1 //===- AsyncToAsyncRuntime.cpp - Lower from Async to Async Runtime --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements lowering from high level async operations to async.coro
10 // and async.runtime operations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "PassDetail.h"
15 #include "mlir/Conversion/SCFToStandard/SCFToStandard.h"
16 #include "mlir/Dialect/Async/IR/Async.h"
17 #include "mlir/Dialect/Async/Passes.h"
18 #include "mlir/Dialect/SCF/SCF.h"
19 #include "mlir/Dialect/StandardOps/IR/Ops.h"
20 #include "mlir/IR/BlockAndValueMapping.h"
21 #include "mlir/IR/ImplicitLocOpBuilder.h"
22 #include "mlir/IR/PatternMatch.h"
23 #include "mlir/Transforms/DialectConversion.h"
24 #include "mlir/Transforms/RegionUtils.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/Support/Debug.h"
27 
28 using namespace mlir;
29 using namespace mlir::async;
30 
31 #define DEBUG_TYPE "async-to-async-runtime"
32 // Prefix for functions outlined from `async.execute` op regions.
33 static constexpr const char kAsyncFnPrefix[] = "async_execute_fn";
34 
35 namespace {
36 
37 class AsyncToAsyncRuntimePass
38     : public AsyncToAsyncRuntimeBase<AsyncToAsyncRuntimePass> {
39 public:
40   AsyncToAsyncRuntimePass() = default;
41   void runOnOperation() override;
42 };
43 
44 } // namespace
45 
46 //===----------------------------------------------------------------------===//
47 // async.execute op outlining to the coroutine functions.
48 //===----------------------------------------------------------------------===//
49 
50 /// Function targeted for coroutine transformation has two additional blocks at
51 /// the end: coroutine cleanup and coroutine suspension.
52 ///
53 /// async.await op lowering additionaly creates a resume block for each
54 /// operation to enable non-blocking waiting via coroutine suspension.
55 namespace {
56 struct CoroMachinery {
57   FuncOp func;
58 
59   // Async execute region returns a completion token, and an async value for
60   // each yielded value.
61   //
62   //   %token, %result = async.execute -> !async.value<T> {
63   //     %0 = constant ... : T
64   //     async.yield %0 : T
65   //   }
66   Value asyncToken; // token representing completion of the async region
67   llvm::SmallVector<Value, 4> returnValues; // returned async values
68 
69   Value coroHandle; // coroutine handle (!async.coro.handle value)
70   Block *entry;     // coroutine entry block
71   Block *setError;  // switch completion token and all values to error state
72   Block *cleanup;   // coroutine cleanup block
73   Block *suspend;   // coroutine suspension block
74 };
75 } // namespace
76 
77 /// Utility to partially update the regular function CFG to the coroutine CFG
78 /// compatible with LLVM coroutines switched-resume lowering using
79 /// `async.runtime.*` and `async.coro.*` operations. Adds a new entry block
80 /// that branches into preexisting entry block. Also inserts trailing blocks.
81 ///
82 /// The result types of the passed `func` must start with an `async.token`
83 /// and be continued with some number of `async.value`s.
84 ///
85 /// The func given to this function needs to have been preprocessed to have
86 /// either branch or yield ops as terminators. Branches to the cleanup block are
87 /// inserted after each yield.
88 ///
89 /// See LLVM coroutines documentation: https://llvm.org/docs/Coroutines.html
90 ///
91 ///  - `entry` block sets up the coroutine.
92 ///  - `set_error` block sets completion token and async values state to error.
93 ///  - `cleanup` block cleans up the coroutine state.
94 ///  - `suspend block after the @llvm.coro.end() defines what value will be
95 ///    returned to the initial caller of a coroutine. Everything before the
96 ///    @llvm.coro.end() will be executed at every suspension point.
97 ///
98 /// Coroutine structure (only the important bits):
99 ///
100 ///   func @some_fn(<function-arguments>) -> (!async.token, !async.value<T>)
101 ///   {
102 ///     ^entry(<function-arguments>):
103 ///       %token = <async token> : !async.token    // create async runtime token
104 ///       %value = <async value> : !async.value<T> // create async value
105 ///       %id = async.coro.id                      // create a coroutine id
106 ///       %hdl = async.coro.begin %id              // create a coroutine handle
107 ///       br ^preexisting_entry_block
108 ///
109 ///     /*  preexisting blocks modified to branch to the cleanup block */
110 ///
111 ///     ^set_error: // this block created lazily only if needed (see code below)
112 ///       async.runtime.set_error %token : !async.token
113 ///       async.runtime.set_error %value : !async.value<T>
114 ///       br ^cleanup
115 ///
116 ///     ^cleanup:
117 ///       async.coro.free %hdl // delete the coroutine state
118 ///       br ^suspend
119 ///
120 ///     ^suspend:
121 ///       async.coro.end %hdl // marks the end of a coroutine
122 ///       return %token, %value : !async.token, !async.value<T>
123 ///   }
124 ///
125 static CoroMachinery setupCoroMachinery(FuncOp func) {
126   assert(!func.getBlocks().empty() && "Function must have an entry block");
127 
128   MLIRContext *ctx = func.getContext();
129   Block *entryBlock = &func.getBlocks().front();
130   Block *originalEntryBlock =
131       entryBlock->splitBlock(entryBlock->getOperations().begin());
132   auto builder = ImplicitLocOpBuilder::atBlockBegin(func->getLoc(), entryBlock);
133 
134   // ------------------------------------------------------------------------ //
135   // Allocate async token/values that we will return from a ramp function.
136   // ------------------------------------------------------------------------ //
137   auto retToken = builder.create<RuntimeCreateOp>(TokenType::get(ctx)).result();
138 
139   llvm::SmallVector<Value, 4> retValues;
140   for (auto resType : func.getCallableResults().drop_front())
141     retValues.emplace_back(builder.create<RuntimeCreateOp>(resType).result());
142 
143   // ------------------------------------------------------------------------ //
144   // Initialize coroutine: get coroutine id and coroutine handle.
145   // ------------------------------------------------------------------------ //
146   auto coroIdOp = builder.create<CoroIdOp>(CoroIdType::get(ctx));
147   auto coroHdlOp =
148       builder.create<CoroBeginOp>(CoroHandleType::get(ctx), coroIdOp.id());
149   builder.create<BranchOp>(originalEntryBlock);
150 
151   Block *cleanupBlock = func.addBlock();
152   Block *suspendBlock = func.addBlock();
153 
154   // ------------------------------------------------------------------------ //
155   // Coroutine cleanup block: deallocate coroutine frame, free the memory.
156   // ------------------------------------------------------------------------ //
157   builder.setInsertionPointToStart(cleanupBlock);
158   builder.create<CoroFreeOp>(coroIdOp.id(), coroHdlOp.handle());
159 
160   // Branch into the suspend block.
161   builder.create<BranchOp>(suspendBlock);
162 
163   // ------------------------------------------------------------------------ //
164   // Coroutine suspend block: mark the end of a coroutine and return allocated
165   // async token.
166   // ------------------------------------------------------------------------ //
167   builder.setInsertionPointToStart(suspendBlock);
168 
169   // Mark the end of a coroutine: async.coro.end
170   builder.create<CoroEndOp>(coroHdlOp.handle());
171 
172   // Return created `async.token` and `async.values` from the suspend block.
173   // This will be the return value of a coroutine ramp function.
174   SmallVector<Value, 4> ret{retToken};
175   ret.insert(ret.end(), retValues.begin(), retValues.end());
176   builder.create<ReturnOp>(ret);
177 
178   // `async.await` op lowering will create resume blocks for async
179   // continuations, and will conditionally branch to cleanup or suspend blocks.
180 
181   for (Block &block : func.body().getBlocks()) {
182     if (&block == entryBlock || &block == cleanupBlock ||
183         &block == suspendBlock)
184       continue;
185     Operation *terminator = block.getTerminator();
186     if (auto yield = dyn_cast<YieldOp>(terminator)) {
187       builder.setInsertionPointToEnd(&block);
188       builder.create<BranchOp>(cleanupBlock);
189     }
190   }
191 
192   CoroMachinery machinery;
193   machinery.func = func;
194   machinery.asyncToken = retToken;
195   machinery.returnValues = retValues;
196   machinery.coroHandle = coroHdlOp.handle();
197   machinery.entry = entryBlock;
198   machinery.setError = nullptr; // created lazily only if needed
199   machinery.cleanup = cleanupBlock;
200   machinery.suspend = suspendBlock;
201   return machinery;
202 }
203 
204 // Lazily creates `set_error` block only if it is required for lowering to the
205 // runtime operations (see for example lowering of assert operation).
206 static Block *setupSetErrorBlock(CoroMachinery &coro) {
207   if (coro.setError)
208     return coro.setError;
209 
210   coro.setError = coro.func.addBlock();
211   coro.setError->moveBefore(coro.cleanup);
212 
213   auto builder =
214       ImplicitLocOpBuilder::atBlockBegin(coro.func->getLoc(), coro.setError);
215 
216   // Coroutine set_error block: set error on token and all returned values.
217   builder.create<RuntimeSetErrorOp>(coro.asyncToken);
218   for (Value retValue : coro.returnValues)
219     builder.create<RuntimeSetErrorOp>(retValue);
220 
221   // Branch into the cleanup block.
222   builder.create<BranchOp>(coro.cleanup);
223 
224   return coro.setError;
225 }
226 
227 /// Outline the body region attached to the `async.execute` op into a standalone
228 /// function.
229 ///
230 /// Note that this is not reversible transformation.
231 static std::pair<FuncOp, CoroMachinery>
232 outlineExecuteOp(SymbolTable &symbolTable, ExecuteOp execute) {
233   ModuleOp module = execute->getParentOfType<ModuleOp>();
234 
235   MLIRContext *ctx = module.getContext();
236   Location loc = execute.getLoc();
237 
238   // Collect all outlined function inputs.
239   SetVector<mlir::Value> functionInputs(execute.dependencies().begin(),
240                                         execute.dependencies().end());
241   functionInputs.insert(execute.operands().begin(), execute.operands().end());
242   getUsedValuesDefinedAbove(execute.body(), functionInputs);
243 
244   // Collect types for the outlined function inputs and outputs.
245   auto typesRange = llvm::map_range(
246       functionInputs, [](Value value) { return value.getType(); });
247   SmallVector<Type, 4> inputTypes(typesRange.begin(), typesRange.end());
248   auto outputTypes = execute.getResultTypes();
249 
250   auto funcType = FunctionType::get(ctx, inputTypes, outputTypes);
251   auto funcAttrs = ArrayRef<NamedAttribute>();
252 
253   // TODO: Derive outlined function name from the parent FuncOp (support
254   // multiple nested async.execute operations).
255   FuncOp func = FuncOp::create(loc, kAsyncFnPrefix, funcType, funcAttrs);
256   symbolTable.insert(func);
257 
258   SymbolTable::setSymbolVisibility(func, SymbolTable::Visibility::Private);
259   auto builder = ImplicitLocOpBuilder::atBlockBegin(loc, func.addEntryBlock());
260 
261   // Prepare for coroutine conversion by creating the body of the function.
262   {
263     size_t numDependencies = execute.dependencies().size();
264     size_t numOperands = execute.operands().size();
265 
266     // Await on all dependencies before starting to execute the body region.
267     for (size_t i = 0; i < numDependencies; ++i)
268       builder.create<AwaitOp>(func.getArgument(i));
269 
270     // Await on all async value operands and unwrap the payload.
271     SmallVector<Value, 4> unwrappedOperands(numOperands);
272     for (size_t i = 0; i < numOperands; ++i) {
273       Value operand = func.getArgument(numDependencies + i);
274       unwrappedOperands[i] = builder.create<AwaitOp>(loc, operand).result();
275     }
276 
277     // Map from function inputs defined above the execute op to the function
278     // arguments.
279     BlockAndValueMapping valueMapping;
280     valueMapping.map(functionInputs, func.getArguments());
281     valueMapping.map(execute.body().getArguments(), unwrappedOperands);
282 
283     // Clone all operations from the execute operation body into the outlined
284     // function body.
285     for (Operation &op : execute.body().getOps())
286       builder.clone(op, valueMapping);
287   }
288 
289   // Adding entry/cleanup/suspend blocks.
290   CoroMachinery coro = setupCoroMachinery(func);
291 
292   // Suspend async function at the end of an entry block, and resume it using
293   // Async resume operation (execution will be resumed in a thread managed by
294   // the async runtime).
295   {
296     BranchOp branch = cast<BranchOp>(coro.entry->getTerminator());
297     builder.setInsertionPointToEnd(coro.entry);
298 
299     // Save the coroutine state: async.coro.save
300     auto coroSaveOp =
301         builder.create<CoroSaveOp>(CoroStateType::get(ctx), coro.coroHandle);
302 
303     // Pass coroutine to the runtime to be resumed on a runtime managed
304     // thread.
305     builder.create<RuntimeResumeOp>(coro.coroHandle);
306 
307     // Add async.coro.suspend as a suspended block terminator.
308     builder.create<CoroSuspendOp>(coroSaveOp.state(), coro.suspend,
309                                   branch.getDest(), coro.cleanup);
310 
311     branch.erase();
312   }
313 
314   // Replace the original `async.execute` with a call to outlined function.
315   {
316     ImplicitLocOpBuilder callBuilder(loc, execute);
317     auto callOutlinedFunc = callBuilder.create<CallOp>(
318         func.getName(), execute.getResultTypes(), functionInputs.getArrayRef());
319     execute.replaceAllUsesWith(callOutlinedFunc.getResults());
320     execute.erase();
321   }
322 
323   return {func, coro};
324 }
325 
326 //===----------------------------------------------------------------------===//
327 // Convert async.create_group operation to async.runtime.create_group
328 //===----------------------------------------------------------------------===//
329 
330 namespace {
331 class CreateGroupOpLowering : public OpConversionPattern<CreateGroupOp> {
332 public:
333   using OpConversionPattern::OpConversionPattern;
334 
335   LogicalResult
336   matchAndRewrite(CreateGroupOp op, ArrayRef<Value> operands,
337                   ConversionPatternRewriter &rewriter) const override {
338     rewriter.replaceOpWithNewOp<RuntimeCreateGroupOp>(
339         op, GroupType::get(op->getContext()), operands);
340     return success();
341   }
342 };
343 } // namespace
344 
345 //===----------------------------------------------------------------------===//
346 // Convert async.add_to_group operation to async.runtime.add_to_group.
347 //===----------------------------------------------------------------------===//
348 
349 namespace {
350 class AddToGroupOpLowering : public OpConversionPattern<AddToGroupOp> {
351 public:
352   using OpConversionPattern::OpConversionPattern;
353 
354   LogicalResult
355   matchAndRewrite(AddToGroupOp op, ArrayRef<Value> operands,
356                   ConversionPatternRewriter &rewriter) const override {
357     rewriter.replaceOpWithNewOp<RuntimeAddToGroupOp>(
358         op, rewriter.getIndexType(), operands);
359     return success();
360   }
361 };
362 } // namespace
363 
364 //===----------------------------------------------------------------------===//
365 // Convert async.await and async.await_all operations to the async.runtime.await
366 // or async.runtime.await_and_resume operations.
367 //===----------------------------------------------------------------------===//
368 
369 namespace {
370 template <typename AwaitType, typename AwaitableType>
371 class AwaitOpLoweringBase : public OpConversionPattern<AwaitType> {
372   using AwaitAdaptor = typename AwaitType::Adaptor;
373 
374 public:
375   AwaitOpLoweringBase(MLIRContext *ctx,
376                       llvm::DenseMap<FuncOp, CoroMachinery> &outlinedFunctions)
377       : OpConversionPattern<AwaitType>(ctx),
378         outlinedFunctions(outlinedFunctions) {}
379 
380   LogicalResult
381   matchAndRewrite(AwaitType op, ArrayRef<Value> operands,
382                   ConversionPatternRewriter &rewriter) const override {
383     // We can only await on one the `AwaitableType` (for `await` it can be
384     // a `token` or a `value`, for `await_all` it must be a `group`).
385     if (!op.operand().getType().template isa<AwaitableType>())
386       return rewriter.notifyMatchFailure(op, "unsupported awaitable type");
387 
388     // Check if await operation is inside the outlined coroutine function.
389     auto func = op->template getParentOfType<FuncOp>();
390     auto outlined = outlinedFunctions.find(func);
391     const bool isInCoroutine = outlined != outlinedFunctions.end();
392 
393     Location loc = op->getLoc();
394     Value operand = AwaitAdaptor(operands).operand();
395 
396     // Inside regular functions we use the blocking wait operation to wait for
397     // the async object (token, value or group) to become available.
398     if (!isInCoroutine)
399       rewriter.create<RuntimeAwaitOp>(loc, operand);
400 
401     // Inside the coroutine we convert await operation into coroutine suspension
402     // point, and resume execution asynchronously.
403     if (isInCoroutine) {
404       CoroMachinery &coro = outlined->getSecond();
405       Block *suspended = op->getBlock();
406 
407       ImplicitLocOpBuilder builder(loc, op, rewriter.getListener());
408       MLIRContext *ctx = op->getContext();
409 
410       // Save the coroutine state and resume on a runtime managed thread when
411       // the operand becomes available.
412       auto coroSaveOp =
413           builder.create<CoroSaveOp>(CoroStateType::get(ctx), coro.coroHandle);
414       builder.create<RuntimeAwaitAndResumeOp>(operand, coro.coroHandle);
415 
416       // Split the entry block before the await operation.
417       Block *resume = rewriter.splitBlock(suspended, Block::iterator(op));
418 
419       // Add async.coro.suspend as a suspended block terminator.
420       builder.setInsertionPointToEnd(suspended);
421       builder.create<CoroSuspendOp>(coroSaveOp.state(), coro.suspend, resume,
422                                     coro.cleanup);
423 
424       // Split the resume block into error checking and continuation.
425       Block *continuation = rewriter.splitBlock(resume, Block::iterator(op));
426 
427       // Check if the awaited value is in the error state.
428       builder.setInsertionPointToStart(resume);
429       auto isError =
430           builder.create<RuntimeIsErrorOp>(loc, rewriter.getI1Type(), operand);
431       builder.create<CondBranchOp>(isError,
432                                    /*trueDest=*/setupSetErrorBlock(coro),
433                                    /*trueArgs=*/ArrayRef<Value>(),
434                                    /*falseDest=*/continuation,
435                                    /*falseArgs=*/ArrayRef<Value>());
436 
437       // Make sure that replacement value will be constructed in the
438       // continuation block.
439       rewriter.setInsertionPointToStart(continuation);
440     }
441 
442     // Erase or replace the await operation with the new value.
443     if (Value replaceWith = getReplacementValue(op, operand, rewriter))
444       rewriter.replaceOp(op, replaceWith);
445     else
446       rewriter.eraseOp(op);
447 
448     return success();
449   }
450 
451   virtual Value getReplacementValue(AwaitType op, Value operand,
452                                     ConversionPatternRewriter &rewriter) const {
453     return Value();
454   }
455 
456 private:
457   llvm::DenseMap<FuncOp, CoroMachinery> &outlinedFunctions;
458 };
459 
460 /// Lowering for `async.await` with a token operand.
461 class AwaitTokenOpLowering : public AwaitOpLoweringBase<AwaitOp, TokenType> {
462   using Base = AwaitOpLoweringBase<AwaitOp, TokenType>;
463 
464 public:
465   using Base::Base;
466 };
467 
468 /// Lowering for `async.await` with a value operand.
469 class AwaitValueOpLowering : public AwaitOpLoweringBase<AwaitOp, ValueType> {
470   using Base = AwaitOpLoweringBase<AwaitOp, ValueType>;
471 
472 public:
473   using Base::Base;
474 
475   Value
476   getReplacementValue(AwaitOp op, Value operand,
477                       ConversionPatternRewriter &rewriter) const override {
478     // Load from the async value storage.
479     auto valueType = operand.getType().cast<ValueType>().getValueType();
480     return rewriter.create<RuntimeLoadOp>(op->getLoc(), valueType, operand);
481   }
482 };
483 
484 /// Lowering for `async.await_all` operation.
485 class AwaitAllOpLowering : public AwaitOpLoweringBase<AwaitAllOp, GroupType> {
486   using Base = AwaitOpLoweringBase<AwaitAllOp, GroupType>;
487 
488 public:
489   using Base::Base;
490 };
491 
492 } // namespace
493 
494 //===----------------------------------------------------------------------===//
495 // Convert async.yield operation to async.runtime operations.
496 //===----------------------------------------------------------------------===//
497 
498 class YieldOpLowering : public OpConversionPattern<async::YieldOp> {
499 public:
500   YieldOpLowering(
501       MLIRContext *ctx,
502       const llvm::DenseMap<FuncOp, CoroMachinery> &outlinedFunctions)
503       : OpConversionPattern<async::YieldOp>(ctx),
504         outlinedFunctions(outlinedFunctions) {}
505 
506   LogicalResult
507   matchAndRewrite(async::YieldOp op, ArrayRef<Value> operands,
508                   ConversionPatternRewriter &rewriter) const override {
509     // Check if yield operation is inside the async coroutine function.
510     auto func = op->template getParentOfType<FuncOp>();
511     auto outlined = outlinedFunctions.find(func);
512     if (outlined == outlinedFunctions.end())
513       return rewriter.notifyMatchFailure(
514           op, "operation is not inside the async coroutine function");
515 
516     Location loc = op->getLoc();
517     const CoroMachinery &coro = outlined->getSecond();
518 
519     // Store yielded values into the async values storage and switch async
520     // values state to available.
521     for (auto tuple : llvm::zip(operands, coro.returnValues)) {
522       Value yieldValue = std::get<0>(tuple);
523       Value asyncValue = std::get<1>(tuple);
524       rewriter.create<RuntimeStoreOp>(loc, yieldValue, asyncValue);
525       rewriter.create<RuntimeSetAvailableOp>(loc, asyncValue);
526     }
527 
528     // Switch the coroutine completion token to available state.
529     rewriter.replaceOpWithNewOp<RuntimeSetAvailableOp>(op, coro.asyncToken);
530 
531     return success();
532   }
533 
534 private:
535   const llvm::DenseMap<FuncOp, CoroMachinery> &outlinedFunctions;
536 };
537 
538 //===----------------------------------------------------------------------===//
539 // Convert std.assert operation to cond_br into `set_error` block.
540 //===----------------------------------------------------------------------===//
541 
542 class AssertOpLowering : public OpConversionPattern<AssertOp> {
543 public:
544   AssertOpLowering(MLIRContext *ctx,
545                    llvm::DenseMap<FuncOp, CoroMachinery> &outlinedFunctions)
546       : OpConversionPattern<AssertOp>(ctx),
547         outlinedFunctions(outlinedFunctions) {}
548 
549   LogicalResult
550   matchAndRewrite(AssertOp op, ArrayRef<Value> operands,
551                   ConversionPatternRewriter &rewriter) const override {
552     // Check if assert operation is inside the async coroutine function.
553     auto func = op->template getParentOfType<FuncOp>();
554     auto outlined = outlinedFunctions.find(func);
555     if (outlined == outlinedFunctions.end())
556       return rewriter.notifyMatchFailure(
557           op, "operation is not inside the async coroutine function");
558 
559     Location loc = op->getLoc();
560     CoroMachinery &coro = outlined->getSecond();
561 
562     Block *cont = rewriter.splitBlock(op->getBlock(), Block::iterator(op));
563     rewriter.setInsertionPointToEnd(cont->getPrevNode());
564     rewriter.create<CondBranchOp>(loc, AssertOpAdaptor(operands).arg(),
565                                   /*trueDest=*/cont,
566                                   /*trueArgs=*/ArrayRef<Value>(),
567                                   /*falseDest=*/setupSetErrorBlock(coro),
568                                   /*falseArgs=*/ArrayRef<Value>());
569     rewriter.eraseOp(op);
570 
571     return success();
572   }
573 
574 private:
575   llvm::DenseMap<FuncOp, CoroMachinery> &outlinedFunctions;
576 };
577 
578 //===----------------------------------------------------------------------===//
579 
580 /// Rewrite a func as a coroutine by:
581 /// 1) Wrapping the results into `async.value`.
582 /// 2) Prepending the results with `async.token`.
583 /// 3) Setting up coroutine blocks.
584 /// 4) Rewriting return ops as yield op and branch op into the suspend block.
585 static CoroMachinery rewriteFuncAsCoroutine(FuncOp func) {
586   auto *ctx = func->getContext();
587   auto loc = func.getLoc();
588   SmallVector<Type> resultTypes;
589   resultTypes.reserve(func.getCallableResults().size());
590   llvm::transform(func.getCallableResults(), std::back_inserter(resultTypes),
591                   [](Type type) { return ValueType::get(type); });
592   func.setType(FunctionType::get(ctx, func.getType().getInputs(), resultTypes));
593   func.insertResult(0, TokenType::get(ctx), {});
594   for (Block &block : func.getBlocks()) {
595     Operation *terminator = block.getTerminator();
596     if (auto returnOp = dyn_cast<ReturnOp>(*terminator)) {
597       ImplicitLocOpBuilder builder(loc, returnOp);
598       builder.create<YieldOp>(returnOp.getOperands());
599       returnOp.erase();
600     }
601   }
602   return setupCoroMachinery(func);
603 }
604 
605 /// Rewrites a call into a function that has been rewritten as a coroutine.
606 ///
607 /// The invocation of this function is safe only when call ops are traversed in
608 /// reverse order of how they appear in a single block. See `funcsToCoroutines`.
609 static void rewriteCallsiteForCoroutine(CallOp oldCall, FuncOp func) {
610   auto loc = func.getLoc();
611   ImplicitLocOpBuilder callBuilder(loc, oldCall);
612   auto newCall = callBuilder.create<CallOp>(
613       func.getName(), func.getCallableResults(), oldCall.getArgOperands());
614 
615   // Await on the async token and all the value results and unwrap the latter.
616   callBuilder.create<AwaitOp>(loc, newCall.getResults().front());
617   SmallVector<Value> unwrappedResults;
618   unwrappedResults.reserve(newCall->getResults().size() - 1);
619   for (Value result : newCall.getResults().drop_front())
620     unwrappedResults.push_back(
621         callBuilder.create<AwaitOp>(loc, result).result());
622   // Careful, when result of a call is piped into another call this could lead
623   // to a dangling pointer.
624   oldCall.replaceAllUsesWith(unwrappedResults);
625   oldCall.erase();
626 }
627 
628 static bool isAllowedToBlock(FuncOp func) {
629   return !!func->getAttrOfType<UnitAttr>(AsyncDialect::kAllowedToBlockAttrName);
630 }
631 
632 static LogicalResult
633 funcsToCoroutines(ModuleOp module,
634                   llvm::DenseMap<FuncOp, CoroMachinery> &outlinedFunctions) {
635   // The following code supports the general case when 2 functions mutually
636   // recurse into each other. Because of this and that we are relying on
637   // SymbolUserMap to find pointers to calling FuncOps, we cannot simply erase
638   // a FuncOp while inserting an equivalent coroutine, because that could lead
639   // to dangling pointers.
640 
641   SmallVector<FuncOp> funcWorklist;
642 
643   // Careful, it's okay to add a func to the worklist multiple times if and only
644   // if the loop processing the worklist will skip the functions that have
645   // already been converted to coroutines.
646   auto addToWorklist = [&](FuncOp func) {
647     if (isAllowedToBlock(func))
648       return;
649     // N.B. To refactor this code into a separate pass the lookup in
650     // outlinedFunctions is the most obvious obstacle. Looking at an arbitrary
651     // func and recognizing if it has a coroutine structure is messy. Passing
652     // this dict between the passes is ugly.
653     if (isAllowedToBlock(func) ||
654         outlinedFunctions.find(func) == outlinedFunctions.end()) {
655       for (Operation &op : func.body().getOps()) {
656         if (dyn_cast<AwaitOp>(op) || dyn_cast<AwaitAllOp>(op)) {
657           funcWorklist.push_back(func);
658           break;
659         }
660       }
661     }
662   };
663 
664   // Traverse in post-order collecting for each func op the await ops it has.
665   for (FuncOp func : module.getOps<FuncOp>())
666     addToWorklist(func);
667 
668   SymbolTableCollection symbolTable;
669   SymbolUserMap symbolUserMap(symbolTable, module);
670 
671   // Rewrite funcs, while updating call sites and adding them to the worklist.
672   while (!funcWorklist.empty()) {
673     auto func = funcWorklist.pop_back_val();
674     auto insertion = outlinedFunctions.insert({func, CoroMachinery{}});
675     if (!insertion.second)
676       // This function has already been processed because this is either
677       // the corecursive case, or a caller with multiple calls to a newly
678       // created corouting. Either way, skip updating the call sites.
679       continue;
680     insertion.first->second = rewriteFuncAsCoroutine(func);
681     SmallVector<Operation *> users(symbolUserMap.getUsers(func).begin(),
682                                    symbolUserMap.getUsers(func).end());
683     // If there are multiple calls from the same block they need to be traversed
684     // in reverse order so that symbolUserMap references are not invalidated
685     // when updating the users of the call op which is earlier in the block.
686     llvm::sort(users, [](Operation *a, Operation *b) {
687       Block *blockA = a->getBlock();
688       Block *blockB = b->getBlock();
689       // Impose arbitrary order on blocks so that there is a well-defined order.
690       return blockA > blockB || (blockA == blockB && !a->isBeforeInBlock(b));
691     });
692     // Rewrite the callsites to await on results of the newly created coroutine.
693     for (Operation *op : users) {
694       if (CallOp call = dyn_cast<mlir::CallOp>(*op)) {
695         FuncOp caller = call->getParentOfType<FuncOp>();
696         rewriteCallsiteForCoroutine(call, func); // Careful, erases the call op.
697         addToWorklist(caller);
698       } else {
699         op->emitError("Unexpected reference to func referenced by symbol");
700         return failure();
701       }
702     }
703   }
704   return success();
705 }
706 
707 //===----------------------------------------------------------------------===//
708 void AsyncToAsyncRuntimePass::runOnOperation() {
709   ModuleOp module = getOperation();
710   SymbolTable symbolTable(module);
711 
712   // Outline all `async.execute` body regions into async functions (coroutines).
713   llvm::DenseMap<FuncOp, CoroMachinery> outlinedFunctions;
714 
715   module.walk([&](ExecuteOp execute) {
716     outlinedFunctions.insert(outlineExecuteOp(symbolTable, execute));
717   });
718 
719   LLVM_DEBUG({
720     llvm::dbgs() << "Outlined " << outlinedFunctions.size()
721                  << " functions built from async.execute operations\n";
722   });
723 
724   // Returns true if operation is inside the coroutine.
725   auto isInCoroutine = [&](Operation *op) -> bool {
726     auto parentFunc = op->getParentOfType<FuncOp>();
727     return outlinedFunctions.find(parentFunc) != outlinedFunctions.end();
728   };
729 
730   if (eliminateBlockingAwaitOps &&
731       failed(funcsToCoroutines(module, outlinedFunctions))) {
732     signalPassFailure();
733     return;
734   }
735 
736   // Lower async operations to async.runtime operations.
737   MLIRContext *ctx = module->getContext();
738   RewritePatternSet asyncPatterns(ctx);
739 
740   // Conversion to async runtime augments original CFG with the coroutine CFG,
741   // and we have to make sure that structured control flow operations with async
742   // operations in nested regions will be converted to branch-based control flow
743   // before we add the coroutine basic blocks.
744   populateLoopToStdConversionPatterns(asyncPatterns);
745 
746   // Async lowering does not use type converter because it must preserve all
747   // types for async.runtime operations.
748   asyncPatterns.add<CreateGroupOpLowering, AddToGroupOpLowering>(ctx);
749   asyncPatterns.add<AwaitTokenOpLowering, AwaitValueOpLowering,
750                     AwaitAllOpLowering, YieldOpLowering>(ctx,
751                                                          outlinedFunctions);
752 
753   // Lower assertions to conditional branches into error blocks.
754   asyncPatterns.add<AssertOpLowering>(ctx, outlinedFunctions);
755 
756   // All high level async operations must be lowered to the runtime operations.
757   ConversionTarget runtimeTarget(*ctx);
758   runtimeTarget.addLegalDialect<AsyncDialect>();
759   runtimeTarget.addIllegalOp<CreateGroupOp, AddToGroupOp>();
760   runtimeTarget.addIllegalOp<ExecuteOp, AwaitOp, AwaitAllOp, async::YieldOp>();
761 
762   // Decide if structured control flow has to be lowered to branch-based CFG.
763   runtimeTarget.addDynamicallyLegalDialect<scf::SCFDialect>([&](Operation *op) {
764     auto walkResult = op->walk([&](Operation *nested) {
765       bool isAsync = isa<async::AsyncDialect>(nested->getDialect());
766       return isAsync && isInCoroutine(nested) ? WalkResult::interrupt()
767                                               : WalkResult::advance();
768     });
769     return !walkResult.wasInterrupted();
770   });
771   runtimeTarget.addLegalOp<BranchOp, CondBranchOp>();
772 
773   // Assertions must be converted to runtime errors inside async functions.
774   runtimeTarget.addDynamicallyLegalOp<AssertOp>([&](AssertOp op) -> bool {
775     auto func = op->getParentOfType<FuncOp>();
776     return outlinedFunctions.find(func) == outlinedFunctions.end();
777   });
778 
779   if (eliminateBlockingAwaitOps)
780     runtimeTarget.addDynamicallyLegalOp<RuntimeAwaitOp>(
781         [&](RuntimeAwaitOp op) -> bool {
782           return isAllowedToBlock(op->getParentOfType<FuncOp>());
783         });
784 
785   if (failed(applyPartialConversion(module, runtimeTarget,
786                                     std::move(asyncPatterns)))) {
787     signalPassFailure();
788     return;
789   }
790 }
791 
792 std::unique_ptr<OperationPass<ModuleOp>> mlir::createAsyncToAsyncRuntimePass() {
793   return std::make_unique<AsyncToAsyncRuntimePass>();
794 }
795