1 //===- ArithmeticOps.cpp - MLIR Arithmetic dialect ops implementation -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <utility> 10 11 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 12 #include "mlir/Dialect/CommonFolders.h" 13 #include "mlir/IR/Builders.h" 14 #include "mlir/IR/Matchers.h" 15 #include "mlir/IR/OpImplementation.h" 16 #include "mlir/IR/PatternMatch.h" 17 #include "mlir/IR/TypeUtilities.h" 18 #include "llvm/ADT/SmallString.h" 19 20 #include "llvm/ADT/APSInt.h" 21 22 using namespace mlir; 23 using namespace mlir::arith; 24 25 //===----------------------------------------------------------------------===// 26 // Pattern helpers 27 //===----------------------------------------------------------------------===// 28 29 static IntegerAttr addIntegerAttrs(PatternRewriter &builder, Value res, 30 Attribute lhs, Attribute rhs) { 31 return builder.getIntegerAttr(res.getType(), 32 lhs.cast<IntegerAttr>().getInt() + 33 rhs.cast<IntegerAttr>().getInt()); 34 } 35 36 static IntegerAttr subIntegerAttrs(PatternRewriter &builder, Value res, 37 Attribute lhs, Attribute rhs) { 38 return builder.getIntegerAttr(res.getType(), 39 lhs.cast<IntegerAttr>().getInt() - 40 rhs.cast<IntegerAttr>().getInt()); 41 } 42 43 /// Invert an integer comparison predicate. 44 arith::CmpIPredicate arith::invertPredicate(arith::CmpIPredicate pred) { 45 switch (pred) { 46 case arith::CmpIPredicate::eq: 47 return arith::CmpIPredicate::ne; 48 case arith::CmpIPredicate::ne: 49 return arith::CmpIPredicate::eq; 50 case arith::CmpIPredicate::slt: 51 return arith::CmpIPredicate::sge; 52 case arith::CmpIPredicate::sle: 53 return arith::CmpIPredicate::sgt; 54 case arith::CmpIPredicate::sgt: 55 return arith::CmpIPredicate::sle; 56 case arith::CmpIPredicate::sge: 57 return arith::CmpIPredicate::slt; 58 case arith::CmpIPredicate::ult: 59 return arith::CmpIPredicate::uge; 60 case arith::CmpIPredicate::ule: 61 return arith::CmpIPredicate::ugt; 62 case arith::CmpIPredicate::ugt: 63 return arith::CmpIPredicate::ule; 64 case arith::CmpIPredicate::uge: 65 return arith::CmpIPredicate::ult; 66 } 67 llvm_unreachable("unknown cmpi predicate kind"); 68 } 69 70 static arith::CmpIPredicateAttr invertPredicate(arith::CmpIPredicateAttr pred) { 71 return arith::CmpIPredicateAttr::get(pred.getContext(), 72 invertPredicate(pred.getValue())); 73 } 74 75 //===----------------------------------------------------------------------===// 76 // TableGen'd canonicalization patterns 77 //===----------------------------------------------------------------------===// 78 79 namespace { 80 #include "ArithmeticCanonicalization.inc" 81 } // namespace 82 83 //===----------------------------------------------------------------------===// 84 // ConstantOp 85 //===----------------------------------------------------------------------===// 86 87 void arith::ConstantOp::getAsmResultNames( 88 function_ref<void(Value, StringRef)> setNameFn) { 89 auto type = getType(); 90 if (auto intCst = getValue().dyn_cast<IntegerAttr>()) { 91 auto intType = type.dyn_cast<IntegerType>(); 92 93 // Sugar i1 constants with 'true' and 'false'. 94 if (intType && intType.getWidth() == 1) 95 return setNameFn(getResult(), (intCst.getInt() ? "true" : "false")); 96 97 // Otherwise, build a compex name with the value and type. 98 SmallString<32> specialNameBuffer; 99 llvm::raw_svector_ostream specialName(specialNameBuffer); 100 specialName << 'c' << intCst.getInt(); 101 if (intType) 102 specialName << '_' << type; 103 setNameFn(getResult(), specialName.str()); 104 } else { 105 setNameFn(getResult(), "cst"); 106 } 107 } 108 109 /// TODO: disallow arith.constant to return anything other than signless integer 110 /// or float like. 111 LogicalResult arith::ConstantOp::verify() { 112 auto type = getType(); 113 // The value's type must match the return type. 114 if (getValue().getType() != type) { 115 return emitOpError() << "value type " << getValue().getType() 116 << " must match return type: " << type; 117 } 118 // Integer values must be signless. 119 if (type.isa<IntegerType>() && !type.cast<IntegerType>().isSignless()) 120 return emitOpError("integer return type must be signless"); 121 // Any float or elements attribute are acceptable. 122 if (!getValue().isa<IntegerAttr, FloatAttr, ElementsAttr>()) { 123 return emitOpError( 124 "value must be an integer, float, or elements attribute"); 125 } 126 return success(); 127 } 128 129 bool arith::ConstantOp::isBuildableWith(Attribute value, Type type) { 130 // The value's type must be the same as the provided type. 131 if (value.getType() != type) 132 return false; 133 // Integer values must be signless. 134 if (type.isa<IntegerType>() && !type.cast<IntegerType>().isSignless()) 135 return false; 136 // Integer, float, and element attributes are buildable. 137 return value.isa<IntegerAttr, FloatAttr, ElementsAttr>(); 138 } 139 140 OpFoldResult arith::ConstantOp::fold(ArrayRef<Attribute> operands) { 141 return getValue(); 142 } 143 144 void arith::ConstantIntOp::build(OpBuilder &builder, OperationState &result, 145 int64_t value, unsigned width) { 146 auto type = builder.getIntegerType(width); 147 arith::ConstantOp::build(builder, result, type, 148 builder.getIntegerAttr(type, value)); 149 } 150 151 void arith::ConstantIntOp::build(OpBuilder &builder, OperationState &result, 152 int64_t value, Type type) { 153 assert(type.isSignlessInteger() && 154 "ConstantIntOp can only have signless integer type values"); 155 arith::ConstantOp::build(builder, result, type, 156 builder.getIntegerAttr(type, value)); 157 } 158 159 bool arith::ConstantIntOp::classof(Operation *op) { 160 if (auto constOp = dyn_cast_or_null<arith::ConstantOp>(op)) 161 return constOp.getType().isSignlessInteger(); 162 return false; 163 } 164 165 void arith::ConstantFloatOp::build(OpBuilder &builder, OperationState &result, 166 const APFloat &value, FloatType type) { 167 arith::ConstantOp::build(builder, result, type, 168 builder.getFloatAttr(type, value)); 169 } 170 171 bool arith::ConstantFloatOp::classof(Operation *op) { 172 if (auto constOp = dyn_cast_or_null<arith::ConstantOp>(op)) 173 return constOp.getType().isa<FloatType>(); 174 return false; 175 } 176 177 void arith::ConstantIndexOp::build(OpBuilder &builder, OperationState &result, 178 int64_t value) { 179 arith::ConstantOp::build(builder, result, builder.getIndexType(), 180 builder.getIndexAttr(value)); 181 } 182 183 bool arith::ConstantIndexOp::classof(Operation *op) { 184 if (auto constOp = dyn_cast_or_null<arith::ConstantOp>(op)) 185 return constOp.getType().isIndex(); 186 return false; 187 } 188 189 //===----------------------------------------------------------------------===// 190 // AddIOp 191 //===----------------------------------------------------------------------===// 192 193 OpFoldResult arith::AddIOp::fold(ArrayRef<Attribute> operands) { 194 // addi(x, 0) -> x 195 if (matchPattern(getRhs(), m_Zero())) 196 return getLhs(); 197 198 // addi(subi(a, b), b) -> a 199 if (auto sub = getLhs().getDefiningOp<SubIOp>()) 200 if (getRhs() == sub.getRhs()) 201 return sub.getLhs(); 202 203 // addi(b, subi(a, b)) -> a 204 if (auto sub = getRhs().getDefiningOp<SubIOp>()) 205 if (getLhs() == sub.getRhs()) 206 return sub.getLhs(); 207 208 return constFoldBinaryOp<IntegerAttr>( 209 operands, [](APInt a, const APInt &b) { return std::move(a) + b; }); 210 } 211 212 void arith::AddIOp::getCanonicalizationPatterns( 213 RewritePatternSet &patterns, MLIRContext *context) { 214 patterns.add<AddIAddConstant, AddISubConstantRHS, AddISubConstantLHS>( 215 context); 216 } 217 218 //===----------------------------------------------------------------------===// 219 // SubIOp 220 //===----------------------------------------------------------------------===// 221 222 OpFoldResult arith::SubIOp::fold(ArrayRef<Attribute> operands) { 223 // subi(x,x) -> 0 224 if (getOperand(0) == getOperand(1)) 225 return Builder(getContext()).getZeroAttr(getType()); 226 // subi(x,0) -> x 227 if (matchPattern(getRhs(), m_Zero())) 228 return getLhs(); 229 230 return constFoldBinaryOp<IntegerAttr>( 231 operands, [](APInt a, const APInt &b) { return std::move(a) - b; }); 232 } 233 234 void arith::SubIOp::getCanonicalizationPatterns( 235 RewritePatternSet &patterns, MLIRContext *context) { 236 patterns 237 .add<SubIRHSAddConstant, SubILHSAddConstant, SubIRHSSubConstantRHS, 238 SubIRHSSubConstantLHS, SubILHSSubConstantRHS, SubILHSSubConstantLHS>( 239 context); 240 } 241 242 //===----------------------------------------------------------------------===// 243 // MulIOp 244 //===----------------------------------------------------------------------===// 245 246 OpFoldResult arith::MulIOp::fold(ArrayRef<Attribute> operands) { 247 // muli(x, 0) -> 0 248 if (matchPattern(getRhs(), m_Zero())) 249 return getRhs(); 250 // muli(x, 1) -> x 251 if (matchPattern(getRhs(), m_One())) 252 return getOperand(0); 253 // TODO: Handle the overflow case. 254 255 // default folder 256 return constFoldBinaryOp<IntegerAttr>( 257 operands, [](const APInt &a, const APInt &b) { return a * b; }); 258 } 259 260 //===----------------------------------------------------------------------===// 261 // DivUIOp 262 //===----------------------------------------------------------------------===// 263 264 OpFoldResult arith::DivUIOp::fold(ArrayRef<Attribute> operands) { 265 // Don't fold if it would require a division by zero. 266 bool div0 = false; 267 auto result = 268 constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) { 269 if (div0 || !b) { 270 div0 = true; 271 return a; 272 } 273 return a.udiv(b); 274 }); 275 276 // Fold out division by one. Assumes all tensors of all ones are splats. 277 if (auto rhs = operands[1].dyn_cast_or_null<IntegerAttr>()) { 278 if (rhs.getValue() == 1) 279 return getLhs(); 280 } else if (auto rhs = operands[1].dyn_cast_or_null<SplatElementsAttr>()) { 281 if (rhs.getSplatValue<IntegerAttr>().getValue() == 1) 282 return getLhs(); 283 } 284 285 return div0 ? Attribute() : result; 286 } 287 288 //===----------------------------------------------------------------------===// 289 // DivSIOp 290 //===----------------------------------------------------------------------===// 291 292 OpFoldResult arith::DivSIOp::fold(ArrayRef<Attribute> operands) { 293 // Don't fold if it would overflow or if it requires a division by zero. 294 bool overflowOrDiv0 = false; 295 auto result = 296 constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) { 297 if (overflowOrDiv0 || !b) { 298 overflowOrDiv0 = true; 299 return a; 300 } 301 return a.sdiv_ov(b, overflowOrDiv0); 302 }); 303 304 // Fold out division by one. Assumes all tensors of all ones are splats. 305 if (auto rhs = operands[1].dyn_cast_or_null<IntegerAttr>()) { 306 if (rhs.getValue() == 1) 307 return getLhs(); 308 } else if (auto rhs = operands[1].dyn_cast_or_null<SplatElementsAttr>()) { 309 if (rhs.getSplatValue<IntegerAttr>().getValue() == 1) 310 return getLhs(); 311 } 312 313 return overflowOrDiv0 ? Attribute() : result; 314 } 315 316 //===----------------------------------------------------------------------===// 317 // Ceil and floor division folding helpers 318 //===----------------------------------------------------------------------===// 319 320 static APInt signedCeilNonnegInputs(const APInt &a, const APInt &b, 321 bool &overflow) { 322 // Returns (a-1)/b + 1 323 APInt one(a.getBitWidth(), 1, true); // Signed value 1. 324 APInt val = a.ssub_ov(one, overflow).sdiv_ov(b, overflow); 325 return val.sadd_ov(one, overflow); 326 } 327 328 //===----------------------------------------------------------------------===// 329 // CeilDivUIOp 330 //===----------------------------------------------------------------------===// 331 332 OpFoldResult arith::CeilDivUIOp::fold(ArrayRef<Attribute> operands) { 333 bool overflowOrDiv0 = false; 334 auto result = 335 constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) { 336 if (overflowOrDiv0 || !b) { 337 overflowOrDiv0 = true; 338 return a; 339 } 340 APInt quotient = a.udiv(b); 341 if (!a.urem(b)) 342 return quotient; 343 APInt one(a.getBitWidth(), 1, true); 344 return quotient.uadd_ov(one, overflowOrDiv0); 345 }); 346 // Fold out ceil division by one. Assumes all tensors of all ones are 347 // splats. 348 if (auto rhs = operands[1].dyn_cast_or_null<IntegerAttr>()) { 349 if (rhs.getValue() == 1) 350 return getLhs(); 351 } else if (auto rhs = operands[1].dyn_cast_or_null<SplatElementsAttr>()) { 352 if (rhs.getSplatValue<IntegerAttr>().getValue() == 1) 353 return getLhs(); 354 } 355 356 return overflowOrDiv0 ? Attribute() : result; 357 } 358 359 //===----------------------------------------------------------------------===// 360 // CeilDivSIOp 361 //===----------------------------------------------------------------------===// 362 363 OpFoldResult arith::CeilDivSIOp::fold(ArrayRef<Attribute> operands) { 364 // Don't fold if it would overflow or if it requires a division by zero. 365 bool overflowOrDiv0 = false; 366 auto result = 367 constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) { 368 if (overflowOrDiv0 || !b) { 369 overflowOrDiv0 = true; 370 return a; 371 } 372 if (!a) 373 return a; 374 // After this point we know that neither a or b are zero. 375 unsigned bits = a.getBitWidth(); 376 APInt zero = APInt::getZero(bits); 377 bool aGtZero = a.sgt(zero); 378 bool bGtZero = b.sgt(zero); 379 if (aGtZero && bGtZero) { 380 // Both positive, return ceil(a, b). 381 return signedCeilNonnegInputs(a, b, overflowOrDiv0); 382 } 383 if (!aGtZero && !bGtZero) { 384 // Both negative, return ceil(-a, -b). 385 APInt posA = zero.ssub_ov(a, overflowOrDiv0); 386 APInt posB = zero.ssub_ov(b, overflowOrDiv0); 387 return signedCeilNonnegInputs(posA, posB, overflowOrDiv0); 388 } 389 if (!aGtZero && bGtZero) { 390 // A is negative, b is positive, return - ( -a / b). 391 APInt posA = zero.ssub_ov(a, overflowOrDiv0); 392 APInt div = posA.sdiv_ov(b, overflowOrDiv0); 393 return zero.ssub_ov(div, overflowOrDiv0); 394 } 395 // A is positive, b is negative, return - (a / -b). 396 APInt posB = zero.ssub_ov(b, overflowOrDiv0); 397 APInt div = a.sdiv_ov(posB, overflowOrDiv0); 398 return zero.ssub_ov(div, overflowOrDiv0); 399 }); 400 401 // Fold out ceil division by one. Assumes all tensors of all ones are 402 // splats. 403 if (auto rhs = operands[1].dyn_cast_or_null<IntegerAttr>()) { 404 if (rhs.getValue() == 1) 405 return getLhs(); 406 } else if (auto rhs = operands[1].dyn_cast_or_null<SplatElementsAttr>()) { 407 if (rhs.getSplatValue<IntegerAttr>().getValue() == 1) 408 return getLhs(); 409 } 410 411 return overflowOrDiv0 ? Attribute() : result; 412 } 413 414 //===----------------------------------------------------------------------===// 415 // FloorDivSIOp 416 //===----------------------------------------------------------------------===// 417 418 OpFoldResult arith::FloorDivSIOp::fold(ArrayRef<Attribute> operands) { 419 // Don't fold if it would overflow or if it requires a division by zero. 420 bool overflowOrDiv0 = false; 421 auto result = 422 constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) { 423 if (overflowOrDiv0 || !b) { 424 overflowOrDiv0 = true; 425 return a; 426 } 427 if (!a) 428 return a; 429 // After this point we know that neither a or b are zero. 430 unsigned bits = a.getBitWidth(); 431 APInt zero = APInt::getZero(bits); 432 bool aGtZero = a.sgt(zero); 433 bool bGtZero = b.sgt(zero); 434 if (aGtZero && bGtZero) { 435 // Both positive, return a / b. 436 return a.sdiv_ov(b, overflowOrDiv0); 437 } 438 if (!aGtZero && !bGtZero) { 439 // Both negative, return -a / -b. 440 APInt posA = zero.ssub_ov(a, overflowOrDiv0); 441 APInt posB = zero.ssub_ov(b, overflowOrDiv0); 442 return posA.sdiv_ov(posB, overflowOrDiv0); 443 } 444 if (!aGtZero && bGtZero) { 445 // A is negative, b is positive, return - ceil(-a, b). 446 APInt posA = zero.ssub_ov(a, overflowOrDiv0); 447 APInt ceil = signedCeilNonnegInputs(posA, b, overflowOrDiv0); 448 return zero.ssub_ov(ceil, overflowOrDiv0); 449 } 450 // A is positive, b is negative, return - ceil(a, -b). 451 APInt posB = zero.ssub_ov(b, overflowOrDiv0); 452 APInt ceil = signedCeilNonnegInputs(a, posB, overflowOrDiv0); 453 return zero.ssub_ov(ceil, overflowOrDiv0); 454 }); 455 456 // Fold out floor division by one. Assumes all tensors of all ones are 457 // splats. 458 if (auto rhs = operands[1].dyn_cast_or_null<IntegerAttr>()) { 459 if (rhs.getValue() == 1) 460 return getLhs(); 461 } else if (auto rhs = operands[1].dyn_cast_or_null<SplatElementsAttr>()) { 462 if (rhs.getSplatValue<IntegerAttr>().getValue() == 1) 463 return getLhs(); 464 } 465 466 return overflowOrDiv0 ? Attribute() : result; 467 } 468 469 //===----------------------------------------------------------------------===// 470 // RemUIOp 471 //===----------------------------------------------------------------------===// 472 473 OpFoldResult arith::RemUIOp::fold(ArrayRef<Attribute> operands) { 474 auto rhs = operands.back().dyn_cast_or_null<IntegerAttr>(); 475 if (!rhs) 476 return {}; 477 auto rhsValue = rhs.getValue(); 478 479 // x % 1 = 0 480 if (rhsValue.isOneValue()) 481 return IntegerAttr::get(rhs.getType(), APInt(rhsValue.getBitWidth(), 0)); 482 483 // Don't fold if it requires division by zero. 484 if (rhsValue.isNullValue()) 485 return {}; 486 487 auto lhs = operands.front().dyn_cast_or_null<IntegerAttr>(); 488 if (!lhs) 489 return {}; 490 return IntegerAttr::get(lhs.getType(), lhs.getValue().urem(rhsValue)); 491 } 492 493 //===----------------------------------------------------------------------===// 494 // RemSIOp 495 //===----------------------------------------------------------------------===// 496 497 OpFoldResult arith::RemSIOp::fold(ArrayRef<Attribute> operands) { 498 auto rhs = operands.back().dyn_cast_or_null<IntegerAttr>(); 499 if (!rhs) 500 return {}; 501 auto rhsValue = rhs.getValue(); 502 503 // x % 1 = 0 504 if (rhsValue.isOneValue()) 505 return IntegerAttr::get(rhs.getType(), APInt(rhsValue.getBitWidth(), 0)); 506 507 // Don't fold if it requires division by zero. 508 if (rhsValue.isNullValue()) 509 return {}; 510 511 auto lhs = operands.front().dyn_cast_or_null<IntegerAttr>(); 512 if (!lhs) 513 return {}; 514 return IntegerAttr::get(lhs.getType(), lhs.getValue().srem(rhsValue)); 515 } 516 517 //===----------------------------------------------------------------------===// 518 // AndIOp 519 //===----------------------------------------------------------------------===// 520 521 OpFoldResult arith::AndIOp::fold(ArrayRef<Attribute> operands) { 522 /// and(x, 0) -> 0 523 if (matchPattern(getRhs(), m_Zero())) 524 return getRhs(); 525 /// and(x, allOnes) -> x 526 APInt intValue; 527 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && intValue.isAllOnes()) 528 return getLhs(); 529 530 return constFoldBinaryOp<IntegerAttr>( 531 operands, [](APInt a, const APInt &b) { return std::move(a) & b; }); 532 } 533 534 //===----------------------------------------------------------------------===// 535 // OrIOp 536 //===----------------------------------------------------------------------===// 537 538 OpFoldResult arith::OrIOp::fold(ArrayRef<Attribute> operands) { 539 /// or(x, 0) -> x 540 if (matchPattern(getRhs(), m_Zero())) 541 return getLhs(); 542 /// or(x, <all ones>) -> <all ones> 543 if (auto rhsAttr = operands[1].dyn_cast_or_null<IntegerAttr>()) 544 if (rhsAttr.getValue().isAllOnes()) 545 return rhsAttr; 546 547 return constFoldBinaryOp<IntegerAttr>( 548 operands, [](APInt a, const APInt &b) { return std::move(a) | b; }); 549 } 550 551 //===----------------------------------------------------------------------===// 552 // XOrIOp 553 //===----------------------------------------------------------------------===// 554 555 OpFoldResult arith::XOrIOp::fold(ArrayRef<Attribute> operands) { 556 /// xor(x, 0) -> x 557 if (matchPattern(getRhs(), m_Zero())) 558 return getLhs(); 559 /// xor(x, x) -> 0 560 if (getLhs() == getRhs()) 561 return Builder(getContext()).getZeroAttr(getType()); 562 /// xor(xor(x, a), a) -> x 563 if (arith::XOrIOp prev = getLhs().getDefiningOp<arith::XOrIOp>()) 564 if (prev.getRhs() == getRhs()) 565 return prev.getLhs(); 566 567 return constFoldBinaryOp<IntegerAttr>( 568 operands, [](APInt a, const APInt &b) { return std::move(a) ^ b; }); 569 } 570 571 void arith::XOrIOp::getCanonicalizationPatterns( 572 RewritePatternSet &patterns, MLIRContext *context) { 573 patterns.add<XOrINotCmpI>(context); 574 } 575 576 //===----------------------------------------------------------------------===// 577 // NegFOp 578 //===----------------------------------------------------------------------===// 579 580 OpFoldResult arith::NegFOp::fold(ArrayRef<Attribute> operands) { 581 return constFoldUnaryOp<FloatAttr>(operands, 582 [](const APFloat &a) { return -a; }); 583 } 584 585 //===----------------------------------------------------------------------===// 586 // AddFOp 587 //===----------------------------------------------------------------------===// 588 589 OpFoldResult arith::AddFOp::fold(ArrayRef<Attribute> operands) { 590 // addf(x, -0) -> x 591 if (matchPattern(getRhs(), m_NegZeroFloat())) 592 return getLhs(); 593 594 return constFoldBinaryOp<FloatAttr>( 595 operands, [](const APFloat &a, const APFloat &b) { return a + b; }); 596 } 597 598 //===----------------------------------------------------------------------===// 599 // SubFOp 600 //===----------------------------------------------------------------------===// 601 602 OpFoldResult arith::SubFOp::fold(ArrayRef<Attribute> operands) { 603 // subf(x, +0) -> x 604 if (matchPattern(getRhs(), m_PosZeroFloat())) 605 return getLhs(); 606 607 return constFoldBinaryOp<FloatAttr>( 608 operands, [](const APFloat &a, const APFloat &b) { return a - b; }); 609 } 610 611 //===----------------------------------------------------------------------===// 612 // MaxFOp 613 //===----------------------------------------------------------------------===// 614 615 OpFoldResult arith::MaxFOp::fold(ArrayRef<Attribute> operands) { 616 assert(operands.size() == 2 && "maxf takes two operands"); 617 618 // maxf(x,x) -> x 619 if (getLhs() == getRhs()) 620 return getRhs(); 621 622 // maxf(x, -inf) -> x 623 if (matchPattern(getRhs(), m_NegInfFloat())) 624 return getLhs(); 625 626 return constFoldBinaryOp<FloatAttr>( 627 operands, 628 [](const APFloat &a, const APFloat &b) { return llvm::maximum(a, b); }); 629 } 630 631 //===----------------------------------------------------------------------===// 632 // MaxSIOp 633 //===----------------------------------------------------------------------===// 634 635 OpFoldResult MaxSIOp::fold(ArrayRef<Attribute> operands) { 636 assert(operands.size() == 2 && "binary operation takes two operands"); 637 638 // maxsi(x,x) -> x 639 if (getLhs() == getRhs()) 640 return getRhs(); 641 642 APInt intValue; 643 // maxsi(x,MAX_INT) -> MAX_INT 644 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && 645 intValue.isMaxSignedValue()) 646 return getRhs(); 647 648 // maxsi(x, MIN_INT) -> x 649 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && 650 intValue.isMinSignedValue()) 651 return getLhs(); 652 653 return constFoldBinaryOp<IntegerAttr>(operands, 654 [](const APInt &a, const APInt &b) { 655 return llvm::APIntOps::smax(a, b); 656 }); 657 } 658 659 //===----------------------------------------------------------------------===// 660 // MaxUIOp 661 //===----------------------------------------------------------------------===// 662 663 OpFoldResult MaxUIOp::fold(ArrayRef<Attribute> operands) { 664 assert(operands.size() == 2 && "binary operation takes two operands"); 665 666 // maxui(x,x) -> x 667 if (getLhs() == getRhs()) 668 return getRhs(); 669 670 APInt intValue; 671 // maxui(x,MAX_INT) -> MAX_INT 672 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && intValue.isMaxValue()) 673 return getRhs(); 674 675 // maxui(x, MIN_INT) -> x 676 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && intValue.isMinValue()) 677 return getLhs(); 678 679 return constFoldBinaryOp<IntegerAttr>(operands, 680 [](const APInt &a, const APInt &b) { 681 return llvm::APIntOps::umax(a, b); 682 }); 683 } 684 685 //===----------------------------------------------------------------------===// 686 // MinFOp 687 //===----------------------------------------------------------------------===// 688 689 OpFoldResult arith::MinFOp::fold(ArrayRef<Attribute> operands) { 690 assert(operands.size() == 2 && "minf takes two operands"); 691 692 // minf(x,x) -> x 693 if (getLhs() == getRhs()) 694 return getRhs(); 695 696 // minf(x, +inf) -> x 697 if (matchPattern(getRhs(), m_PosInfFloat())) 698 return getLhs(); 699 700 return constFoldBinaryOp<FloatAttr>( 701 operands, 702 [](const APFloat &a, const APFloat &b) { return llvm::minimum(a, b); }); 703 } 704 705 //===----------------------------------------------------------------------===// 706 // MinSIOp 707 //===----------------------------------------------------------------------===// 708 709 OpFoldResult MinSIOp::fold(ArrayRef<Attribute> operands) { 710 assert(operands.size() == 2 && "binary operation takes two operands"); 711 712 // minsi(x,x) -> x 713 if (getLhs() == getRhs()) 714 return getRhs(); 715 716 APInt intValue; 717 // minsi(x,MIN_INT) -> MIN_INT 718 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && 719 intValue.isMinSignedValue()) 720 return getRhs(); 721 722 // minsi(x, MAX_INT) -> x 723 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && 724 intValue.isMaxSignedValue()) 725 return getLhs(); 726 727 return constFoldBinaryOp<IntegerAttr>(operands, 728 [](const APInt &a, const APInt &b) { 729 return llvm::APIntOps::smin(a, b); 730 }); 731 } 732 733 //===----------------------------------------------------------------------===// 734 // MinUIOp 735 //===----------------------------------------------------------------------===// 736 737 OpFoldResult MinUIOp::fold(ArrayRef<Attribute> operands) { 738 assert(operands.size() == 2 && "binary operation takes two operands"); 739 740 // minui(x,x) -> x 741 if (getLhs() == getRhs()) 742 return getRhs(); 743 744 APInt intValue; 745 // minui(x,MIN_INT) -> MIN_INT 746 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && intValue.isMinValue()) 747 return getRhs(); 748 749 // minui(x, MAX_INT) -> x 750 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && intValue.isMaxValue()) 751 return getLhs(); 752 753 return constFoldBinaryOp<IntegerAttr>(operands, 754 [](const APInt &a, const APInt &b) { 755 return llvm::APIntOps::umin(a, b); 756 }); 757 } 758 759 //===----------------------------------------------------------------------===// 760 // MulFOp 761 //===----------------------------------------------------------------------===// 762 763 OpFoldResult arith::MulFOp::fold(ArrayRef<Attribute> operands) { 764 // mulf(x, 1) -> x 765 if (matchPattern(getRhs(), m_OneFloat())) 766 return getLhs(); 767 768 return constFoldBinaryOp<FloatAttr>( 769 operands, [](const APFloat &a, const APFloat &b) { return a * b; }); 770 } 771 772 //===----------------------------------------------------------------------===// 773 // DivFOp 774 //===----------------------------------------------------------------------===// 775 776 OpFoldResult arith::DivFOp::fold(ArrayRef<Attribute> operands) { 777 // divf(x, 1) -> x 778 if (matchPattern(getRhs(), m_OneFloat())) 779 return getLhs(); 780 781 return constFoldBinaryOp<FloatAttr>( 782 operands, [](const APFloat &a, const APFloat &b) { return a / b; }); 783 } 784 785 //===----------------------------------------------------------------------===// 786 // Utility functions for verifying cast ops 787 //===----------------------------------------------------------------------===// 788 789 template <typename... Types> 790 using type_list = std::tuple<Types...> *; 791 792 /// Returns a non-null type only if the provided type is one of the allowed 793 /// types or one of the allowed shaped types of the allowed types. Returns the 794 /// element type if a valid shaped type is provided. 795 template <typename... ShapedTypes, typename... ElementTypes> 796 static Type getUnderlyingType(Type type, type_list<ShapedTypes...>, 797 type_list<ElementTypes...>) { 798 if (type.isa<ShapedType>() && !type.isa<ShapedTypes...>()) 799 return {}; 800 801 auto underlyingType = getElementTypeOrSelf(type); 802 if (!underlyingType.isa<ElementTypes...>()) 803 return {}; 804 805 return underlyingType; 806 } 807 808 /// Get allowed underlying types for vectors and tensors. 809 template <typename... ElementTypes> 810 static Type getTypeIfLike(Type type) { 811 return getUnderlyingType(type, type_list<VectorType, TensorType>(), 812 type_list<ElementTypes...>()); 813 } 814 815 /// Get allowed underlying types for vectors, tensors, and memrefs. 816 template <typename... ElementTypes> 817 static Type getTypeIfLikeOrMemRef(Type type) { 818 return getUnderlyingType(type, 819 type_list<VectorType, TensorType, MemRefType>(), 820 type_list<ElementTypes...>()); 821 } 822 823 static bool areValidCastInputsAndOutputs(TypeRange inputs, TypeRange outputs) { 824 return inputs.size() == 1 && outputs.size() == 1 && 825 succeeded(verifyCompatibleShapes(inputs.front(), outputs.front())); 826 } 827 828 //===----------------------------------------------------------------------===// 829 // Verifiers for integer and floating point extension/truncation ops 830 //===----------------------------------------------------------------------===// 831 832 // Extend ops can only extend to a wider type. 833 template <typename ValType, typename Op> 834 static LogicalResult verifyExtOp(Op op) { 835 Type srcType = getElementTypeOrSelf(op.getIn().getType()); 836 Type dstType = getElementTypeOrSelf(op.getType()); 837 838 if (srcType.cast<ValType>().getWidth() >= dstType.cast<ValType>().getWidth()) 839 return op.emitError("result type ") 840 << dstType << " must be wider than operand type " << srcType; 841 842 return success(); 843 } 844 845 // Truncate ops can only truncate to a shorter type. 846 template <typename ValType, typename Op> 847 static LogicalResult verifyTruncateOp(Op op) { 848 Type srcType = getElementTypeOrSelf(op.getIn().getType()); 849 Type dstType = getElementTypeOrSelf(op.getType()); 850 851 if (srcType.cast<ValType>().getWidth() <= dstType.cast<ValType>().getWidth()) 852 return op.emitError("result type ") 853 << dstType << " must be shorter than operand type " << srcType; 854 855 return success(); 856 } 857 858 /// Validate a cast that changes the width of a type. 859 template <template <typename> class WidthComparator, typename... ElementTypes> 860 static bool checkWidthChangeCast(TypeRange inputs, TypeRange outputs) { 861 if (!areValidCastInputsAndOutputs(inputs, outputs)) 862 return false; 863 864 auto srcType = getTypeIfLike<ElementTypes...>(inputs.front()); 865 auto dstType = getTypeIfLike<ElementTypes...>(outputs.front()); 866 if (!srcType || !dstType) 867 return false; 868 869 return WidthComparator<unsigned>()(dstType.getIntOrFloatBitWidth(), 870 srcType.getIntOrFloatBitWidth()); 871 } 872 873 //===----------------------------------------------------------------------===// 874 // ExtUIOp 875 //===----------------------------------------------------------------------===// 876 877 OpFoldResult arith::ExtUIOp::fold(ArrayRef<Attribute> operands) { 878 if (auto lhs = operands[0].dyn_cast_or_null<IntegerAttr>()) 879 return IntegerAttr::get( 880 getType(), lhs.getValue().zext(getType().getIntOrFloatBitWidth())); 881 882 if (auto lhs = getIn().getDefiningOp<ExtUIOp>()) { 883 getInMutable().assign(lhs.getIn()); 884 return getResult(); 885 } 886 887 return {}; 888 } 889 890 bool arith::ExtUIOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 891 return checkWidthChangeCast<std::greater, IntegerType>(inputs, outputs); 892 } 893 894 LogicalResult arith::ExtUIOp::verify() { 895 return verifyExtOp<IntegerType>(*this); 896 } 897 898 //===----------------------------------------------------------------------===// 899 // ExtSIOp 900 //===----------------------------------------------------------------------===// 901 902 OpFoldResult arith::ExtSIOp::fold(ArrayRef<Attribute> operands) { 903 if (auto lhs = operands[0].dyn_cast_or_null<IntegerAttr>()) 904 return IntegerAttr::get( 905 getType(), lhs.getValue().sext(getType().getIntOrFloatBitWidth())); 906 907 if (auto lhs = getIn().getDefiningOp<ExtSIOp>()) { 908 getInMutable().assign(lhs.getIn()); 909 return getResult(); 910 } 911 912 return {}; 913 } 914 915 bool arith::ExtSIOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 916 return checkWidthChangeCast<std::greater, IntegerType>(inputs, outputs); 917 } 918 919 void arith::ExtSIOp::getCanonicalizationPatterns( 920 RewritePatternSet &patterns, MLIRContext *context) { 921 patterns.add<ExtSIOfExtUI>(context); 922 } 923 924 LogicalResult arith::ExtSIOp::verify() { 925 return verifyExtOp<IntegerType>(*this); 926 } 927 928 //===----------------------------------------------------------------------===// 929 // ExtFOp 930 //===----------------------------------------------------------------------===// 931 932 bool arith::ExtFOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 933 return checkWidthChangeCast<std::greater, FloatType>(inputs, outputs); 934 } 935 936 LogicalResult arith::ExtFOp::verify() { return verifyExtOp<FloatType>(*this); } 937 938 //===----------------------------------------------------------------------===// 939 // TruncIOp 940 //===----------------------------------------------------------------------===// 941 942 OpFoldResult arith::TruncIOp::fold(ArrayRef<Attribute> operands) { 943 assert(operands.size() == 1 && "unary operation takes one operand"); 944 945 // trunci(zexti(a)) -> a 946 // trunci(sexti(a)) -> a 947 if (matchPattern(getOperand(), m_Op<arith::ExtUIOp>()) || 948 matchPattern(getOperand(), m_Op<arith::ExtSIOp>())) 949 return getOperand().getDefiningOp()->getOperand(0); 950 951 // trunci(trunci(a)) -> trunci(a)) 952 if (matchPattern(getOperand(), m_Op<arith::TruncIOp>())) { 953 setOperand(getOperand().getDefiningOp()->getOperand(0)); 954 return getResult(); 955 } 956 957 if (!operands[0]) 958 return {}; 959 960 if (auto lhs = operands[0].dyn_cast<IntegerAttr>()) { 961 return IntegerAttr::get( 962 getType(), lhs.getValue().trunc(getType().getIntOrFloatBitWidth())); 963 } 964 965 return {}; 966 } 967 968 bool arith::TruncIOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 969 return checkWidthChangeCast<std::less, IntegerType>(inputs, outputs); 970 } 971 972 LogicalResult arith::TruncIOp::verify() { 973 return verifyTruncateOp<IntegerType>(*this); 974 } 975 976 //===----------------------------------------------------------------------===// 977 // TruncFOp 978 //===----------------------------------------------------------------------===// 979 980 /// Perform safe const propagation for truncf, i.e. only propagate if FP value 981 /// can be represented without precision loss or rounding. 982 OpFoldResult arith::TruncFOp::fold(ArrayRef<Attribute> operands) { 983 assert(operands.size() == 1 && "unary operation takes one operand"); 984 985 auto constOperand = operands.front(); 986 if (!constOperand || !constOperand.isa<FloatAttr>()) 987 return {}; 988 989 // Convert to target type via 'double'. 990 double sourceValue = 991 constOperand.dyn_cast<FloatAttr>().getValue().convertToDouble(); 992 auto targetAttr = FloatAttr::get(getType(), sourceValue); 993 994 // Propagate if constant's value does not change after truncation. 995 if (sourceValue == targetAttr.getValue().convertToDouble()) 996 return targetAttr; 997 998 return {}; 999 } 1000 1001 bool arith::TruncFOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 1002 return checkWidthChangeCast<std::less, FloatType>(inputs, outputs); 1003 } 1004 1005 LogicalResult arith::TruncFOp::verify() { 1006 return verifyTruncateOp<FloatType>(*this); 1007 } 1008 1009 //===----------------------------------------------------------------------===// 1010 // AndIOp 1011 //===----------------------------------------------------------------------===// 1012 1013 void arith::AndIOp::getCanonicalizationPatterns( 1014 RewritePatternSet &patterns, MLIRContext *context) { 1015 patterns.add<AndOfExtUI, AndOfExtSI>(context); 1016 } 1017 1018 //===----------------------------------------------------------------------===// 1019 // OrIOp 1020 //===----------------------------------------------------------------------===// 1021 1022 void arith::OrIOp::getCanonicalizationPatterns( 1023 RewritePatternSet &patterns, MLIRContext *context) { 1024 patterns.add<OrOfExtUI, OrOfExtSI>(context); 1025 } 1026 1027 //===----------------------------------------------------------------------===// 1028 // Verifiers for casts between integers and floats. 1029 //===----------------------------------------------------------------------===// 1030 1031 template <typename From, typename To> 1032 static bool checkIntFloatCast(TypeRange inputs, TypeRange outputs) { 1033 if (!areValidCastInputsAndOutputs(inputs, outputs)) 1034 return false; 1035 1036 auto srcType = getTypeIfLike<From>(inputs.front()); 1037 auto dstType = getTypeIfLike<To>(outputs.back()); 1038 1039 return srcType && dstType; 1040 } 1041 1042 //===----------------------------------------------------------------------===// 1043 // UIToFPOp 1044 //===----------------------------------------------------------------------===// 1045 1046 bool arith::UIToFPOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 1047 return checkIntFloatCast<IntegerType, FloatType>(inputs, outputs); 1048 } 1049 1050 OpFoldResult arith::UIToFPOp::fold(ArrayRef<Attribute> operands) { 1051 if (auto lhs = operands[0].dyn_cast_or_null<IntegerAttr>()) { 1052 const APInt &api = lhs.getValue(); 1053 FloatType floatTy = getType().cast<FloatType>(); 1054 APFloat apf(floatTy.getFloatSemantics(), 1055 APInt::getZero(floatTy.getWidth())); 1056 apf.convertFromAPInt(api, /*IsSigned=*/false, APFloat::rmNearestTiesToEven); 1057 return FloatAttr::get(floatTy, apf); 1058 } 1059 return {}; 1060 } 1061 1062 //===----------------------------------------------------------------------===// 1063 // SIToFPOp 1064 //===----------------------------------------------------------------------===// 1065 1066 bool arith::SIToFPOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 1067 return checkIntFloatCast<IntegerType, FloatType>(inputs, outputs); 1068 } 1069 1070 OpFoldResult arith::SIToFPOp::fold(ArrayRef<Attribute> operands) { 1071 if (auto lhs = operands[0].dyn_cast_or_null<IntegerAttr>()) { 1072 const APInt &api = lhs.getValue(); 1073 FloatType floatTy = getType().cast<FloatType>(); 1074 APFloat apf(floatTy.getFloatSemantics(), 1075 APInt::getZero(floatTy.getWidth())); 1076 apf.convertFromAPInt(api, /*IsSigned=*/true, APFloat::rmNearestTiesToEven); 1077 return FloatAttr::get(floatTy, apf); 1078 } 1079 return {}; 1080 } 1081 //===----------------------------------------------------------------------===// 1082 // FPToUIOp 1083 //===----------------------------------------------------------------------===// 1084 1085 bool arith::FPToUIOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 1086 return checkIntFloatCast<FloatType, IntegerType>(inputs, outputs); 1087 } 1088 1089 OpFoldResult arith::FPToUIOp::fold(ArrayRef<Attribute> operands) { 1090 if (auto lhs = operands[0].dyn_cast_or_null<FloatAttr>()) { 1091 const APFloat &apf = lhs.getValue(); 1092 IntegerType intTy = getType().cast<IntegerType>(); 1093 bool ignored; 1094 APSInt api(intTy.getWidth(), /*isUnsigned=*/true); 1095 if (APFloat::opInvalidOp == 1096 apf.convertToInteger(api, APFloat::rmTowardZero, &ignored)) { 1097 // Undefined behavior invoked - the destination type can't represent 1098 // the input constant. 1099 return {}; 1100 } 1101 return IntegerAttr::get(getType(), api); 1102 } 1103 1104 return {}; 1105 } 1106 1107 //===----------------------------------------------------------------------===// 1108 // FPToSIOp 1109 //===----------------------------------------------------------------------===// 1110 1111 bool arith::FPToSIOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 1112 return checkIntFloatCast<FloatType, IntegerType>(inputs, outputs); 1113 } 1114 1115 OpFoldResult arith::FPToSIOp::fold(ArrayRef<Attribute> operands) { 1116 if (auto lhs = operands[0].dyn_cast_or_null<FloatAttr>()) { 1117 const APFloat &apf = lhs.getValue(); 1118 IntegerType intTy = getType().cast<IntegerType>(); 1119 bool ignored; 1120 APSInt api(intTy.getWidth(), /*isUnsigned=*/false); 1121 if (APFloat::opInvalidOp == 1122 apf.convertToInteger(api, APFloat::rmTowardZero, &ignored)) { 1123 // Undefined behavior invoked - the destination type can't represent 1124 // the input constant. 1125 return {}; 1126 } 1127 return IntegerAttr::get(getType(), api); 1128 } 1129 1130 return {}; 1131 } 1132 1133 //===----------------------------------------------------------------------===// 1134 // IndexCastOp 1135 //===----------------------------------------------------------------------===// 1136 1137 bool arith::IndexCastOp::areCastCompatible(TypeRange inputs, 1138 TypeRange outputs) { 1139 if (!areValidCastInputsAndOutputs(inputs, outputs)) 1140 return false; 1141 1142 auto srcType = getTypeIfLikeOrMemRef<IntegerType, IndexType>(inputs.front()); 1143 auto dstType = getTypeIfLikeOrMemRef<IntegerType, IndexType>(outputs.front()); 1144 if (!srcType || !dstType) 1145 return false; 1146 1147 return (srcType.isIndex() && dstType.isSignlessInteger()) || 1148 (srcType.isSignlessInteger() && dstType.isIndex()); 1149 } 1150 1151 OpFoldResult arith::IndexCastOp::fold(ArrayRef<Attribute> operands) { 1152 // index_cast(constant) -> constant 1153 // A little hack because we go through int. Otherwise, the size of the 1154 // constant might need to change. 1155 if (auto value = operands[0].dyn_cast_or_null<IntegerAttr>()) 1156 return IntegerAttr::get(getType(), value.getInt()); 1157 1158 return {}; 1159 } 1160 1161 void arith::IndexCastOp::getCanonicalizationPatterns( 1162 RewritePatternSet &patterns, MLIRContext *context) { 1163 patterns.add<IndexCastOfIndexCast, IndexCastOfExtSI>(context); 1164 } 1165 1166 //===----------------------------------------------------------------------===// 1167 // BitcastOp 1168 //===----------------------------------------------------------------------===// 1169 1170 bool arith::BitcastOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 1171 if (!areValidCastInputsAndOutputs(inputs, outputs)) 1172 return false; 1173 1174 auto srcType = 1175 getTypeIfLikeOrMemRef<IntegerType, IndexType, FloatType>(inputs.front()); 1176 auto dstType = 1177 getTypeIfLikeOrMemRef<IntegerType, IndexType, FloatType>(outputs.front()); 1178 if (!srcType || !dstType) 1179 return false; 1180 1181 return srcType.getIntOrFloatBitWidth() == dstType.getIntOrFloatBitWidth(); 1182 } 1183 1184 OpFoldResult arith::BitcastOp::fold(ArrayRef<Attribute> operands) { 1185 assert(operands.size() == 1 && "bitcast op expects 1 operand"); 1186 1187 auto resType = getType(); 1188 auto operand = operands[0]; 1189 if (!operand) 1190 return {}; 1191 1192 /// Bitcast dense elements. 1193 if (auto denseAttr = operand.dyn_cast_or_null<DenseElementsAttr>()) 1194 return denseAttr.bitcast(resType.cast<ShapedType>().getElementType()); 1195 /// Other shaped types unhandled. 1196 if (resType.isa<ShapedType>()) 1197 return {}; 1198 1199 /// Bitcast integer or float to integer or float. 1200 APInt bits = operand.isa<FloatAttr>() 1201 ? operand.cast<FloatAttr>().getValue().bitcastToAPInt() 1202 : operand.cast<IntegerAttr>().getValue(); 1203 1204 if (auto resFloatType = resType.dyn_cast<FloatType>()) 1205 return FloatAttr::get(resType, 1206 APFloat(resFloatType.getFloatSemantics(), bits)); 1207 return IntegerAttr::get(resType, bits); 1208 } 1209 1210 void arith::BitcastOp::getCanonicalizationPatterns( 1211 RewritePatternSet &patterns, MLIRContext *context) { 1212 patterns.add<BitcastOfBitcast>(context); 1213 } 1214 1215 //===----------------------------------------------------------------------===// 1216 // Helpers for compare ops 1217 //===----------------------------------------------------------------------===// 1218 1219 /// Return the type of the same shape (scalar, vector or tensor) containing i1. 1220 static Type getI1SameShape(Type type) { 1221 auto i1Type = IntegerType::get(type.getContext(), 1); 1222 if (auto tensorType = type.dyn_cast<RankedTensorType>()) 1223 return RankedTensorType::get(tensorType.getShape(), i1Type); 1224 if (type.isa<UnrankedTensorType>()) 1225 return UnrankedTensorType::get(i1Type); 1226 if (auto vectorType = type.dyn_cast<VectorType>()) 1227 return VectorType::get(vectorType.getShape(), i1Type, 1228 vectorType.getNumScalableDims()); 1229 return i1Type; 1230 } 1231 1232 //===----------------------------------------------------------------------===// 1233 // CmpIOp 1234 //===----------------------------------------------------------------------===// 1235 1236 /// Compute `lhs` `pred` `rhs`, where `pred` is one of the known integer 1237 /// comparison predicates. 1238 bool mlir::arith::applyCmpPredicate(arith::CmpIPredicate predicate, 1239 const APInt &lhs, const APInt &rhs) { 1240 switch (predicate) { 1241 case arith::CmpIPredicate::eq: 1242 return lhs.eq(rhs); 1243 case arith::CmpIPredicate::ne: 1244 return lhs.ne(rhs); 1245 case arith::CmpIPredicate::slt: 1246 return lhs.slt(rhs); 1247 case arith::CmpIPredicate::sle: 1248 return lhs.sle(rhs); 1249 case arith::CmpIPredicate::sgt: 1250 return lhs.sgt(rhs); 1251 case arith::CmpIPredicate::sge: 1252 return lhs.sge(rhs); 1253 case arith::CmpIPredicate::ult: 1254 return lhs.ult(rhs); 1255 case arith::CmpIPredicate::ule: 1256 return lhs.ule(rhs); 1257 case arith::CmpIPredicate::ugt: 1258 return lhs.ugt(rhs); 1259 case arith::CmpIPredicate::uge: 1260 return lhs.uge(rhs); 1261 } 1262 llvm_unreachable("unknown cmpi predicate kind"); 1263 } 1264 1265 /// Returns true if the predicate is true for two equal operands. 1266 static bool applyCmpPredicateToEqualOperands(arith::CmpIPredicate predicate) { 1267 switch (predicate) { 1268 case arith::CmpIPredicate::eq: 1269 case arith::CmpIPredicate::sle: 1270 case arith::CmpIPredicate::sge: 1271 case arith::CmpIPredicate::ule: 1272 case arith::CmpIPredicate::uge: 1273 return true; 1274 case arith::CmpIPredicate::ne: 1275 case arith::CmpIPredicate::slt: 1276 case arith::CmpIPredicate::sgt: 1277 case arith::CmpIPredicate::ult: 1278 case arith::CmpIPredicate::ugt: 1279 return false; 1280 } 1281 llvm_unreachable("unknown cmpi predicate kind"); 1282 } 1283 1284 static Attribute getBoolAttribute(Type type, MLIRContext *ctx, bool value) { 1285 auto boolAttr = BoolAttr::get(ctx, value); 1286 ShapedType shapedType = type.dyn_cast_or_null<ShapedType>(); 1287 if (!shapedType) 1288 return boolAttr; 1289 return DenseElementsAttr::get(shapedType, boolAttr); 1290 } 1291 1292 OpFoldResult arith::CmpIOp::fold(ArrayRef<Attribute> operands) { 1293 assert(operands.size() == 2 && "cmpi takes two operands"); 1294 1295 // cmpi(pred, x, x) 1296 if (getLhs() == getRhs()) { 1297 auto val = applyCmpPredicateToEqualOperands(getPredicate()); 1298 return getBoolAttribute(getType(), getContext(), val); 1299 } 1300 1301 if (matchPattern(getRhs(), m_Zero())) { 1302 if (auto extOp = getLhs().getDefiningOp<ExtSIOp>()) { 1303 if (extOp.getOperand().getType().cast<IntegerType>().getWidth() == 1) { 1304 // extsi(%x : i1 -> iN) != 0 -> %x 1305 if (getPredicate() == arith::CmpIPredicate::ne) { 1306 return extOp.getOperand(); 1307 } 1308 } 1309 } 1310 if (auto extOp = getLhs().getDefiningOp<ExtUIOp>()) { 1311 if (extOp.getOperand().getType().cast<IntegerType>().getWidth() == 1) { 1312 // extui(%x : i1 -> iN) != 0 -> %x 1313 if (getPredicate() == arith::CmpIPredicate::ne) { 1314 return extOp.getOperand(); 1315 } 1316 } 1317 } 1318 } 1319 1320 auto lhs = operands.front().dyn_cast_or_null<IntegerAttr>(); 1321 auto rhs = operands.back().dyn_cast_or_null<IntegerAttr>(); 1322 if (!lhs || !rhs) 1323 return {}; 1324 1325 auto val = applyCmpPredicate(getPredicate(), lhs.getValue(), rhs.getValue()); 1326 return BoolAttr::get(getContext(), val); 1327 } 1328 1329 void arith::CmpIOp::getCanonicalizationPatterns(RewritePatternSet &patterns, 1330 MLIRContext *context) { 1331 patterns.insert<CmpIExtSI, CmpIExtUI>(context); 1332 } 1333 1334 //===----------------------------------------------------------------------===// 1335 // CmpFOp 1336 //===----------------------------------------------------------------------===// 1337 1338 /// Compute `lhs` `pred` `rhs`, where `pred` is one of the known floating point 1339 /// comparison predicates. 1340 bool mlir::arith::applyCmpPredicate(arith::CmpFPredicate predicate, 1341 const APFloat &lhs, const APFloat &rhs) { 1342 auto cmpResult = lhs.compare(rhs); 1343 switch (predicate) { 1344 case arith::CmpFPredicate::AlwaysFalse: 1345 return false; 1346 case arith::CmpFPredicate::OEQ: 1347 return cmpResult == APFloat::cmpEqual; 1348 case arith::CmpFPredicate::OGT: 1349 return cmpResult == APFloat::cmpGreaterThan; 1350 case arith::CmpFPredicate::OGE: 1351 return cmpResult == APFloat::cmpGreaterThan || 1352 cmpResult == APFloat::cmpEqual; 1353 case arith::CmpFPredicate::OLT: 1354 return cmpResult == APFloat::cmpLessThan; 1355 case arith::CmpFPredicate::OLE: 1356 return cmpResult == APFloat::cmpLessThan || cmpResult == APFloat::cmpEqual; 1357 case arith::CmpFPredicate::ONE: 1358 return cmpResult != APFloat::cmpUnordered && cmpResult != APFloat::cmpEqual; 1359 case arith::CmpFPredicate::ORD: 1360 return cmpResult != APFloat::cmpUnordered; 1361 case arith::CmpFPredicate::UEQ: 1362 return cmpResult == APFloat::cmpUnordered || cmpResult == APFloat::cmpEqual; 1363 case arith::CmpFPredicate::UGT: 1364 return cmpResult == APFloat::cmpUnordered || 1365 cmpResult == APFloat::cmpGreaterThan; 1366 case arith::CmpFPredicate::UGE: 1367 return cmpResult == APFloat::cmpUnordered || 1368 cmpResult == APFloat::cmpGreaterThan || 1369 cmpResult == APFloat::cmpEqual; 1370 case arith::CmpFPredicate::ULT: 1371 return cmpResult == APFloat::cmpUnordered || 1372 cmpResult == APFloat::cmpLessThan; 1373 case arith::CmpFPredicate::ULE: 1374 return cmpResult == APFloat::cmpUnordered || 1375 cmpResult == APFloat::cmpLessThan || cmpResult == APFloat::cmpEqual; 1376 case arith::CmpFPredicate::UNE: 1377 return cmpResult != APFloat::cmpEqual; 1378 case arith::CmpFPredicate::UNO: 1379 return cmpResult == APFloat::cmpUnordered; 1380 case arith::CmpFPredicate::AlwaysTrue: 1381 return true; 1382 } 1383 llvm_unreachable("unknown cmpf predicate kind"); 1384 } 1385 1386 OpFoldResult arith::CmpFOp::fold(ArrayRef<Attribute> operands) { 1387 assert(operands.size() == 2 && "cmpf takes two operands"); 1388 1389 auto lhs = operands.front().dyn_cast_or_null<FloatAttr>(); 1390 auto rhs = operands.back().dyn_cast_or_null<FloatAttr>(); 1391 1392 // If one operand is NaN, making them both NaN does not change the result. 1393 if (lhs && lhs.getValue().isNaN()) 1394 rhs = lhs; 1395 if (rhs && rhs.getValue().isNaN()) 1396 lhs = rhs; 1397 1398 if (!lhs || !rhs) 1399 return {}; 1400 1401 auto val = applyCmpPredicate(getPredicate(), lhs.getValue(), rhs.getValue()); 1402 return BoolAttr::get(getContext(), val); 1403 } 1404 1405 class CmpFIntToFPConst final : public OpRewritePattern<CmpFOp> { 1406 public: 1407 using OpRewritePattern<CmpFOp>::OpRewritePattern; 1408 1409 static CmpIPredicate convertToIntegerPredicate(CmpFPredicate pred, 1410 bool isUnsigned) { 1411 using namespace arith; 1412 switch (pred) { 1413 case CmpFPredicate::UEQ: 1414 case CmpFPredicate::OEQ: 1415 return CmpIPredicate::eq; 1416 case CmpFPredicate::UGT: 1417 case CmpFPredicate::OGT: 1418 return isUnsigned ? CmpIPredicate::ugt : CmpIPredicate::sgt; 1419 case CmpFPredicate::UGE: 1420 case CmpFPredicate::OGE: 1421 return isUnsigned ? CmpIPredicate::uge : CmpIPredicate::sge; 1422 case CmpFPredicate::ULT: 1423 case CmpFPredicate::OLT: 1424 return isUnsigned ? CmpIPredicate::ult : CmpIPredicate::slt; 1425 case CmpFPredicate::ULE: 1426 case CmpFPredicate::OLE: 1427 return isUnsigned ? CmpIPredicate::ule : CmpIPredicate::sle; 1428 case CmpFPredicate::UNE: 1429 case CmpFPredicate::ONE: 1430 return CmpIPredicate::ne; 1431 default: 1432 llvm_unreachable("Unexpected predicate!"); 1433 } 1434 } 1435 1436 LogicalResult matchAndRewrite(CmpFOp op, 1437 PatternRewriter &rewriter) const override { 1438 FloatAttr flt; 1439 if (!matchPattern(op.getRhs(), m_Constant(&flt))) 1440 return failure(); 1441 1442 const APFloat &rhs = flt.getValue(); 1443 1444 // Don't attempt to fold a nan. 1445 if (rhs.isNaN()) 1446 return failure(); 1447 1448 // Get the width of the mantissa. We don't want to hack on conversions that 1449 // might lose information from the integer, e.g. "i64 -> float" 1450 FloatType floatTy = op.getRhs().getType().cast<FloatType>(); 1451 int mantissaWidth = floatTy.getFPMantissaWidth(); 1452 if (mantissaWidth <= 0) 1453 return failure(); 1454 1455 bool isUnsigned; 1456 Value intVal; 1457 1458 if (auto si = op.getLhs().getDefiningOp<SIToFPOp>()) { 1459 isUnsigned = false; 1460 intVal = si.getIn(); 1461 } else if (auto ui = op.getLhs().getDefiningOp<UIToFPOp>()) { 1462 isUnsigned = true; 1463 intVal = ui.getIn(); 1464 } else { 1465 return failure(); 1466 } 1467 1468 // Check to see that the input is converted from an integer type that is 1469 // small enough that preserves all bits. 1470 auto intTy = intVal.getType().cast<IntegerType>(); 1471 auto intWidth = intTy.getWidth(); 1472 1473 // Number of bits representing values, as opposed to the sign 1474 auto valueBits = isUnsigned ? intWidth : (intWidth - 1); 1475 1476 // Following test does NOT adjust intWidth downwards for signed inputs, 1477 // because the most negative value still requires all the mantissa bits 1478 // to distinguish it from one less than that value. 1479 if ((int)intWidth > mantissaWidth) { 1480 // Conversion would lose accuracy. Check if loss can impact comparison. 1481 int exponent = ilogb(rhs); 1482 if (exponent == APFloat::IEK_Inf) { 1483 int maxExponent = ilogb(APFloat::getLargest(rhs.getSemantics())); 1484 if (maxExponent < (int)valueBits) { 1485 // Conversion could create infinity. 1486 return failure(); 1487 } 1488 } else { 1489 // Note that if rhs is zero or NaN, then Exp is negative 1490 // and first condition is trivially false. 1491 if (mantissaWidth <= exponent && exponent <= (int)valueBits) { 1492 // Conversion could affect comparison. 1493 return failure(); 1494 } 1495 } 1496 } 1497 1498 // Convert to equivalent cmpi predicate 1499 CmpIPredicate pred; 1500 switch (op.getPredicate()) { 1501 case CmpFPredicate::ORD: 1502 // Int to fp conversion doesn't create a nan (ord checks neither is a nan) 1503 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1504 /*width=*/1); 1505 return success(); 1506 case CmpFPredicate::UNO: 1507 // Int to fp conversion doesn't create a nan (uno checks either is a nan) 1508 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1509 /*width=*/1); 1510 return success(); 1511 default: 1512 pred = convertToIntegerPredicate(op.getPredicate(), isUnsigned); 1513 break; 1514 } 1515 1516 if (!isUnsigned) { 1517 // If the rhs value is > SignedMax, fold the comparison. This handles 1518 // +INF and large values. 1519 APFloat signedMax(rhs.getSemantics()); 1520 signedMax.convertFromAPInt(APInt::getSignedMaxValue(intWidth), true, 1521 APFloat::rmNearestTiesToEven); 1522 if (signedMax < rhs) { // smax < 13123.0 1523 if (pred == CmpIPredicate::ne || pred == CmpIPredicate::slt || 1524 pred == CmpIPredicate::sle) 1525 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1526 /*width=*/1); 1527 else 1528 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1529 /*width=*/1); 1530 return success(); 1531 } 1532 } else { 1533 // If the rhs value is > UnsignedMax, fold the comparison. This handles 1534 // +INF and large values. 1535 APFloat unsignedMax(rhs.getSemantics()); 1536 unsignedMax.convertFromAPInt(APInt::getMaxValue(intWidth), false, 1537 APFloat::rmNearestTiesToEven); 1538 if (unsignedMax < rhs) { // umax < 13123.0 1539 if (pred == CmpIPredicate::ne || pred == CmpIPredicate::ult || 1540 pred == CmpIPredicate::ule) 1541 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1542 /*width=*/1); 1543 else 1544 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1545 /*width=*/1); 1546 return success(); 1547 } 1548 } 1549 1550 if (!isUnsigned) { 1551 // See if the rhs value is < SignedMin. 1552 APFloat signedMin(rhs.getSemantics()); 1553 signedMin.convertFromAPInt(APInt::getSignedMinValue(intWidth), true, 1554 APFloat::rmNearestTiesToEven); 1555 if (signedMin > rhs) { // smin > 12312.0 1556 if (pred == CmpIPredicate::ne || pred == CmpIPredicate::sgt || 1557 pred == CmpIPredicate::sge) 1558 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1559 /*width=*/1); 1560 else 1561 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1562 /*width=*/1); 1563 return success(); 1564 } 1565 } else { 1566 // See if the rhs value is < UnsignedMin. 1567 APFloat unsignedMin(rhs.getSemantics()); 1568 unsignedMin.convertFromAPInt(APInt::getMinValue(intWidth), false, 1569 APFloat::rmNearestTiesToEven); 1570 if (unsignedMin > rhs) { // umin > 12312.0 1571 if (pred == CmpIPredicate::ne || pred == CmpIPredicate::ugt || 1572 pred == CmpIPredicate::uge) 1573 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1574 /*width=*/1); 1575 else 1576 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1577 /*width=*/1); 1578 return success(); 1579 } 1580 } 1581 1582 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 1583 // [0, UMAX], but it may still be fractional. See if it is fractional by 1584 // casting the FP value to the integer value and back, checking for 1585 // equality. Don't do this for zero, because -0.0 is not fractional. 1586 bool ignored; 1587 APSInt rhsInt(intWidth, isUnsigned); 1588 if (APFloat::opInvalidOp == 1589 rhs.convertToInteger(rhsInt, APFloat::rmTowardZero, &ignored)) { 1590 // Undefined behavior invoked - the destination type can't represent 1591 // the input constant. 1592 return failure(); 1593 } 1594 1595 if (!rhs.isZero()) { 1596 APFloat apf(floatTy.getFloatSemantics(), 1597 APInt::getZero(floatTy.getWidth())); 1598 apf.convertFromAPInt(rhsInt, !isUnsigned, APFloat::rmNearestTiesToEven); 1599 1600 bool equal = apf == rhs; 1601 if (!equal) { 1602 // If we had a comparison against a fractional value, we have to adjust 1603 // the compare predicate and sometimes the value. rhsInt is rounded 1604 // towards zero at this point. 1605 switch (pred) { 1606 case CmpIPredicate::ne: // (float)int != 4.4 --> true 1607 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1608 /*width=*/1); 1609 return success(); 1610 case CmpIPredicate::eq: // (float)int == 4.4 --> false 1611 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1612 /*width=*/1); 1613 return success(); 1614 case CmpIPredicate::ule: 1615 // (float)int <= 4.4 --> int <= 4 1616 // (float)int <= -4.4 --> false 1617 if (rhs.isNegative()) { 1618 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1619 /*width=*/1); 1620 return success(); 1621 } 1622 break; 1623 case CmpIPredicate::sle: 1624 // (float)int <= 4.4 --> int <= 4 1625 // (float)int <= -4.4 --> int < -4 1626 if (rhs.isNegative()) 1627 pred = CmpIPredicate::slt; 1628 break; 1629 case CmpIPredicate::ult: 1630 // (float)int < -4.4 --> false 1631 // (float)int < 4.4 --> int <= 4 1632 if (rhs.isNegative()) { 1633 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1634 /*width=*/1); 1635 return success(); 1636 } 1637 pred = CmpIPredicate::ule; 1638 break; 1639 case CmpIPredicate::slt: 1640 // (float)int < -4.4 --> int < -4 1641 // (float)int < 4.4 --> int <= 4 1642 if (!rhs.isNegative()) 1643 pred = CmpIPredicate::sle; 1644 break; 1645 case CmpIPredicate::ugt: 1646 // (float)int > 4.4 --> int > 4 1647 // (float)int > -4.4 --> true 1648 if (rhs.isNegative()) { 1649 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1650 /*width=*/1); 1651 return success(); 1652 } 1653 break; 1654 case CmpIPredicate::sgt: 1655 // (float)int > 4.4 --> int > 4 1656 // (float)int > -4.4 --> int >= -4 1657 if (rhs.isNegative()) 1658 pred = CmpIPredicate::sge; 1659 break; 1660 case CmpIPredicate::uge: 1661 // (float)int >= -4.4 --> true 1662 // (float)int >= 4.4 --> int > 4 1663 if (rhs.isNegative()) { 1664 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1665 /*width=*/1); 1666 return success(); 1667 } 1668 pred = CmpIPredicate::ugt; 1669 break; 1670 case CmpIPredicate::sge: 1671 // (float)int >= -4.4 --> int >= -4 1672 // (float)int >= 4.4 --> int > 4 1673 if (!rhs.isNegative()) 1674 pred = CmpIPredicate::sgt; 1675 break; 1676 } 1677 } 1678 } 1679 1680 // Lower this FP comparison into an appropriate integer version of the 1681 // comparison. 1682 rewriter.replaceOpWithNewOp<CmpIOp>( 1683 op, pred, intVal, 1684 rewriter.create<ConstantOp>( 1685 op.getLoc(), intVal.getType(), 1686 rewriter.getIntegerAttr(intVal.getType(), rhsInt))); 1687 return success(); 1688 } 1689 }; 1690 1691 void arith::CmpFOp::getCanonicalizationPatterns(RewritePatternSet &patterns, 1692 MLIRContext *context) { 1693 patterns.insert<CmpFIntToFPConst>(context); 1694 } 1695 1696 //===----------------------------------------------------------------------===// 1697 // SelectOp 1698 //===----------------------------------------------------------------------===// 1699 1700 // Transforms a select of a boolean to arithmetic operations 1701 // 1702 // arith.select %arg, %x, %y : i1 1703 // 1704 // becomes 1705 // 1706 // and(%arg, %x) or and(!%arg, %y) 1707 struct SelectI1Simplify : public OpRewritePattern<arith::SelectOp> { 1708 using OpRewritePattern<arith::SelectOp>::OpRewritePattern; 1709 1710 LogicalResult matchAndRewrite(arith::SelectOp op, 1711 PatternRewriter &rewriter) const override { 1712 if (!op.getType().isInteger(1)) 1713 return failure(); 1714 1715 Value falseConstant = 1716 rewriter.create<arith::ConstantIntOp>(op.getLoc(), true, 1); 1717 Value notCondition = rewriter.create<arith::XOrIOp>( 1718 op.getLoc(), op.getCondition(), falseConstant); 1719 1720 Value trueVal = rewriter.create<arith::AndIOp>( 1721 op.getLoc(), op.getCondition(), op.getTrueValue()); 1722 Value falseVal = rewriter.create<arith::AndIOp>(op.getLoc(), notCondition, 1723 op.getFalseValue()); 1724 rewriter.replaceOpWithNewOp<arith::OrIOp>(op, trueVal, falseVal); 1725 return success(); 1726 } 1727 }; 1728 1729 // select %arg, %c1, %c0 => extui %arg 1730 struct SelectToExtUI : public OpRewritePattern<arith::SelectOp> { 1731 using OpRewritePattern<arith::SelectOp>::OpRewritePattern; 1732 1733 LogicalResult matchAndRewrite(arith::SelectOp op, 1734 PatternRewriter &rewriter) const override { 1735 // Cannot extui i1 to i1, or i1 to f32 1736 if (!op.getType().isa<IntegerType>() || op.getType().isInteger(1)) 1737 return failure(); 1738 1739 // select %x, c1, %c0 => extui %arg 1740 if (matchPattern(op.getTrueValue(), m_One())) 1741 if (matchPattern(op.getFalseValue(), m_Zero())) { 1742 rewriter.replaceOpWithNewOp<arith::ExtUIOp>(op, op.getType(), 1743 op.getCondition()); 1744 return success(); 1745 } 1746 1747 // select %x, c0, %c1 => extui (xor %arg, true) 1748 if (matchPattern(op.getTrueValue(), m_Zero())) 1749 if (matchPattern(op.getFalseValue(), m_One())) { 1750 rewriter.replaceOpWithNewOp<arith::ExtUIOp>( 1751 op, op.getType(), 1752 rewriter.create<arith::XOrIOp>( 1753 op.getLoc(), op.getCondition(), 1754 rewriter.create<arith::ConstantIntOp>( 1755 op.getLoc(), 1, op.getCondition().getType()))); 1756 return success(); 1757 } 1758 1759 return failure(); 1760 } 1761 }; 1762 1763 void arith::SelectOp::getCanonicalizationPatterns(RewritePatternSet &results, 1764 MLIRContext *context) { 1765 results.add<SelectI1Simplify, SelectToExtUI>(context); 1766 } 1767 1768 OpFoldResult arith::SelectOp::fold(ArrayRef<Attribute> operands) { 1769 Value trueVal = getTrueValue(); 1770 Value falseVal = getFalseValue(); 1771 if (trueVal == falseVal) 1772 return trueVal; 1773 1774 Value condition = getCondition(); 1775 1776 // select true, %0, %1 => %0 1777 if (matchPattern(condition, m_One())) 1778 return trueVal; 1779 1780 // select false, %0, %1 => %1 1781 if (matchPattern(condition, m_Zero())) 1782 return falseVal; 1783 1784 // select %x, true, false => %x 1785 if (getType().isInteger(1)) 1786 if (matchPattern(getTrueValue(), m_One())) 1787 if (matchPattern(getFalseValue(), m_Zero())) 1788 return condition; 1789 1790 if (auto cmp = dyn_cast_or_null<arith::CmpIOp>(condition.getDefiningOp())) { 1791 auto pred = cmp.getPredicate(); 1792 if (pred == arith::CmpIPredicate::eq || pred == arith::CmpIPredicate::ne) { 1793 auto cmpLhs = cmp.getLhs(); 1794 auto cmpRhs = cmp.getRhs(); 1795 1796 // %0 = arith.cmpi eq, %arg0, %arg1 1797 // %1 = arith.select %0, %arg0, %arg1 => %arg1 1798 1799 // %0 = arith.cmpi ne, %arg0, %arg1 1800 // %1 = arith.select %0, %arg0, %arg1 => %arg0 1801 1802 if ((cmpLhs == trueVal && cmpRhs == falseVal) || 1803 (cmpRhs == trueVal && cmpLhs == falseVal)) 1804 return pred == arith::CmpIPredicate::ne ? trueVal : falseVal; 1805 } 1806 } 1807 return nullptr; 1808 } 1809 1810 ParseResult SelectOp::parse(OpAsmParser &parser, OperationState &result) { 1811 Type conditionType, resultType; 1812 SmallVector<OpAsmParser::UnresolvedOperand, 3> operands; 1813 if (parser.parseOperandList(operands, /*requiredOperandCount=*/3) || 1814 parser.parseOptionalAttrDict(result.attributes) || 1815 parser.parseColonType(resultType)) 1816 return failure(); 1817 1818 // Check for the explicit condition type if this is a masked tensor or vector. 1819 if (succeeded(parser.parseOptionalComma())) { 1820 conditionType = resultType; 1821 if (parser.parseType(resultType)) 1822 return failure(); 1823 } else { 1824 conditionType = parser.getBuilder().getI1Type(); 1825 } 1826 1827 result.addTypes(resultType); 1828 return parser.resolveOperands(operands, 1829 {conditionType, resultType, resultType}, 1830 parser.getNameLoc(), result.operands); 1831 } 1832 1833 void arith::SelectOp::print(OpAsmPrinter &p) { 1834 p << " " << getOperands(); 1835 p.printOptionalAttrDict((*this)->getAttrs()); 1836 p << " : "; 1837 if (ShapedType condType = getCondition().getType().dyn_cast<ShapedType>()) 1838 p << condType << ", "; 1839 p << getType(); 1840 } 1841 1842 LogicalResult arith::SelectOp::verify() { 1843 Type conditionType = getCondition().getType(); 1844 if (conditionType.isSignlessInteger(1)) 1845 return success(); 1846 1847 // If the result type is a vector or tensor, the type can be a mask with the 1848 // same elements. 1849 Type resultType = getType(); 1850 if (!resultType.isa<TensorType, VectorType>()) 1851 return emitOpError() << "expected condition to be a signless i1, but got " 1852 << conditionType; 1853 Type shapedConditionType = getI1SameShape(resultType); 1854 if (conditionType != shapedConditionType) { 1855 return emitOpError() << "expected condition type to have the same shape " 1856 "as the result type, expected " 1857 << shapedConditionType << ", but got " 1858 << conditionType; 1859 } 1860 return success(); 1861 } 1862 //===----------------------------------------------------------------------===// 1863 // ShLIOp 1864 //===----------------------------------------------------------------------===// 1865 1866 OpFoldResult arith::ShLIOp::fold(ArrayRef<Attribute> operands) { 1867 // Don't fold if shifting more than the bit width. 1868 bool bounded = false; 1869 auto result = constFoldBinaryOp<IntegerAttr>( 1870 operands, [&](const APInt &a, const APInt &b) { 1871 bounded = b.ule(b.getBitWidth()); 1872 return a.shl(b); 1873 }); 1874 return bounded ? result : Attribute(); 1875 } 1876 1877 //===----------------------------------------------------------------------===// 1878 // ShRUIOp 1879 //===----------------------------------------------------------------------===// 1880 1881 OpFoldResult arith::ShRUIOp::fold(ArrayRef<Attribute> operands) { 1882 // Don't fold if shifting more than the bit width. 1883 bool bounded = false; 1884 auto result = constFoldBinaryOp<IntegerAttr>( 1885 operands, [&](const APInt &a, const APInt &b) { 1886 bounded = b.ule(b.getBitWidth()); 1887 return a.lshr(b); 1888 }); 1889 return bounded ? result : Attribute(); 1890 } 1891 1892 //===----------------------------------------------------------------------===// 1893 // ShRSIOp 1894 //===----------------------------------------------------------------------===// 1895 1896 OpFoldResult arith::ShRSIOp::fold(ArrayRef<Attribute> operands) { 1897 // Don't fold if shifting more than the bit width. 1898 bool bounded = false; 1899 auto result = constFoldBinaryOp<IntegerAttr>( 1900 operands, [&](const APInt &a, const APInt &b) { 1901 bounded = b.ule(b.getBitWidth()); 1902 return a.ashr(b); 1903 }); 1904 return bounded ? result : Attribute(); 1905 } 1906 1907 //===----------------------------------------------------------------------===// 1908 // Atomic Enum 1909 //===----------------------------------------------------------------------===// 1910 1911 /// Returns the identity value attribute associated with an AtomicRMWKind op. 1912 Attribute mlir::arith::getIdentityValueAttr(AtomicRMWKind kind, Type resultType, 1913 OpBuilder &builder, Location loc) { 1914 switch (kind) { 1915 case AtomicRMWKind::maxf: 1916 return builder.getFloatAttr( 1917 resultType, 1918 APFloat::getInf(resultType.cast<FloatType>().getFloatSemantics(), 1919 /*Negative=*/true)); 1920 case AtomicRMWKind::addf: 1921 case AtomicRMWKind::addi: 1922 case AtomicRMWKind::maxu: 1923 case AtomicRMWKind::ori: 1924 return builder.getZeroAttr(resultType); 1925 case AtomicRMWKind::andi: 1926 return builder.getIntegerAttr( 1927 resultType, 1928 APInt::getAllOnes(resultType.cast<IntegerType>().getWidth())); 1929 case AtomicRMWKind::maxs: 1930 return builder.getIntegerAttr( 1931 resultType, 1932 APInt::getSignedMinValue(resultType.cast<IntegerType>().getWidth())); 1933 case AtomicRMWKind::minf: 1934 return builder.getFloatAttr( 1935 resultType, 1936 APFloat::getInf(resultType.cast<FloatType>().getFloatSemantics(), 1937 /*Negative=*/false)); 1938 case AtomicRMWKind::mins: 1939 return builder.getIntegerAttr( 1940 resultType, 1941 APInt::getSignedMaxValue(resultType.cast<IntegerType>().getWidth())); 1942 case AtomicRMWKind::minu: 1943 return builder.getIntegerAttr( 1944 resultType, 1945 APInt::getMaxValue(resultType.cast<IntegerType>().getWidth())); 1946 case AtomicRMWKind::muli: 1947 return builder.getIntegerAttr(resultType, 1); 1948 case AtomicRMWKind::mulf: 1949 return builder.getFloatAttr(resultType, 1); 1950 // TODO: Add remaining reduction operations. 1951 default: 1952 (void)emitOptionalError(loc, "Reduction operation type not supported"); 1953 break; 1954 } 1955 return nullptr; 1956 } 1957 1958 /// Returns the identity value associated with an AtomicRMWKind op. 1959 Value mlir::arith::getIdentityValue(AtomicRMWKind op, Type resultType, 1960 OpBuilder &builder, Location loc) { 1961 Attribute attr = getIdentityValueAttr(op, resultType, builder, loc); 1962 return builder.create<arith::ConstantOp>(loc, attr); 1963 } 1964 1965 /// Return the value obtained by applying the reduction operation kind 1966 /// associated with a binary AtomicRMWKind op to `lhs` and `rhs`. 1967 Value mlir::arith::getReductionOp(AtomicRMWKind op, OpBuilder &builder, 1968 Location loc, Value lhs, Value rhs) { 1969 switch (op) { 1970 case AtomicRMWKind::addf: 1971 return builder.create<arith::AddFOp>(loc, lhs, rhs); 1972 case AtomicRMWKind::addi: 1973 return builder.create<arith::AddIOp>(loc, lhs, rhs); 1974 case AtomicRMWKind::mulf: 1975 return builder.create<arith::MulFOp>(loc, lhs, rhs); 1976 case AtomicRMWKind::muli: 1977 return builder.create<arith::MulIOp>(loc, lhs, rhs); 1978 case AtomicRMWKind::maxf: 1979 return builder.create<arith::MaxFOp>(loc, lhs, rhs); 1980 case AtomicRMWKind::minf: 1981 return builder.create<arith::MinFOp>(loc, lhs, rhs); 1982 case AtomicRMWKind::maxs: 1983 return builder.create<arith::MaxSIOp>(loc, lhs, rhs); 1984 case AtomicRMWKind::mins: 1985 return builder.create<arith::MinSIOp>(loc, lhs, rhs); 1986 case AtomicRMWKind::maxu: 1987 return builder.create<arith::MaxUIOp>(loc, lhs, rhs); 1988 case AtomicRMWKind::minu: 1989 return builder.create<arith::MinUIOp>(loc, lhs, rhs); 1990 case AtomicRMWKind::ori: 1991 return builder.create<arith::OrIOp>(loc, lhs, rhs); 1992 case AtomicRMWKind::andi: 1993 return builder.create<arith::AndIOp>(loc, lhs, rhs); 1994 // TODO: Add remaining reduction operations. 1995 default: 1996 (void)emitOptionalError(loc, "Reduction operation type not supported"); 1997 break; 1998 } 1999 return nullptr; 2000 } 2001 2002 //===----------------------------------------------------------------------===// 2003 // TableGen'd op method definitions 2004 //===----------------------------------------------------------------------===// 2005 2006 #define GET_OP_CLASSES 2007 #include "mlir/Dialect/Arithmetic/IR/ArithmeticOps.cpp.inc" 2008 2009 //===----------------------------------------------------------------------===// 2010 // TableGen'd enum attribute definitions 2011 //===----------------------------------------------------------------------===// 2012 2013 #include "mlir/Dialect/Arithmetic/IR/ArithmeticOpsEnums.cpp.inc" 2014