1 //===- BufferizableOpInterface.cpp - Bufferizable Ops ---=----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h" 10 #include "mlir/Dialect/Bufferization/IR/Bufferization.h" 11 #include "mlir/Dialect/Func/IR/FuncOps.h" 12 #include "mlir/Dialect/MemRef/IR/MemRef.h" 13 #include "mlir/IR/AsmState.h" 14 #include "mlir/IR/BlockAndValueMapping.h" 15 #include "mlir/IR/BuiltinOps.h" 16 #include "mlir/IR/Operation.h" 17 #include "mlir/IR/TypeUtilities.h" 18 #include "mlir/IR/Value.h" 19 #include "llvm/Support/Debug.h" 20 21 namespace mlir { 22 namespace bufferization { 23 24 #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.cpp.inc" 25 26 } // namespace bufferization 27 } // namespace mlir 28 29 #define DEBUG_TYPE "bufferizable-op-interface" 30 #define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ") 31 #define LDBG(X) LLVM_DEBUG(DBGS() << (X)) 32 33 using namespace mlir; 34 using namespace bufferization; 35 36 /// Attribute name used to mark region arguments that can be bufferized 37 /// in-place during linalg comprehensive bufferization. 38 constexpr const ::llvm::StringLiteral 39 bufferization::BufferizableOpInterface::kInplaceableAttrName; 40 41 /// Attribute name used to mark allocs that are created by the bufferization. 42 static const char *kBufferAllocationAttr = "bufferization.allocation"; 43 44 /// Attribute name used to mark allocs that should not be deallocated. 45 static const char *kSkipDeallocAttr = "bufferization.skip_dealloc"; 46 47 //===----------------------------------------------------------------------===// 48 // BufferizationOptions 49 //===----------------------------------------------------------------------===// 50 51 // Default constructor for BufferizationOptions. 52 BufferizationOptions::BufferizationOptions() = default; 53 54 bool BufferizationOptions::isOpAllowed(Operation *op) const { 55 // Special case: If function boundary bufferization is deactivated, do not 56 // allow ops that belong to the `func` dialect. 57 bool isFuncBoundaryOp = isa_and_nonnull<func::FuncDialect>(op->getDialect()); 58 if (!bufferizeFunctionBoundaries && isFuncBoundaryOp) 59 return false; 60 61 // All other ops: Allow/disallow according to filter. 62 bool isAllowed = !filterHasAllowRule(); 63 for (const OpFilterEntry &entry : opFilter) { 64 bool filterResult = entry.fn(op); 65 switch (entry.type) { 66 case OpFilterEntry::ALLOW: 67 isAllowed |= filterResult; 68 break; 69 case OpFilterEntry::DENY: 70 if (filterResult) 71 // DENY filter matches. This op is no allowed. (Even if other ALLOW 72 // filters may match.) 73 return false; 74 }; 75 } 76 return isAllowed; 77 } 78 79 BufferizableOpInterface 80 BufferizationOptions::dynCastBufferizableOp(Operation *op) const { 81 auto bufferizableOp = dyn_cast<BufferizableOpInterface>(op); 82 if (!bufferizableOp) 83 return nullptr; 84 if (!isOpAllowed(op)) 85 return nullptr; 86 return bufferizableOp; 87 } 88 89 BufferizableOpInterface 90 BufferizationOptions::dynCastBufferizableOp(Value value) const { 91 if (auto bufferizableOp = value.getDefiningOp<BufferizableOpInterface>()) 92 if (isOpAllowed(bufferizableOp.getOperation())) 93 return bufferizableOp; 94 return nullptr; 95 } 96 97 void BufferizationOptions::addDialectStateInitializer( 98 StringRef name, const DialectStateInitFn &fn) { 99 stateInitializers.push_back( 100 [=](AnalysisState &state) { state.insertDialectState(name, fn()); }); 101 } 102 103 //===----------------------------------------------------------------------===// 104 // Helper functions for BufferizableOpInterface 105 //===----------------------------------------------------------------------===// 106 107 static void setInsertionPointAfter(OpBuilder &b, Value value) { 108 if (auto bbArg = value.dyn_cast<BlockArgument>()) { 109 b.setInsertionPointToStart(bbArg.getOwner()); 110 } else { 111 b.setInsertionPointAfter(value.getDefiningOp()); 112 } 113 } 114 115 /// Determine which OpOperand* will alias with `result` if the op is bufferized 116 /// in place. Return an empty vector if the op is not bufferizable. 117 SmallVector<OpOperand *> 118 AnalysisState::getAliasingOpOperand(OpResult result) const { 119 if (Operation *op = result.getDefiningOp()) 120 if (auto bufferizableOp = getOptions().dynCastBufferizableOp(op)) 121 return bufferizableOp.getAliasingOpOperand(result, *this); 122 return {}; 123 } 124 125 /// Determine which OpResult will alias with `opOperand` if the op is bufferized 126 /// in place. Return an empty vector if the op is not bufferizable. 127 SmallVector<OpResult> 128 AnalysisState::getAliasingOpResult(OpOperand &opOperand) const { 129 if (auto bufferizableOp = 130 getOptions().dynCastBufferizableOp(opOperand.getOwner())) 131 return bufferizableOp.getAliasingOpResult(opOperand, *this); 132 return {}; 133 } 134 135 /// Return true if `opOperand` bufferizes to a memory read. Return `true` if the 136 /// op is not bufferizable. 137 bool AnalysisState::bufferizesToMemoryRead(OpOperand &opOperand) const { 138 if (auto bufferizableOp = 139 getOptions().dynCastBufferizableOp(opOperand.getOwner())) 140 return bufferizableOp.bufferizesToMemoryRead(opOperand, *this); 141 142 // Unknown op that returns a tensor. The inplace analysis does not support it. 143 // Conservatively return true. 144 return true; 145 } 146 147 /// Return true if `opOperand` bufferizes to a memory write. Return 148 /// `true` if the op is not bufferizable. 149 bool AnalysisState::bufferizesToMemoryWrite(OpOperand &opOperand) const { 150 if (auto bufferizableOp = 151 getOptions().dynCastBufferizableOp(opOperand.getOwner())) 152 return bufferizableOp.bufferizesToMemoryWrite(opOperand, *this); 153 154 // Unknown op that returns a tensor. The inplace analysis does not support it. 155 // Conservatively return true. 156 return true; 157 } 158 159 /// Return true if `opOperand` does neither read nor write but bufferizes to an 160 /// alias. Return false if the op is not bufferizable. 161 bool AnalysisState::bufferizesToAliasOnly(OpOperand &opOperand) const { 162 if (auto bufferizableOp = 163 getOptions().dynCastBufferizableOp(opOperand.getOwner())) 164 return bufferizableOp.bufferizesToAliasOnly(opOperand, *this); 165 166 // Unknown op that returns a tensor. The inplace analysis does not support it. 167 // Conservatively return false. 168 return false; 169 } 170 171 /// Return true if the given value is read by an op that bufferizes to a memory 172 /// read. Also takes into account ops that create an alias but do not read by 173 /// themselves (e.g., ExtractSliceOp). 174 bool AnalysisState::isValueRead(Value value) const { 175 assert(value.getType().isa<TensorType>() && "expected TensorType"); 176 SmallVector<OpOperand *> workingSet; 177 for (OpOperand &use : value.getUses()) 178 workingSet.push_back(&use); 179 180 while (!workingSet.empty()) { 181 OpOperand *uMaybeReading = workingSet.pop_back_val(); 182 // Skip over all ops that neither read nor write (but create an alias). 183 if (bufferizesToAliasOnly(*uMaybeReading)) 184 for (OpResult opResult : getAliasingOpResult(*uMaybeReading)) 185 for (OpOperand &use : opResult.getUses()) 186 workingSet.push_back(&use); 187 if (bufferizesToMemoryRead(*uMaybeReading)) 188 return true; 189 } 190 191 return false; 192 } 193 194 // Starting from `value`, follow the use-def chain in reverse, always selecting 195 // the aliasing OpOperands. Find and return Values for which `condition` 196 // evaluates to true. OpOperands of such matching Values are not traversed any 197 // further. 198 llvm::SetVector<Value> AnalysisState::findValueInReverseUseDefChain( 199 Value value, llvm::function_ref<bool(Value)> condition) const { 200 llvm::SetVector<Value> result, workingSet; 201 workingSet.insert(value); 202 203 while (!workingSet.empty()) { 204 Value value = workingSet.pop_back_val(); 205 if (condition(value) || value.isa<BlockArgument>()) { 206 result.insert(value); 207 continue; 208 } 209 210 OpResult opResult = value.cast<OpResult>(); 211 SmallVector<OpOperand *> opOperands = getAliasingOpOperand(opResult); 212 if (opOperands.empty() || !options.isOpAllowed(value.getDefiningOp())) { 213 result.insert(value); 214 continue; 215 } 216 217 for (OpOperand *o : opOperands) 218 workingSet.insert(o->get()); 219 } 220 221 return result; 222 } 223 224 // Find the Values of the last preceding write of a given Value. 225 llvm::SetVector<Value> 226 AnalysisState::findLastPrecedingWrite(Value value) const { 227 return findValueInReverseUseDefChain(value, [&](Value value) { 228 Operation *op = value.getDefiningOp(); 229 if (!op) 230 return true; 231 auto bufferizableOp = options.dynCastBufferizableOp(op); 232 if (!bufferizableOp) 233 return true; 234 return bufferizableOp.isMemoryWrite(value.cast<OpResult>(), *this); 235 }); 236 } 237 238 AnalysisState::AnalysisState(const BufferizationOptions &options) 239 : options(options) { 240 for (const BufferizationOptions::AnalysisStateInitFn &fn : 241 options.stateInitializers) 242 fn(*this); 243 } 244 245 // bufferization.to_memref is not allowed to change the rank. 246 static void ensureToMemrefOpIsValid(Value tensor, Type memrefType) { 247 #ifndef NDEBUG 248 auto rankedTensorType = tensor.getType().dyn_cast<RankedTensorType>(); 249 assert((!rankedTensorType || memrefType.cast<MemRefType>().getRank() == 250 rankedTensorType.getRank()) && 251 "to_memref would be invalid: mismatching ranks"); 252 #endif 253 } 254 255 Value mlir::bufferization::lookupBuffer(RewriterBase &rewriter, Value tensor, 256 const BufferizationOptions &options) { 257 auto tensorType = tensor.getType().dyn_cast<TensorType>(); 258 assert(tensorType && "unexpected non-tensor type"); 259 260 // Replace "%t = to_tensor %m" with %m. 261 if (auto toTensorOp = tensor.getDefiningOp<bufferization::ToTensorOp>()) 262 return toTensorOp.memref(); 263 264 // Insert to_memref op. 265 OpBuilder::InsertionGuard g(rewriter); 266 setInsertionPointAfter(rewriter, tensor); 267 Type memrefType = getMemRefType(tensorType, options); 268 ensureToMemrefOpIsValid(tensor, memrefType); 269 return rewriter.create<bufferization::ToMemrefOp>(tensor.getLoc(), memrefType, 270 tensor); 271 } 272 273 /// Return the buffer (memref) for a given OpOperand (tensor). Allocate 274 /// a new buffer and copy over data from the existing buffer if out-of-place 275 /// bufferization was decided. 276 FailureOr<Value> 277 BufferizationState::getBuffer(RewriterBase &rewriter, OpOperand &opOperand, 278 Optional<ForceInPlacability> overrideInPlace, 279 Optional<Operation *> customCopyInsertionPoint) { 280 const BufferizationOptions &options = analysisState.getOptions(); 281 OpBuilder::InsertionGuard guard(rewriter); 282 Operation *op = opOperand.getOwner(); 283 Location loc = op->getLoc(); 284 SmallVector<OpResult> aliasingOpResults = 285 analysisState.getAliasingOpResult(opOperand); 286 Value operand = opOperand.get(); 287 Value operandBuffer = lookupBuffer(rewriter, operand, options); 288 289 // Can `operandBuffer` be used directly or do we need a copy? 290 bool inplace = 291 overrideInPlace != FORCE_OUT_OF_PLACE && 292 (overrideInPlace == FORCE_INPLACE || analysisState.isInPlace(opOperand)); 293 if (inplace) 294 return operandBuffer; 295 296 // Bufferizing out-of-place: Allocate a new buffer. 297 // Move insertion point right after `operandBuffer`. That is where the 298 // allocation should be inserted (in the absence of allocation hoisting). 299 setInsertionPointAfter(rewriter, operandBuffer); 300 // Allocate the result buffer. The buffer should be deallocated if the tensor 301 // is not yielded and deallocs are enabled in general. 302 bool dealloc = llvm::none_of(aliasingOpResults, [&](Value v) { 303 return getAnalysisState().isTensorYielded(v); 304 }); 305 FailureOr<Value> resultBuffer = createAlloc( 306 rewriter, loc, operandBuffer, dealloc && getOptions().createDeallocs); 307 if (failed(resultBuffer)) 308 return failure(); 309 // Do not copy the buffer if its contents are undefined. 310 if (analysisState.hasUndefinedContents(&opOperand)) 311 return resultBuffer; 312 // Do not copy if the copied data is never read. 313 if (!aliasingOpResults.empty() && 314 !analysisState.bufferizesToMemoryRead(opOperand) && 315 llvm::none_of(aliasingOpResults, [&](OpResult opResult) { 316 return analysisState.isValueRead(opResult); 317 })) 318 return resultBuffer; 319 // Do not copy if this op does not read the data, but writes it. 320 if (analysisState.bufferizesToMemoryWrite(opOperand) && 321 !analysisState.bufferizesToMemoryRead(opOperand)) 322 return resultBuffer; 323 324 if (customCopyInsertionPoint) { 325 rewriter.setInsertionPoint(*customCopyInsertionPoint); 326 } else { 327 // The copy happens right before the op that is bufferized. 328 rewriter.setInsertionPoint(op); 329 } 330 if (failed(options.createMemCpy(rewriter, loc, operandBuffer, *resultBuffer))) 331 return failure(); 332 333 return resultBuffer; 334 } 335 336 /// Return the buffer type for a given Value (tensor) after bufferization. 337 BaseMemRefType BufferizationState::getBufferType(Value value) const { 338 auto tensorType = value.getType().dyn_cast<TensorType>(); 339 assert(tensorType && "unexpected non-tensor type"); 340 341 if (auto toTensorOp = value.getDefiningOp<bufferization::ToTensorOp>()) 342 return toTensorOp.memref().getType().cast<BaseMemRefType>(); 343 344 return getMemRefType(tensorType, getOptions()); 345 } 346 347 void bufferization::replaceOpWithBufferizedValues(RewriterBase &rewriter, 348 Operation *op, 349 ValueRange values) { 350 assert(values.size() == op->getNumResults() && 351 "expected one value per OpResult"); 352 OpBuilder::InsertionGuard g(rewriter); 353 354 // Replace all OpResults with the given values. 355 SmallVector<Value> replacements; 356 for (OpResult opResult : op->getOpResults()) { 357 Value replacement = values[opResult.getResultNumber()]; 358 if (opResult.getType().isa<TensorType>()) { 359 // The OpResult is a tensor. Such values are replaced with memrefs during 360 // bufferization. 361 assert((replacement.getType().isa<MemRefType>() || 362 replacement.getType().isa<UnrankedMemRefType>()) && 363 "tensor op result should be replaced with a memref value"); 364 // The existing uses of the OpResult still expect a tensor. Insert a 365 // ToTensorOp. Throughout bufferization, this ToTensorOp will gradually 366 // loose all of its users and eventually DCE away. 367 rewriter.setInsertionPointAfter(op); 368 replacement = rewriter.create<bufferization::ToTensorOp>( 369 replacement.getLoc(), replacement); 370 } 371 replacements.push_back(replacement); 372 } 373 374 rewriter.replaceOp(op, replacements); 375 } 376 377 AlwaysCopyAnalysisState::AlwaysCopyAnalysisState( 378 const BufferizationOptions &options) 379 : AnalysisState(options) { 380 // Note: Allocations must be deallocated with a subsequent run of the buffer 381 // deallocation pass. 382 assert(!options.createDeallocs && 383 "cannot create deallocs with AlwaysCopyBufferizationState"); 384 } 385 386 /// Return `true` if the given OpResult has been decided to bufferize inplace. 387 bool AlwaysCopyAnalysisState::isInPlace(OpOperand &opOperand) const { 388 // OpOperands that bufferize to a memory write are out-of-place, i.e., an 389 // alloc and copy is inserted. 390 return !bufferizesToMemoryWrite(opOperand); 391 } 392 393 /// Return true if `v1` and `v2` bufferize to equivalent buffers. 394 bool AlwaysCopyAnalysisState::areEquivalentBufferizedValues(Value v1, 395 Value v2) const { 396 // There is no analysis, so we do not know if the values are equivalent. The 397 // conservative answer is "false". 398 return false; 399 } 400 401 /// Return `true` if the given tensor has undefined contents. 402 bool AlwaysCopyAnalysisState::hasUndefinedContents(OpOperand *opOperand) const { 403 // There is no analysis, so the conservative answer is "false". 404 return false; 405 } 406 407 /// Return true if the given tensor (or an aliasing tensor) is yielded from 408 /// the containing block. Also include all aliasing tensors in the same block. 409 bool AlwaysCopyAnalysisState::isTensorYielded(Value tensor) const { 410 // There is no analysis, so conservatively answer "true". 411 return true; 412 } 413 414 //===----------------------------------------------------------------------===// 415 // Bufferization-specific scoped alloc/dealloc insertion support. 416 //===----------------------------------------------------------------------===// 417 418 /// Create a memref allocation with the given type and dynamic extents. 419 FailureOr<Value> BufferizationOptions::createAlloc(OpBuilder &b, Location loc, 420 MemRefType type, 421 ValueRange dynShape) const { 422 if (allocationFn) 423 return (*allocationFn)(b, loc, type, dynShape, bufferAlignment); 424 425 // Default bufferallocation via AllocOp. 426 Value allocated = b.create<memref::AllocOp>( 427 loc, type, dynShape, b.getI64IntegerAttr(bufferAlignment)); 428 return allocated; 429 } 430 431 /// Creates a memref deallocation. The given memref buffer must have been 432 /// allocated using `createAlloc`. 433 LogicalResult BufferizationOptions::createDealloc(OpBuilder &b, Location loc, 434 Value allocatedBuffer) const { 435 if (deallocationFn) 436 return (*deallocationFn)(b, loc, allocatedBuffer); 437 438 // Default buffer deallocation via DeallocOp. 439 b.create<memref::DeallocOp>(loc, allocatedBuffer); 440 return success(); 441 } 442 443 static MemRefType getContiguousMemRefType(ShapedType shapedType, 444 Attribute memorySpace = {}) { 445 MemRefLayoutAttrInterface layout = {}; 446 return MemRefType::get(shapedType.getShape(), shapedType.getElementType(), 447 layout, memorySpace); 448 } 449 450 /// Compute the type of the `memref` to use for allocating the buffer for 451 /// `shapedValue`. Also returns (by reference in `dynShape`), the value for the 452 /// dynamic dimensions in the returned `memref` type. 453 static MemRefType getAllocationTypeAndShape(OpBuilder &b, Location loc, 454 Value shapedValue, 455 SmallVectorImpl<Value> &dynShape) { 456 MemRefType allocMemRefType = 457 getContiguousMemRefType(shapedValue.getType().cast<ShapedType>()); 458 459 // Compute the dynamic part of the shape. 460 bool reifiedShapes = false; 461 if (auto rankedOp = dyn_cast_or_null<ReifyRankedShapedTypeOpInterface>( 462 shapedValue.getDefiningOp())) { 463 ReifiedRankedShapedTypeDims resultDims; 464 if (succeeded(rankedOp.reifyResultShapes(b, resultDims))) { 465 reifiedShapes = true; 466 OpResult resultValue = shapedValue.dyn_cast<OpResult>(); 467 auto &shape = resultDims[resultValue.getResultNumber()]; 468 for (const auto &dim : enumerate(allocMemRefType.getShape())) 469 if (ShapedType::isDynamic(dim.value())) 470 dynShape.push_back(shape[dim.index()]); 471 } 472 } 473 474 if (!reifiedShapes) { 475 for (const auto &dim : enumerate(allocMemRefType.getShape())) 476 if (ShapedType::isDynamic(dim.value())) { 477 assert((shapedValue.getType().isa<UnrankedMemRefType>() || 478 shapedValue.getType().isa<MemRefType>()) && 479 "expected MemRef type"); 480 dynShape.push_back( 481 b.create<memref::DimOp>(loc, shapedValue, dim.index())); 482 } 483 } 484 485 return allocMemRefType; 486 } 487 488 static Value createBufferAllocation(OpBuilder &b, Location loc, MemRefType type, 489 ValueRange dynShape, bool skipDealloc) { 490 auto allocaOp = b.create<memref::AllocaOp>(loc, type, dynShape); 491 allocaOp->setAttr(kBufferAllocationAttr, b.getUnitAttr()); 492 if (skipDealloc) 493 allocaOp->setAttr(kSkipDeallocAttr, b.getUnitAttr()); 494 return allocaOp.getResult(); 495 } 496 497 /// Create an allocation after `shapedValue.getDefiningOp` (or at the top of the 498 /// block in case of a bbArg). 499 FailureOr<Value> BufferizationState::createAlloc(OpBuilder &b, Location loc, 500 Value shapedValue, 501 Optional<bool> dealloc) { 502 // Take a guard before anything else. 503 OpBuilder::InsertionGuard g(b); 504 505 // Compute allocation memref type. 506 assert(shapedValue.getType().isa<ShapedType>()); 507 SmallVector<Value> dynShape; 508 MemRefType allocMemRefType = 509 getAllocationTypeAndShape(b, loc, shapedValue, dynShape); 510 511 // Should be the buffer be deallocated again or should we let it leak? 512 bool skipDealloc; 513 if (dealloc) { 514 skipDealloc = !dealloc.getValue(); 515 } else { 516 assert(shapedValue.getType().isa<TensorType>() && 517 "must specify `dealloc` if non-tensor value is passed"); 518 // Buffer should be not be deallocated if deallocs are generally deactivated 519 // or if the tensor is yielded from a block. 520 skipDealloc = !getOptions().createDeallocs || 521 getAnalysisState().isTensorYielded(shapedValue); 522 } 523 524 // Create the buffer allocation. 525 return createBufferAllocation(b, loc, allocMemRefType, dynShape, skipDealloc); 526 } 527 528 /// Create a memory copy between two memref buffers. 529 LogicalResult BufferizationOptions::createMemCpy(OpBuilder &b, Location loc, 530 Value from, Value to) const { 531 if (memCpyFn) 532 return (*memCpyFn)(b, loc, from, to); 533 534 b.create<memref::CopyOp>(loc, from, to); 535 return success(); 536 } 537 538 LogicalResult 539 bufferization::createAllocDeallocOps(Operation *op, 540 const BufferizationOptions &options, 541 bool onlyLeakingAllocs, bool *changed) { 542 IRRewriter rewriter(op->getContext()); 543 if (changed) 544 *changed = false; 545 546 // Bufferization creates memref.alloca ops. After bufferization, these must be 547 // rewritten to alloc/dealloc ops as specified in the bufferization options. 548 WalkResult status = op->walk([&](memref::AllocaOp allocaOp) { 549 // Ignore memref.alloca ops that were not created by the bufferization. 550 if (!allocaOp->hasAttr(kBufferAllocationAttr)) 551 return WalkResult::skip(); 552 // If `onlyLeakingAllocs`, process only ops that are marked as 553 // "skip dealloc". 554 bool skipDealloc = allocaOp->hasAttr(kSkipDeallocAttr); 555 if (onlyLeakingAllocs && !skipDealloc) 556 return WalkResult::skip(); 557 558 // Create alloc. 559 Block *block = allocaOp->getBlock(); 560 rewriter.setInsertionPoint(allocaOp); 561 FailureOr<Value> alloc = 562 options.createAlloc(rewriter, allocaOp->getLoc(), allocaOp.getType(), 563 allocaOp.dynamicSizes()); 564 if (failed(alloc)) 565 return WalkResult::interrupt(); 566 rewriter.replaceOp(allocaOp, *alloc); 567 if (changed) 568 *changed = true; 569 570 // Stop here if the buffer should not be deallocated. 571 if (skipDealloc) 572 return WalkResult::advance(); 573 574 // Create dealloc. 575 rewriter.setInsertionPoint(block->getTerminator()); 576 if (failed(options.createDealloc(rewriter, alloc->getLoc(), *alloc))) 577 return WalkResult::interrupt(); 578 579 return WalkResult::advance(); 580 }); 581 582 return success(!status.wasInterrupted()); 583 } 584 585 /// Try to hoist all new buffer allocations until the next hoisting barrier. 586 // TODO: Consolidate this function with the existing buffer hoisting pass. 587 LogicalResult 588 bufferization::hoistBufferAllocations(Operation *op, 589 const BufferizationOptions &options) { 590 // Nothing to do if allocation hoisting is deactivated. 591 if (!options.hoistAllocations) 592 return success(); 593 594 // Gather all buffer allocations that were created by the bufferization. 595 SmallVector<Operation *> allocaOps; 596 op->walk([&](memref::AllocaOp allocaOp) { 597 if (allocaOp->hasAttr(kBufferAllocationAttr)) 598 allocaOps.push_back(allocaOp); 599 }); 600 601 for (Operation *allocaOp : allocaOps) { 602 // TODO: Hoisting of allocs with dynamic shape not implemented. 603 if (!allocaOp->getOpOperands().empty()) 604 continue; 605 606 Operation *op = allocaOp->getParentOp(); 607 while (op) { 608 if (auto bufferizableOp = dyn_cast<BufferizableOpInterface>(op)) { 609 if (bufferizableOp.isAllocationHoistingBarrier()) { 610 break; 611 } 612 } else { 613 // Op is not bufferizable: It may not be safe to hoist across this op. 614 break; 615 } 616 op = op->getParentOp(); 617 } 618 619 // FuncOp is an allocation hoisting barrier, so this should never happen. 620 assert(op && "allocation hoisting barrier not found"); 621 622 // Nothing to do if the insertion point is in the same block. 623 if (op == allocaOp->getParentOp()) 624 continue; 625 626 // `op` may have multiple blocks. Make sure that we insert in the right one. 627 SmallVector<Block *> blocks; 628 for (Region &r : op->getRegions()) 629 for (Block &b : r.getBlocks()) 630 blocks.push_back(&b); 631 auto *insertionBlock = llvm::find_if( 632 blocks, [&](Block *b) { return b->findAncestorOpInBlock(*allocaOp); }); 633 assert(insertionBlock != blocks.end() && "owning block not found"); 634 635 // Move to the beginning of the block. 636 allocaOp->moveBefore(&(*insertionBlock)->front()); 637 } 638 639 return success(); 640 } 641 642 //===----------------------------------------------------------------------===// 643 // Bufferization-specific BlockAndValueMapping support with debugging. 644 //===----------------------------------------------------------------------===// 645 646 bool bufferization::isFunctionArgument(Value value) { 647 auto bbArg = value.dyn_cast<BlockArgument>(); 648 if (!bbArg) 649 return false; 650 return isa<func::FuncOp>(bbArg.getOwner()->getParentOp()); 651 } 652 653 BaseMemRefType bufferization::getMemRefType(TensorType tensorType, 654 const BufferizationOptions &options, 655 MemRefLayoutAttrInterface layout, 656 Attribute memorySpace) { 657 // Case 1: Unranked memref type. 658 if (auto unrankedTensorType = tensorType.dyn_cast<UnrankedTensorType>()) { 659 assert(!layout && "UnrankedTensorType cannot have a layout map"); 660 return UnrankedMemRefType::get(unrankedTensorType.getElementType(), 661 memorySpace); 662 } 663 664 // Case 2: Ranked memref type with specified layout. 665 auto rankedTensorType = tensorType.cast<RankedTensorType>(); 666 if (layout) { 667 return MemRefType::get(rankedTensorType.getShape(), 668 rankedTensorType.getElementType(), layout, 669 memorySpace); 670 } 671 672 // Case 3: Configured with "fully dynamic layout maps". 673 if (options.unknownTypeConversion == 674 BufferizationOptions::LayoutMapOption::FullyDynamicLayoutMap) 675 return getMemRefTypeWithFullyDynamicLayout(tensorType, memorySpace); 676 677 // Case 4: Configured with "static identity layout maps". 678 if (options.unknownTypeConversion == 679 BufferizationOptions::LayoutMapOption::IdentityLayoutMap) 680 return getMemRefTypeWithStaticIdentityLayout(tensorType, memorySpace); 681 682 llvm_unreachable("InferLayoutMap is an invalid option"); 683 } 684 685 BaseMemRefType 686 bufferization::getMemRefTypeWithFullyDynamicLayout(TensorType tensorType, 687 Attribute memorySpace) { 688 // Case 1: Unranked memref type. 689 if (auto unrankedTensorType = tensorType.dyn_cast<UnrankedTensorType>()) { 690 return UnrankedMemRefType::get(unrankedTensorType.getElementType(), 691 memorySpace); 692 } 693 694 // Case 2: Ranked memref type. 695 auto rankedTensorType = tensorType.cast<RankedTensorType>(); 696 int64_t dynamicOffset = ShapedType::kDynamicStrideOrOffset; 697 SmallVector<int64_t> dynamicStrides(rankedTensorType.getRank(), 698 ShapedType::kDynamicStrideOrOffset); 699 AffineMap stridedLayout = makeStridedLinearLayoutMap( 700 dynamicStrides, dynamicOffset, rankedTensorType.getContext()); 701 return MemRefType::get(rankedTensorType.getShape(), 702 rankedTensorType.getElementType(), stridedLayout, 703 memorySpace); 704 } 705 706 /// Return a MemRef type with a static identity layout (i.e., no layout map). If 707 /// the given tensor type is unranked, return an unranked MemRef type. 708 BaseMemRefType 709 bufferization::getMemRefTypeWithStaticIdentityLayout(TensorType tensorType, 710 Attribute memorySpace) { 711 // Case 1: Unranked memref type. 712 if (auto unrankedTensorType = tensorType.dyn_cast<UnrankedTensorType>()) { 713 return UnrankedMemRefType::get(unrankedTensorType.getElementType(), 714 memorySpace); 715 } 716 717 // Case 2: Ranked memref type. 718 auto rankedTensorType = tensorType.cast<RankedTensorType>(); 719 MemRefLayoutAttrInterface layout = {}; 720 return MemRefType::get(rankedTensorType.getShape(), 721 rankedTensorType.getElementType(), layout, 722 memorySpace); 723 } 724