #include "mlir/Dialect/Bufferization/IR/Bufferization.h" 11 #include "mlir/Dialect/Func/IR/FuncOps.h" 12 #include "mlir/Dialect/MemRef/IR/MemRef.h" 13 #include "mlir/Dialect/Tensor/IR/Tensor.h" 14 #include "mlir/IR/AsmState.h" 15 #include "mlir/IR/BlockAndValueMapping.h" 16 #include "mlir/IR/BuiltinOps.h" 17 #include "mlir/IR/Operation.h" 18 #include "mlir/IR/TypeUtilities.h" 19 #include "mlir/IR/Value.h" 20 #include "llvm/Support/Debug.h" 21 22 //===----------------------------------------------------------------------===// 23 // BufferizableOpInterface 24 //===----------------------------------------------------------------------===// 25 26 namespace mlir { 27 namespace bufferization { 28 29 #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.cpp.inc" 30 31 } // namespace bufferization 32 } // namespace mlir 33 34 #define DEBUG_TYPE "bufferizable-op-interface" 35 #define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ") 36 #define LDBG(X) LLVM_DEBUG(DBGS() << (X)) 37 38 using namespace mlir; 39 using namespace bufferization; 40 41 /// Attribute name used to mark region arguments that can be bufferized 42 /// in-place during linalg comprehensive bufferization. 43 constexpr const ::llvm::StringLiteral 44 bufferization::BufferizableOpInterface::kInplaceableAttrName; 45 46 /// Create an AllocTensorOp for the given shaped value. If `copy` is set, the 47 /// shaped value is copied. Otherwise, a tensor with undefined contents is 48 /// allocated. 49 Value bufferization::allocateTensorForShapedValue(OpBuilder &b, Location loc, 50 Value shapedValue, 51 bool escape, bool copy) { 52 Value tensor; 53 if (shapedValue.getType().isa<RankedTensorType>()) { 54 tensor = shapedValue; 55 } else if (shapedValue.getType().isa<MemRefType>()) { 56 tensor = b.create<ToTensorOp>(loc, shapedValue); 57 } else { 58 llvm_unreachable("expected RankedTensorType or MemRefType"); 59 } 60 RankedTensorType tensorType = tensor.getType().cast<RankedTensorType>(); 61 SmallVector<Value> dynamicSizes; 62 if (!copy) { 63 // Compute the dynamic part of the shape. 64 // First try to query the shape via ReifyRankedShapedTypeOpInterface. 65 bool reifiedShapes = false; 66 if (shapedValue.getType().isa<RankedTensorType>() && 67 shapedValue.isa<OpResult>()) { 68 if (auto rankedOp = dyn_cast_or_null<ReifyRankedShapedTypeOpInterface>( 69 shapedValue.getDefiningOp())) { 70 ReifiedRankedShapedTypeDims resultDims; 71 if (succeeded(rankedOp.reifyResultShapes(b, resultDims))) { 72 reifiedShapes = true; 73 auto &shape = 74 resultDims[shapedValue.cast<OpResult>().getResultNumber()]; 75 for (const auto &dim : enumerate(tensorType.getShape())) 76 if (ShapedType::isDynamic(dim.value())) 77 dynamicSizes.push_back(shape[dim.index()]); 78 } 79 } 80 } 81 82 // If the shape could not be reified, create DimOps. 83 if (!reifiedShapes) 84 populateDynamicDimSizes(b, loc, tensor, dynamicSizes); 85 } 86 87 auto allocTensorOp = b.create<AllocTensorOp>(loc, tensorType, dynamicSizes, 88 copy ? tensor : Value()); 89 allocTensorOp->setAttr(BufferizationDialect::kEscapeAttrName, 90 b.getBoolArrayAttr({escape})); 91 return allocTensorOp; 92 } 93 94 LogicalResult BufferizableOpInterface::resolveTensorOpOperandConflicts( 95 RewriterBase &rewriter, const AnalysisState &state) { 96 OpBuilder::InsertionGuard g(rewriter); 97 Operation *op = getOperation(); 98 SmallVector<OpOperand *> outOfPlaceOpOperands; 99 DenseSet<OpOperand *> copiedOpOperands; 100 DenseSet<OpOperand *> escapingOpOperandCopies; 101 SmallVector<OpResult> outOfPlaceOpResults; 102 DenseSet<OpResult> copiedOpResults; 103 DenseSet<OpResult> escapingOpResultCopies; 104 105 // Find all out-of-place OpOperands. 106 for (OpOperand &opOperand : op->getOpOperands()) { 107 Type operandType = opOperand.get().getType(); 108 if (!operandType.isa<TensorType>()) 109 continue; 110 if (state.isInPlace(opOperand)) 111 continue; 112 if (operandType.isa<UnrankedTensorType>()) 113 return op->emitError("copies of unranked tensors are not supported"); 114 115 SmallVector<OpResult> aliasingOpResults = 116 state.getAliasingOpResult(opOperand); 117 // Is the result yielded from a block? Or are deallocations turned off 118 // entirely? In either case, mark the allocation as "escaping", so that it 119 // will not be deallocated. 120 bool escape = !state.getOptions().createDeallocs || 121 llvm::any_of(aliasingOpResults, [&](Value v) { 122 return state.isTensorYielded(v); 123 }); 124 125 if (aliasingOpResults.size() == 1 && 126 !state.bufferizesToMemoryWrite(opOperand) && 127 state.getAliasingOpOperand(aliasingOpResults.front()).size() == 1) { 128 // The op itself does not write but may create exactly one alias. Instead 129 // of copying the OpOperand, copy the OpResult. The OpResult can sometimes 130 // be smaller than the OpOperand (e.g., in the case of an extract_slice, 131 // where the result is usually a smaller part of the source). 132 outOfPlaceOpResults.push_back(aliasingOpResults.front()); 133 if (!state.canOmitTensorCopy(opOperand)) 134 copiedOpResults.insert(aliasingOpResults.front()); 135 if (escape) 136 escapingOpResultCopies.insert(aliasingOpResults.front()); 137 } else { 138 // In all other cases, make a copy of the OpOperand. 139 outOfPlaceOpOperands.push_back(&opOperand); 140 if (!state.canOmitTensorCopy(opOperand)) 141 copiedOpOperands.insert(&opOperand); 142 if (escape) 143 escapingOpOperandCopies.insert(&opOperand); 144 } 145 } 146 147 // Insert copies of OpOperands. 148 rewriter.setInsertionPoint(op); 149 for (OpOperand *opOperand : outOfPlaceOpOperands) { 150 Value copy = allocateTensorForShapedValue( 151 rewriter, op->getLoc(), opOperand->get(), 152 escapingOpOperandCopies.contains(opOperand), 153 copiedOpOperands.contains(opOperand)); 154 rewriter.updateRootInPlace(op, [&]() { opOperand->set(copy); }); 155 } 156 157 // Insert copies of OpResults. 158 rewriter.setInsertionPointAfter(op); 159 for (OpResult opResult : outOfPlaceOpResults) { 160 Value copy = 161 allocateTensorForShapedValue(rewriter, op->getLoc(), opResult, 162 escapingOpResultCopies.contains(opResult), 163 copiedOpResults.count(opResult)); 164 SmallVector<OpOperand *> uses = llvm::to_vector(llvm::map_range( 165 opResult.getUses(), [](OpOperand &use) { return &use; })); 166 for (OpOperand *use : uses) { 167 // Do not update the alloc_tensor op that we just created. 168 if (use->getOwner() != copy.getDefiningOp()) 169 rewriter.updateRootInPlace(use->getOwner(), [&]() { use->set(copy); }); 170 } 171 } 172 173 return success(); 174 } 175 176 //===----------------------------------------------------------------------===// 177 // OpFilter 178 //===----------------------------------------------------------------------===// 179 180 bool OpFilter::isOpAllowed(Operation *op) const { 181 // All other ops: Allow/disallow according to filter. 182 bool isAllowed = !hasAllowRule(); 183 for (const Entry &entry : entries) { 184 bool filterResult = entry.fn(op); 185 switch (entry.type) { 186 case Entry::ALLOW: 187 isAllowed |= filterResult; 188 break; 189 case Entry::DENY: 190 if (filterResult) 191 // DENY filter matches. This op is no allowed. (Even if other ALLOW 192 // filters may match.) 193 return false; 194 }; 195 } 196 return isAllowed; 197 } 198 199 //===----------------------------------------------------------------------===// 200 // BufferizationOptions 201 //===----------------------------------------------------------------------===// 202 203 // Default constructor for BufferizationOptions. 204 BufferizationOptions::BufferizationOptions() = default; 205 206 bool BufferizationOptions::isOpAllowed(Operation *op) const { 207 // Special case: If function boundary bufferization is deactivated, do not 208 // allow ops that belong to the `func` dialect. 209 bool isFuncBoundaryOp = isa_and_nonnull<func::FuncDialect>(op->getDialect()); 210 if (!bufferizeFunctionBoundaries && isFuncBoundaryOp) 211 return false; 212 213 return opFilter.isOpAllowed(op); 214 } 215 216 BufferizableOpInterface 217 BufferizationOptions::dynCastBufferizableOp(Operation *op) const { 218 auto bufferizableOp = dyn_cast<BufferizableOpInterface>(op); 219 if (!bufferizableOp) 220 return nullptr; 221 if (!isOpAllowed(op)) 222 return nullptr; 223 return bufferizableOp; 224 } 225 226 BufferizableOpInterface 227 BufferizationOptions::dynCastBufferizableOp(Value value) const { 228 if (auto bufferizableOp = value.getDefiningOp<BufferizableOpInterface>()) 229 if (isOpAllowed(bufferizableOp.getOperation())) 230 return bufferizableOp; 231 return nullptr; 232 } 233 234 void BufferizationOptions::addDialectStateInitializer( 235 StringRef name, const DialectStateInitFn &fn) { 236 stateInitializers.push_back( 237 [=](AnalysisState &state) { state.insertDialectState(name, fn()); }); 238 } 239 240 //===----------------------------------------------------------------------===// 241 // Helper functions for BufferizableOpInterface 242 //===----------------------------------------------------------------------===// 243 244 static void setInsertionPointAfter(OpBuilder &b, Value value) { 245 if (auto bbArg = value.dyn_cast<BlockArgument>()) { 246 b.setInsertionPointToStart(bbArg.getOwner()); 247 } else { 248 b.setInsertionPointAfter(value.getDefiningOp()); 249 } 250 } 251 252 /// Determine which OpOperand* will alias with `result` if the op is bufferized 253 /// in place. Return an empty vector if the op is not bufferizable. 254 SmallVector<OpOperand *> 255 AnalysisState::getAliasingOpOperand(OpResult result) const { 256 if (Operation *op = result.getDefiningOp()) 257 if (auto bufferizableOp = getOptions().dynCastBufferizableOp(op)) 258 return bufferizableOp.getAliasingOpOperand(result, *this); 259 return {}; 260 } 261 262 /// Determine which OpResult will alias with `opOperand` if the op is bufferized 263 /// in place. Return an empty vector if the op is not bufferizable. 264 SmallVector<OpResult> 265 AnalysisState::getAliasingOpResult(OpOperand &opOperand) const { 266 if (auto bufferizableOp = 267 getOptions().dynCastBufferizableOp(opOperand.getOwner())) 268 return bufferizableOp.getAliasingOpResult(opOperand, *this); 269 return {}; 270 } 271 272 /// Return true if `opOperand` bufferizes to a memory read. Return `true` if the 273 /// op is not bufferizable. 274 bool AnalysisState::bufferizesToMemoryRead(OpOperand &opOperand) const { 275 if (auto bufferizableOp = 276 getOptions().dynCastBufferizableOp(opOperand.getOwner())) 277 return bufferizableOp.bufferizesToMemoryRead(opOperand, *this); 278 279 // Unknown op that returns a tensor. The inplace analysis does not support it. 280 // Conservatively return true. 281 return true; 282 } 283 284 /// Return true if `opOperand` bufferizes to a memory write. Return 285 /// `true` if the op is not bufferizable. 286 bool AnalysisState::bufferizesToMemoryWrite(OpOperand &opOperand) const { 287 if (auto bufferizableOp = 288 getOptions().dynCastBufferizableOp(opOperand.getOwner())) 289 return bufferizableOp.bufferizesToMemoryWrite(opOperand, *this); 290 291 // Unknown op that returns a tensor. The inplace analysis does not support it. 292 // Conservatively return true. 293 return true; 294 } 295 296 /// Return true if `opOperand` does neither read nor write but bufferizes to an 297 /// alias. Return false if the op is not bufferizable. 298 bool AnalysisState::bufferizesToAliasOnly(OpOperand &opOperand) const { 299 if (auto bufferizableOp = 300 getOptions().dynCastBufferizableOp(opOperand.getOwner())) 301 return bufferizableOp.bufferizesToAliasOnly(opOperand, *this); 302 303 // Unknown op that returns a tensor. The inplace analysis does not support it. 304 // Conservatively return false. 305 return false; 306 } 307 308 /// Return true if the given value is read by an op that bufferizes to a memory 309 /// read. Also takes into account ops that create an alias but do not read by 310 /// themselves (e.g., ExtractSliceOp). 311 bool AnalysisState::isValueRead(Value value) const { 312 assert(value.getType().isa<TensorType>() && "expected TensorType"); 313 SmallVector<OpOperand *> workingSet; 314 for (OpOperand &use : value.getUses()) 315 workingSet.push_back(&use); 316 317 while (!workingSet.empty()) { 318 OpOperand *uMaybeReading = workingSet.pop_back_val(); 319 // Skip over all ops that neither read nor write (but create an alias). 320 if (bufferizesToAliasOnly(*uMaybeReading)) 321 for (OpResult opResult : getAliasingOpResult(*uMaybeReading)) 322 for (OpOperand &use : opResult.getUses()) 323 workingSet.push_back(&use); 324 if (bufferizesToMemoryRead(*uMaybeReading)) 325 return true; 326 } 327 328 return false; 329 } 330 331 // Starting from `value`, follow the use-def chain in reverse, always selecting 332 // the aliasing OpOperands. Find and return Values for which `condition` 333 // evaluates to true. OpOperands of such matching Values are not traversed any 334 // further. 335 llvm::SetVector<Value> AnalysisState::findValueInReverseUseDefChain( 336 Value value, llvm::function_ref<bool(Value)> condition) const { 337 llvm::SetVector<Value> result, workingSet; 338 workingSet.insert(value); 339 340 while (!workingSet.empty()) { 341 Value value = workingSet.pop_back_val(); 342 if (condition(value) || value.isa<BlockArgument>()) { 343 result.insert(value); 344 continue; 345 } 346 347 OpResult opResult = value.cast<OpResult>(); 348 SmallVector<OpOperand *> opOperands = getAliasingOpOperand(opResult); 349 if (opOperands.empty() || !options.isOpAllowed(value.getDefiningOp())) { 350 result.insert(value); 351 continue; 352 } 353 354 for (OpOperand *o : opOperands) 355 workingSet.insert(o->get()); 356 } 357 358 return result; 359 } 360 361 // Find the Values of the last preceding write of a given Value. 362 llvm::SetVector<Value> 363 AnalysisState::findLastPrecedingWrite(Value value) const { 364 return findValueInReverseUseDefChain(value, [&](Value value) { 365 Operation *op = value.getDefiningOp(); 366 if (!op) 367 return true; 368 auto bufferizableOp = options.dynCastBufferizableOp(op); 369 if (!bufferizableOp) 370 return true; 371 return bufferizableOp.isMemoryWrite(value.cast<OpResult>(), *this); 372 }); 373 } 374 375 AnalysisState::AnalysisState(const BufferizationOptions &options) 376 : options(options) { 377 for (const BufferizationOptions::AnalysisStateInitFn &fn : 378 options.stateInitializers) 379 fn(*this); 380 } 381 382 bool AnalysisState::canOmitTensorCopy(OpOperand &opOperand) const { 383 // Do not copy if the tensor has undefined contents. 384 if (hasUndefinedContents(&opOperand)) 385 return true; 386 387 // Do not copy if the buffer of the tensor is entirely overwritten (with 388 // values that do not depend on the old tensor). 389 if (bufferizesToMemoryWrite(opOperand) && !bufferizesToMemoryRead(opOperand)) 390 return true; 391 392 // Do not copy if the tensor is never read. 393 SmallVector<OpResult> aliasingOpResults = getAliasingOpResult(opOperand); 394 if (!bufferizesToMemoryRead(opOperand) && 395 llvm::none_of(aliasingOpResults, 396 [&](OpResult opResult) { return isValueRead(opResult); })) 397 return true; 398 399 // Default: Cannot omit the copy. 400 return false; 401 } 402 403 bool AnalysisState::isInPlace(OpOperand &opOperand) const { 404 // ToMemrefOps are always in-place. 405 if (isa<ToMemrefOp>(opOperand.getOwner())) 406 return true; 407 408 // In the absence of analysis information, OpOperands that bufferize to a 409 // memory write are out-of-place, i.e., an alloc and copy is inserted. 410 return !bufferizesToMemoryWrite(opOperand); 411 } 412 413 bool AnalysisState::areEquivalentBufferizedValues(Value v1, Value v2) const { 414 // In the absence of analysis information, we do not know if the values are 415 // equivalent. The conservative answer is "false". 416 return false; 417 } 418 419 bool AnalysisState::areAliasingBufferizedValues(Value v1, Value v2) const { 420 // In the absence of analysis information, we do not know if the values may be 421 // aliasing. The conservative answer is "true". 422 return true; 423 } 424 425 bool AnalysisState::hasUndefinedContents(OpOperand *opOperand) const { 426 // In the absence of analysis information, the conservative answer is "false". 427 return false; 428 } 429 430 bool AnalysisState::isTensorYielded(Value tensor) const { 431 // In the absence of analysis information, the conservative answer is "true". 432 if (!tensor.getDefiningOp<AllocTensorOp>()) 433 return true; 434 435 // For AllocTensorOp results, we can do better: They do not alias with any 436 // preceding value, so we can follow SSA use-def chains and do a simple 437 // analysis. 438 SmallVector<OpOperand *> worklist; 439 for (OpOperand &use : tensor.getUses()) 440 worklist.push_back(&use); 441 442 while (!worklist.empty()) { 443 OpOperand *operand = worklist.pop_back_val(); 444 Operation *op = operand->getOwner(); 445 446 // If the op is not bufferizable, we can safely assume that the value is not 447 // yielded. (When bufferizing that op, it must handle such cases.) 448 if (!options.dynCastBufferizableOp(op)) 449 continue; 450 451 // We cannot analyze through ToMemrefOps, so we have to conservatively 452 // assume that the value is yielded. 453 if (isa<ToMemrefOp>(op)) 454 return true; 455 456 // Check if the op is returning/yielding. 457 if (isRegionReturnLike(op)) 458 return true; 459 460 // Add all aliasing OpResults to the worklist. 461 // Note: In the absence of detailed analysis information (e.g., there may be 462 // no function call analysis information), this `getAliasingOpResult` is 463 // conservative and may report additional OpResults as potentially aliasing. 464 for (OpResult opResult : getAliasingOpResult(*operand)) 465 for (OpOperand &use : opResult.getUses()) 466 worklist.push_back(&use); 467 } 468 469 // No ReturnLike op found: The value is not yielded. 470 return false; 471 } 472 473 // bufferization.to_memref is not allowed to change the rank. 474 static void ensureToMemrefOpIsValid(Value tensor, Type memrefType) { 475 #ifndef NDEBUG 476 auto rankedTensorType = tensor.getType().dyn_cast<RankedTensorType>(); 477 assert((!rankedTensorType || memrefType.cast<MemRefType>().getRank() == 478 rankedTensorType.getRank()) && 479 "to_memref would be invalid: mismatching ranks"); 480 #endif 481 } 482 483 Value bufferization::getBuffer(RewriterBase &rewriter, Value value, 484 const BufferizationOptions &options) { 485 auto tensorType = value.getType().dyn_cast<TensorType>(); 486 assert(tensorType && "unexpected non-tensor type"); 487 488 // Replace "%t = to_tensor %m" with %m. 489 if (auto toTensorOp = value.getDefiningOp<bufferization::ToTensorOp>()) 490 return toTensorOp.getMemref(); 491 492 // Insert to_memref op. 493 OpBuilder::InsertionGuard g(rewriter); 494 setInsertionPointAfter(rewriter, value); 495 Type memrefType = getMemRefType(tensorType, options); 496 ensureToMemrefOpIsValid(value, memrefType); 497 return rewriter.create<bufferization::ToMemrefOp>(value.getLoc(), memrefType, 498 value); 499 } 500 501 /// Return the buffer type for a given Value (tensor) after bufferization. 502 BaseMemRefType 503 bufferization::getBufferType(Value value, const BufferizationOptions &options) { 504 auto tensorType = value.getType().dyn_cast<TensorType>(); 505 assert(tensorType && "unexpected non-tensor type"); 506 507 if (auto toTensorOp = value.getDefiningOp<bufferization::ToTensorOp>()) 508 return toTensorOp.getMemref().getType().cast<BaseMemRefType>(); 509 510 return getMemRefType(tensorType, options); 511 } 512 513 void bufferization::replaceOpWithBufferizedValues(RewriterBase &rewriter, 514 Operation *op, 515 ValueRange values) { 516 assert(values.size() == op->getNumResults() && 517 "expected one value per OpResult"); 518 OpBuilder::InsertionGuard g(rewriter); 519 520 // Replace all OpResults with the given values. 521 SmallVector<Value> replacements; 522 for (OpResult opResult : op->getOpResults()) { 523 Value replacement = values[opResult.getResultNumber()]; 524 if (opResult.getType().isa<TensorType>()) { 525 // The OpResult is a tensor. Such values are replaced with memrefs during 526 // bufferization. 527 assert((replacement.getType().isa<MemRefType>() || 528 replacement.getType().isa<UnrankedMemRefType>()) && 529 "tensor op result should be replaced with a memref value"); 530 // The existing uses of the OpResult still expect a tensor. Insert a 531 // ToTensorOp. Throughout bufferization, this ToTensorOp will gradually 532 // loose all of its users and eventually DCE away. 533 rewriter.setInsertionPointAfter(op); 534 replacement = rewriter.create<bufferization::ToTensorOp>( 535 replacement.getLoc(), replacement); 536 } 537 replacements.push_back(replacement); 538 } 539 540 rewriter.replaceOp(op, replacements); 541 } 542 543 //===----------------------------------------------------------------------===// 544 // Bufferization-specific scoped alloc/dealloc insertion support. 545 //===----------------------------------------------------------------------===// 546 547 /// Create a memref allocation with the given type and dynamic extents. 548 FailureOr<Value> BufferizationOptions::createAlloc(OpBuilder &b, Location loc, 549 MemRefType type, 550 ValueRange dynShape) const { 551 if (allocationFn) 552 return (*allocationFn)(b, loc, type, dynShape, bufferAlignment); 553 554 // Default bufferallocation via AllocOp. 555 if (bufferAlignment != 0) 556 return b 557 .create<memref::AllocOp>(loc, type, dynShape, 558 b.getI64IntegerAttr(bufferAlignment)) 559 .getResult(); 560 return b.create<memref::AllocOp>(loc, type, dynShape).getResult(); 561 } 562 563 /// Creates a memref deallocation. The given memref buffer must have been 564 /// allocated using `createAlloc`. 565 LogicalResult BufferizationOptions::createDealloc(OpBuilder &b, Location loc, 566 Value allocatedBuffer) const { 567 if (deallocationFn) 568 return (*deallocationFn)(b, loc, allocatedBuffer); 569 570 // Default buffer deallocation via DeallocOp. 571 b.create<memref::DeallocOp>(loc, allocatedBuffer); 572 return success(); 573 } 574 575 /// Create a memory copy between two memref buffers. 576 LogicalResult BufferizationOptions::createMemCpy(OpBuilder &b, Location loc, 577 Value from, Value to) const { 578 if (memCpyFn) 579 return (*memCpyFn)(b, loc, from, to); 580 581 b.create<memref::CopyOp>(loc, from, to); 582 return success(); 583 } 584 585 //===----------------------------------------------------------------------===// 586 // Bufferization-specific BlockAndValueMapping support with debugging. 587 //===----------------------------------------------------------------------===// 588 589 bool bufferization::isFunctionArgument(Value value) { 590 auto bbArg = value.dyn_cast<BlockArgument>(); 591 if (!bbArg) 592 return false; 593 return isa<func::FuncOp>(bbArg.getOwner()->getParentOp()); 594 } 595 596 BaseMemRefType bufferization::getMemRefType(TensorType tensorType, 597 const BufferizationOptions &options, 598 MemRefLayoutAttrInterface layout, 599 Attribute memorySpace) { 600 // Case 1: Unranked memref type. 601 if (auto unrankedTensorType = tensorType.dyn_cast<UnrankedTensorType>()) { 602 assert(!layout && "UnrankedTensorType cannot have a layout map"); 603 return UnrankedMemRefType::get(unrankedTensorType.getElementType(), 604 memorySpace); 605 } 606 607 // Case 2: Ranked memref type with specified layout. 608 auto rankedTensorType = tensorType.cast<RankedTensorType>(); 609 if (layout) { 610 return MemRefType::get(rankedTensorType.getShape(), 611 rankedTensorType.getElementType(), layout, 612 memorySpace); 613 } 614 615 // Case 3: Configured with "fully dynamic layout maps". 616 if (options.unknownTypeConversion == 617 BufferizationOptions::LayoutMapOption::FullyDynamicLayoutMap) 618 return getMemRefTypeWithFullyDynamicLayout(tensorType, memorySpace); 619 620 // Case 4: Configured with "static identity layout maps". 621 if (options.unknownTypeConversion == 622 BufferizationOptions::LayoutMapOption::IdentityLayoutMap) 623 return getMemRefTypeWithStaticIdentityLayout(tensorType, memorySpace); 624 625 llvm_unreachable("InferLayoutMap is an invalid option"); 626 } 627 628 BaseMemRefType 629 bufferization::getMemRefTypeWithFullyDynamicLayout(TensorType tensorType, 630 Attribute memorySpace) { 631 // Case 1: Unranked memref type. 632 if (auto unrankedTensorType = tensorType.dyn_cast<UnrankedTensorType>()) { 633 return UnrankedMemRefType::get(unrankedTensorType.getElementType(), 634 memorySpace); 635 } 636 637 // Case 2: Ranked memref type. 638 auto rankedTensorType = tensorType.cast<RankedTensorType>(); 639 int64_t dynamicOffset = ShapedType::kDynamicStrideOrOffset; 640 SmallVector<int64_t> dynamicStrides(rankedTensorType.getRank(), 641 ShapedType::kDynamicStrideOrOffset); 642 AffineMap stridedLayout = makeStridedLinearLayoutMap( 643 dynamicStrides, dynamicOffset, rankedTensorType.getContext()); 644 return MemRefType::get(rankedTensorType.getShape(), 645 rankedTensorType.getElementType(), stridedLayout, 646 memorySpace); 647 } 648 649 /// Return a MemRef type with a static identity layout (i.e., no layout map). If 650 /// the given tensor type is unranked, return an unranked MemRef type. 651 BaseMemRefType 652 bufferization::getMemRefTypeWithStaticIdentityLayout(TensorType tensorType, 653 Attribute memorySpace) { 654 // Case 1: Unranked memref type. 655 if (auto unrankedTensorType = tensorType.dyn_cast<UnrankedTensorType>()) { 656 return UnrankedMemRefType::get(unrankedTensorType.getElementType(), 657 memorySpace); 658 } 659 660 // Case 2: Ranked memref type. 661 auto rankedTensorType = tensorType.cast<RankedTensorType>(); 662 MemRefLayoutAttrInterface layout = {}; 663 return MemRefType::get(rankedTensorType.getShape(), 664 rankedTensorType.getElementType(), layout, 665 memorySpace); 666 } 667