1 //===- ArithmeticOps.cpp - MLIR Arithmetic dialect ops implementation -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <utility> 10 11 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 12 #include "mlir/Dialect/CommonFolders.h" 13 #include "mlir/IR/Builders.h" 14 #include "mlir/IR/Matchers.h" 15 #include "mlir/IR/OpImplementation.h" 16 #include "mlir/IR/PatternMatch.h" 17 #include "mlir/IR/TypeUtilities.h" 18 #include "llvm/ADT/SmallString.h" 19 20 #include "llvm/ADT/APSInt.h" 21 22 using namespace mlir; 23 using namespace mlir::arith; 24 25 //===----------------------------------------------------------------------===// 26 // Pattern helpers 27 //===----------------------------------------------------------------------===// 28 29 static IntegerAttr addIntegerAttrs(PatternRewriter &builder, Value res, 30 Attribute lhs, Attribute rhs) { 31 return builder.getIntegerAttr(res.getType(), 32 lhs.cast<IntegerAttr>().getInt() + 33 rhs.cast<IntegerAttr>().getInt()); 34 } 35 36 static IntegerAttr subIntegerAttrs(PatternRewriter &builder, Value res, 37 Attribute lhs, Attribute rhs) { 38 return builder.getIntegerAttr(res.getType(), 39 lhs.cast<IntegerAttr>().getInt() - 40 rhs.cast<IntegerAttr>().getInt()); 41 } 42 43 /// Invert an integer comparison predicate. 44 arith::CmpIPredicate arith::invertPredicate(arith::CmpIPredicate pred) { 45 switch (pred) { 46 case arith::CmpIPredicate::eq: 47 return arith::CmpIPredicate::ne; 48 case arith::CmpIPredicate::ne: 49 return arith::CmpIPredicate::eq; 50 case arith::CmpIPredicate::slt: 51 return arith::CmpIPredicate::sge; 52 case arith::CmpIPredicate::sle: 53 return arith::CmpIPredicate::sgt; 54 case arith::CmpIPredicate::sgt: 55 return arith::CmpIPredicate::sle; 56 case arith::CmpIPredicate::sge: 57 return arith::CmpIPredicate::slt; 58 case arith::CmpIPredicate::ult: 59 return arith::CmpIPredicate::uge; 60 case arith::CmpIPredicate::ule: 61 return arith::CmpIPredicate::ugt; 62 case arith::CmpIPredicate::ugt: 63 return arith::CmpIPredicate::ule; 64 case arith::CmpIPredicate::uge: 65 return arith::CmpIPredicate::ult; 66 } 67 llvm_unreachable("unknown cmpi predicate kind"); 68 } 69 70 static arith::CmpIPredicateAttr invertPredicate(arith::CmpIPredicateAttr pred) { 71 return arith::CmpIPredicateAttr::get(pred.getContext(), 72 invertPredicate(pred.getValue())); 73 } 74 75 //===----------------------------------------------------------------------===// 76 // TableGen'd canonicalization patterns 77 //===----------------------------------------------------------------------===// 78 79 namespace { 80 #include "ArithmeticCanonicalization.inc" 81 } // namespace 82 83 //===----------------------------------------------------------------------===// 84 // ConstantOp 85 //===----------------------------------------------------------------------===// 86 87 void arith::ConstantOp::getAsmResultNames( 88 function_ref<void(Value, StringRef)> setNameFn) { 89 auto type = getType(); 90 if (auto intCst = getValue().dyn_cast<IntegerAttr>()) { 91 auto intType = type.dyn_cast<IntegerType>(); 92 93 // Sugar i1 constants with 'true' and 'false'. 94 if (intType && intType.getWidth() == 1) 95 return setNameFn(getResult(), (intCst.getInt() ? "true" : "false")); 96 97 // Otherwise, build a compex name with the value and type. 98 SmallString<32> specialNameBuffer; 99 llvm::raw_svector_ostream specialName(specialNameBuffer); 100 specialName << 'c' << intCst.getInt(); 101 if (intType) 102 specialName << '_' << type; 103 setNameFn(getResult(), specialName.str()); 104 } else { 105 setNameFn(getResult(), "cst"); 106 } 107 } 108 109 /// TODO: disallow arith.constant to return anything other than signless integer 110 /// or float like. 111 LogicalResult arith::ConstantOp::verify() { 112 auto type = getType(); 113 // The value's type must match the return type. 114 if (getValue().getType() != type) { 115 return emitOpError() << "value type " << getValue().getType() 116 << " must match return type: " << type; 117 } 118 // Integer values must be signless. 119 if (type.isa<IntegerType>() && !type.cast<IntegerType>().isSignless()) 120 return emitOpError("integer return type must be signless"); 121 // Any float or elements attribute are acceptable. 122 if (!getValue().isa<IntegerAttr, FloatAttr, ElementsAttr>()) { 123 return emitOpError( 124 "value must be an integer, float, or elements attribute"); 125 } 126 return success(); 127 } 128 129 bool arith::ConstantOp::isBuildableWith(Attribute value, Type type) { 130 // The value's type must be the same as the provided type. 131 if (value.getType() != type) 132 return false; 133 // Integer values must be signless. 134 if (type.isa<IntegerType>() && !type.cast<IntegerType>().isSignless()) 135 return false; 136 // Integer, float, and element attributes are buildable. 137 return value.isa<IntegerAttr, FloatAttr, ElementsAttr>(); 138 } 139 140 OpFoldResult arith::ConstantOp::fold(ArrayRef<Attribute> operands) { 141 return getValue(); 142 } 143 144 void arith::ConstantIntOp::build(OpBuilder &builder, OperationState &result, 145 int64_t value, unsigned width) { 146 auto type = builder.getIntegerType(width); 147 arith::ConstantOp::build(builder, result, type, 148 builder.getIntegerAttr(type, value)); 149 } 150 151 void arith::ConstantIntOp::build(OpBuilder &builder, OperationState &result, 152 int64_t value, Type type) { 153 assert(type.isSignlessInteger() && 154 "ConstantIntOp can only have signless integer type values"); 155 arith::ConstantOp::build(builder, result, type, 156 builder.getIntegerAttr(type, value)); 157 } 158 159 bool arith::ConstantIntOp::classof(Operation *op) { 160 if (auto constOp = dyn_cast_or_null<arith::ConstantOp>(op)) 161 return constOp.getType().isSignlessInteger(); 162 return false; 163 } 164 165 void arith::ConstantFloatOp::build(OpBuilder &builder, OperationState &result, 166 const APFloat &value, FloatType type) { 167 arith::ConstantOp::build(builder, result, type, 168 builder.getFloatAttr(type, value)); 169 } 170 171 bool arith::ConstantFloatOp::classof(Operation *op) { 172 if (auto constOp = dyn_cast_or_null<arith::ConstantOp>(op)) 173 return constOp.getType().isa<FloatType>(); 174 return false; 175 } 176 177 void arith::ConstantIndexOp::build(OpBuilder &builder, OperationState &result, 178 int64_t value) { 179 arith::ConstantOp::build(builder, result, builder.getIndexType(), 180 builder.getIndexAttr(value)); 181 } 182 183 bool arith::ConstantIndexOp::classof(Operation *op) { 184 if (auto constOp = dyn_cast_or_null<arith::ConstantOp>(op)) 185 return constOp.getType().isIndex(); 186 return false; 187 } 188 189 //===----------------------------------------------------------------------===// 190 // AddIOp 191 //===----------------------------------------------------------------------===// 192 193 OpFoldResult arith::AddIOp::fold(ArrayRef<Attribute> operands) { 194 // addi(x, 0) -> x 195 if (matchPattern(getRhs(), m_Zero())) 196 return getLhs(); 197 198 // addi(subi(a, b), b) -> a 199 if (auto sub = getLhs().getDefiningOp<SubIOp>()) 200 if (getRhs() == sub.getRhs()) 201 return sub.getLhs(); 202 203 // addi(b, subi(a, b)) -> a 204 if (auto sub = getRhs().getDefiningOp<SubIOp>()) 205 if (getLhs() == sub.getRhs()) 206 return sub.getLhs(); 207 208 return constFoldBinaryOp<IntegerAttr>( 209 operands, [](APInt a, const APInt &b) { return std::move(a) + b; }); 210 } 211 212 void arith::AddIOp::getCanonicalizationPatterns( 213 RewritePatternSet &patterns, MLIRContext *context) { 214 patterns.add<AddIAddConstant, AddISubConstantRHS, AddISubConstantLHS>( 215 context); 216 } 217 218 //===----------------------------------------------------------------------===// 219 // SubIOp 220 //===----------------------------------------------------------------------===// 221 222 OpFoldResult arith::SubIOp::fold(ArrayRef<Attribute> operands) { 223 // subi(x,x) -> 0 224 if (getOperand(0) == getOperand(1)) 225 return Builder(getContext()).getZeroAttr(getType()); 226 // subi(x,0) -> x 227 if (matchPattern(getRhs(), m_Zero())) 228 return getLhs(); 229 230 return constFoldBinaryOp<IntegerAttr>( 231 operands, [](APInt a, const APInt &b) { return std::move(a) - b; }); 232 } 233 234 void arith::SubIOp::getCanonicalizationPatterns( 235 RewritePatternSet &patterns, MLIRContext *context) { 236 patterns 237 .add<SubIRHSAddConstant, SubILHSAddConstant, SubIRHSSubConstantRHS, 238 SubIRHSSubConstantLHS, SubILHSSubConstantRHS, SubILHSSubConstantLHS>( 239 context); 240 } 241 242 //===----------------------------------------------------------------------===// 243 // MulIOp 244 //===----------------------------------------------------------------------===// 245 246 OpFoldResult arith::MulIOp::fold(ArrayRef<Attribute> operands) { 247 // muli(x, 0) -> 0 248 if (matchPattern(getRhs(), m_Zero())) 249 return getRhs(); 250 // muli(x, 1) -> x 251 if (matchPattern(getRhs(), m_One())) 252 return getOperand(0); 253 // TODO: Handle the overflow case. 254 255 // default folder 256 return constFoldBinaryOp<IntegerAttr>( 257 operands, [](const APInt &a, const APInt &b) { return a * b; }); 258 } 259 260 //===----------------------------------------------------------------------===// 261 // DivUIOp 262 //===----------------------------------------------------------------------===// 263 264 OpFoldResult arith::DivUIOp::fold(ArrayRef<Attribute> operands) { 265 // Don't fold if it would require a division by zero. 266 bool div0 = false; 267 auto result = 268 constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) { 269 if (div0 || !b) { 270 div0 = true; 271 return a; 272 } 273 return a.udiv(b); 274 }); 275 276 // Fold out division by one. Assumes all tensors of all ones are splats. 277 if (auto rhs = operands[1].dyn_cast_or_null<IntegerAttr>()) { 278 if (rhs.getValue() == 1) 279 return getLhs(); 280 } else if (auto rhs = operands[1].dyn_cast_or_null<SplatElementsAttr>()) { 281 if (rhs.getSplatValue<IntegerAttr>().getValue() == 1) 282 return getLhs(); 283 } 284 285 return div0 ? Attribute() : result; 286 } 287 288 //===----------------------------------------------------------------------===// 289 // DivSIOp 290 //===----------------------------------------------------------------------===// 291 292 OpFoldResult arith::DivSIOp::fold(ArrayRef<Attribute> operands) { 293 // Don't fold if it would overflow or if it requires a division by zero. 294 bool overflowOrDiv0 = false; 295 auto result = 296 constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) { 297 if (overflowOrDiv0 || !b) { 298 overflowOrDiv0 = true; 299 return a; 300 } 301 return a.sdiv_ov(b, overflowOrDiv0); 302 }); 303 304 // Fold out division by one. Assumes all tensors of all ones are splats. 305 if (auto rhs = operands[1].dyn_cast_or_null<IntegerAttr>()) { 306 if (rhs.getValue() == 1) 307 return getLhs(); 308 } else if (auto rhs = operands[1].dyn_cast_or_null<SplatElementsAttr>()) { 309 if (rhs.getSplatValue<IntegerAttr>().getValue() == 1) 310 return getLhs(); 311 } 312 313 return overflowOrDiv0 ? Attribute() : result; 314 } 315 316 //===----------------------------------------------------------------------===// 317 // Ceil and floor division folding helpers 318 //===----------------------------------------------------------------------===// 319 320 static APInt signedCeilNonnegInputs(const APInt &a, const APInt &b, 321 bool &overflow) { 322 // Returns (a-1)/b + 1 323 APInt one(a.getBitWidth(), 1, true); // Signed value 1. 324 APInt val = a.ssub_ov(one, overflow).sdiv_ov(b, overflow); 325 return val.sadd_ov(one, overflow); 326 } 327 328 //===----------------------------------------------------------------------===// 329 // CeilDivUIOp 330 //===----------------------------------------------------------------------===// 331 332 OpFoldResult arith::CeilDivUIOp::fold(ArrayRef<Attribute> operands) { 333 bool overflowOrDiv0 = false; 334 auto result = 335 constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) { 336 if (overflowOrDiv0 || !b) { 337 overflowOrDiv0 = true; 338 return a; 339 } 340 APInt quotient = a.udiv(b); 341 if (!a.urem(b)) 342 return quotient; 343 APInt one(a.getBitWidth(), 1, true); 344 return quotient.uadd_ov(one, overflowOrDiv0); 345 }); 346 // Fold out ceil division by one. Assumes all tensors of all ones are 347 // splats. 348 if (auto rhs = operands[1].dyn_cast_or_null<IntegerAttr>()) { 349 if (rhs.getValue() == 1) 350 return getLhs(); 351 } else if (auto rhs = operands[1].dyn_cast_or_null<SplatElementsAttr>()) { 352 if (rhs.getSplatValue<IntegerAttr>().getValue() == 1) 353 return getLhs(); 354 } 355 356 return overflowOrDiv0 ? Attribute() : result; 357 } 358 359 //===----------------------------------------------------------------------===// 360 // CeilDivSIOp 361 //===----------------------------------------------------------------------===// 362 363 OpFoldResult arith::CeilDivSIOp::fold(ArrayRef<Attribute> operands) { 364 // Don't fold if it would overflow or if it requires a division by zero. 365 bool overflowOrDiv0 = false; 366 auto result = 367 constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) { 368 if (overflowOrDiv0 || !b) { 369 overflowOrDiv0 = true; 370 return a; 371 } 372 if (!a) 373 return a; 374 // After this point we know that neither a or b are zero. 375 unsigned bits = a.getBitWidth(); 376 APInt zero = APInt::getZero(bits); 377 bool aGtZero = a.sgt(zero); 378 bool bGtZero = b.sgt(zero); 379 if (aGtZero && bGtZero) { 380 // Both positive, return ceil(a, b). 381 return signedCeilNonnegInputs(a, b, overflowOrDiv0); 382 } 383 if (!aGtZero && !bGtZero) { 384 // Both negative, return ceil(-a, -b). 385 APInt posA = zero.ssub_ov(a, overflowOrDiv0); 386 APInt posB = zero.ssub_ov(b, overflowOrDiv0); 387 return signedCeilNonnegInputs(posA, posB, overflowOrDiv0); 388 } 389 if (!aGtZero && bGtZero) { 390 // A is negative, b is positive, return - ( -a / b). 391 APInt posA = zero.ssub_ov(a, overflowOrDiv0); 392 APInt div = posA.sdiv_ov(b, overflowOrDiv0); 393 return zero.ssub_ov(div, overflowOrDiv0); 394 } 395 // A is positive, b is negative, return - (a / -b). 396 APInt posB = zero.ssub_ov(b, overflowOrDiv0); 397 APInt div = a.sdiv_ov(posB, overflowOrDiv0); 398 return zero.ssub_ov(div, overflowOrDiv0); 399 }); 400 401 // Fold out ceil division by one. Assumes all tensors of all ones are 402 // splats. 403 if (auto rhs = operands[1].dyn_cast_or_null<IntegerAttr>()) { 404 if (rhs.getValue() == 1) 405 return getLhs(); 406 } else if (auto rhs = operands[1].dyn_cast_or_null<SplatElementsAttr>()) { 407 if (rhs.getSplatValue<IntegerAttr>().getValue() == 1) 408 return getLhs(); 409 } 410 411 return overflowOrDiv0 ? Attribute() : result; 412 } 413 414 //===----------------------------------------------------------------------===// 415 // FloorDivSIOp 416 //===----------------------------------------------------------------------===// 417 418 OpFoldResult arith::FloorDivSIOp::fold(ArrayRef<Attribute> operands) { 419 // Don't fold if it would overflow or if it requires a division by zero. 420 bool overflowOrDiv0 = false; 421 auto result = 422 constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) { 423 if (overflowOrDiv0 || !b) { 424 overflowOrDiv0 = true; 425 return a; 426 } 427 if (!a) 428 return a; 429 // After this point we know that neither a or b are zero. 430 unsigned bits = a.getBitWidth(); 431 APInt zero = APInt::getZero(bits); 432 bool aGtZero = a.sgt(zero); 433 bool bGtZero = b.sgt(zero); 434 if (aGtZero && bGtZero) { 435 // Both positive, return a / b. 436 return a.sdiv_ov(b, overflowOrDiv0); 437 } 438 if (!aGtZero && !bGtZero) { 439 // Both negative, return -a / -b. 440 APInt posA = zero.ssub_ov(a, overflowOrDiv0); 441 APInt posB = zero.ssub_ov(b, overflowOrDiv0); 442 return posA.sdiv_ov(posB, overflowOrDiv0); 443 } 444 if (!aGtZero && bGtZero) { 445 // A is negative, b is positive, return - ceil(-a, b). 446 APInt posA = zero.ssub_ov(a, overflowOrDiv0); 447 APInt ceil = signedCeilNonnegInputs(posA, b, overflowOrDiv0); 448 return zero.ssub_ov(ceil, overflowOrDiv0); 449 } 450 // A is positive, b is negative, return - ceil(a, -b). 451 APInt posB = zero.ssub_ov(b, overflowOrDiv0); 452 APInt ceil = signedCeilNonnegInputs(a, posB, overflowOrDiv0); 453 return zero.ssub_ov(ceil, overflowOrDiv0); 454 }); 455 456 // Fold out floor division by one. Assumes all tensors of all ones are 457 // splats. 458 if (auto rhs = operands[1].dyn_cast_or_null<IntegerAttr>()) { 459 if (rhs.getValue() == 1) 460 return getLhs(); 461 } else if (auto rhs = operands[1].dyn_cast_or_null<SplatElementsAttr>()) { 462 if (rhs.getSplatValue<IntegerAttr>().getValue() == 1) 463 return getLhs(); 464 } 465 466 return overflowOrDiv0 ? Attribute() : result; 467 } 468 469 //===----------------------------------------------------------------------===// 470 // RemUIOp 471 //===----------------------------------------------------------------------===// 472 473 OpFoldResult arith::RemUIOp::fold(ArrayRef<Attribute> operands) { 474 auto rhs = operands.back().dyn_cast_or_null<IntegerAttr>(); 475 if (!rhs) 476 return {}; 477 auto rhsValue = rhs.getValue(); 478 479 // x % 1 = 0 480 if (rhsValue.isOneValue()) 481 return IntegerAttr::get(rhs.getType(), APInt(rhsValue.getBitWidth(), 0)); 482 483 // Don't fold if it requires division by zero. 484 if (rhsValue.isNullValue()) 485 return {}; 486 487 auto lhs = operands.front().dyn_cast_or_null<IntegerAttr>(); 488 if (!lhs) 489 return {}; 490 return IntegerAttr::get(lhs.getType(), lhs.getValue().urem(rhsValue)); 491 } 492 493 //===----------------------------------------------------------------------===// 494 // RemSIOp 495 //===----------------------------------------------------------------------===// 496 497 OpFoldResult arith::RemSIOp::fold(ArrayRef<Attribute> operands) { 498 auto rhs = operands.back().dyn_cast_or_null<IntegerAttr>(); 499 if (!rhs) 500 return {}; 501 auto rhsValue = rhs.getValue(); 502 503 // x % 1 = 0 504 if (rhsValue.isOneValue()) 505 return IntegerAttr::get(rhs.getType(), APInt(rhsValue.getBitWidth(), 0)); 506 507 // Don't fold if it requires division by zero. 508 if (rhsValue.isNullValue()) 509 return {}; 510 511 auto lhs = operands.front().dyn_cast_or_null<IntegerAttr>(); 512 if (!lhs) 513 return {}; 514 return IntegerAttr::get(lhs.getType(), lhs.getValue().srem(rhsValue)); 515 } 516 517 //===----------------------------------------------------------------------===// 518 // AndIOp 519 //===----------------------------------------------------------------------===// 520 521 OpFoldResult arith::AndIOp::fold(ArrayRef<Attribute> operands) { 522 /// and(x, 0) -> 0 523 if (matchPattern(getRhs(), m_Zero())) 524 return getRhs(); 525 /// and(x, allOnes) -> x 526 APInt intValue; 527 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && intValue.isAllOnes()) 528 return getLhs(); 529 530 return constFoldBinaryOp<IntegerAttr>( 531 operands, [](APInt a, const APInt &b) { return std::move(a) & b; }); 532 } 533 534 //===----------------------------------------------------------------------===// 535 // OrIOp 536 //===----------------------------------------------------------------------===// 537 538 OpFoldResult arith::OrIOp::fold(ArrayRef<Attribute> operands) { 539 /// or(x, 0) -> x 540 if (matchPattern(getRhs(), m_Zero())) 541 return getLhs(); 542 /// or(x, <all ones>) -> <all ones> 543 if (auto rhsAttr = operands[1].dyn_cast_or_null<IntegerAttr>()) 544 if (rhsAttr.getValue().isAllOnes()) 545 return rhsAttr; 546 547 return constFoldBinaryOp<IntegerAttr>( 548 operands, [](APInt a, const APInt &b) { return std::move(a) | b; }); 549 } 550 551 //===----------------------------------------------------------------------===// 552 // XOrIOp 553 //===----------------------------------------------------------------------===// 554 555 OpFoldResult arith::XOrIOp::fold(ArrayRef<Attribute> operands) { 556 /// xor(x, 0) -> x 557 if (matchPattern(getRhs(), m_Zero())) 558 return getLhs(); 559 /// xor(x, x) -> 0 560 if (getLhs() == getRhs()) 561 return Builder(getContext()).getZeroAttr(getType()); 562 /// xor(xor(x, a), a) -> x 563 if (arith::XOrIOp prev = getLhs().getDefiningOp<arith::XOrIOp>()) 564 if (prev.getRhs() == getRhs()) 565 return prev.getLhs(); 566 567 return constFoldBinaryOp<IntegerAttr>( 568 operands, [](APInt a, const APInt &b) { return std::move(a) ^ b; }); 569 } 570 571 void arith::XOrIOp::getCanonicalizationPatterns( 572 RewritePatternSet &patterns, MLIRContext *context) { 573 patterns.add<XOrINotCmpI>(context); 574 } 575 576 //===----------------------------------------------------------------------===// 577 // NegFOp 578 //===----------------------------------------------------------------------===// 579 580 OpFoldResult arith::NegFOp::fold(ArrayRef<Attribute> operands) { 581 return constFoldUnaryOp<FloatAttr>(operands, 582 [](const APFloat &a) { return -a; }); 583 } 584 585 //===----------------------------------------------------------------------===// 586 // AddFOp 587 //===----------------------------------------------------------------------===// 588 589 OpFoldResult arith::AddFOp::fold(ArrayRef<Attribute> operands) { 590 // addf(x, -0) -> x 591 if (matchPattern(getRhs(), m_NegZeroFloat())) 592 return getLhs(); 593 594 return constFoldBinaryOp<FloatAttr>( 595 operands, [](const APFloat &a, const APFloat &b) { return a + b; }); 596 } 597 598 //===----------------------------------------------------------------------===// 599 // SubFOp 600 //===----------------------------------------------------------------------===// 601 602 OpFoldResult arith::SubFOp::fold(ArrayRef<Attribute> operands) { 603 // subf(x, +0) -> x 604 if (matchPattern(getRhs(), m_PosZeroFloat())) 605 return getLhs(); 606 607 return constFoldBinaryOp<FloatAttr>( 608 operands, [](const APFloat &a, const APFloat &b) { return a - b; }); 609 } 610 611 //===----------------------------------------------------------------------===// 612 // MaxFOp 613 //===----------------------------------------------------------------------===// 614 615 OpFoldResult arith::MaxFOp::fold(ArrayRef<Attribute> operands) { 616 assert(operands.size() == 2 && "maxf takes two operands"); 617 618 // maxf(x,x) -> x 619 if (getLhs() == getRhs()) 620 return getRhs(); 621 622 // maxf(x, -inf) -> x 623 if (matchPattern(getRhs(), m_NegInfFloat())) 624 return getLhs(); 625 626 return constFoldBinaryOp<FloatAttr>( 627 operands, 628 [](const APFloat &a, const APFloat &b) { return llvm::maximum(a, b); }); 629 } 630 631 //===----------------------------------------------------------------------===// 632 // MaxSIOp 633 //===----------------------------------------------------------------------===// 634 635 OpFoldResult MaxSIOp::fold(ArrayRef<Attribute> operands) { 636 assert(operands.size() == 2 && "binary operation takes two operands"); 637 638 // maxsi(x,x) -> x 639 if (getLhs() == getRhs()) 640 return getRhs(); 641 642 APInt intValue; 643 // maxsi(x,MAX_INT) -> MAX_INT 644 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && 645 intValue.isMaxSignedValue()) 646 return getRhs(); 647 648 // maxsi(x, MIN_INT) -> x 649 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && 650 intValue.isMinSignedValue()) 651 return getLhs(); 652 653 return constFoldBinaryOp<IntegerAttr>(operands, 654 [](const APInt &a, const APInt &b) { 655 return llvm::APIntOps::smax(a, b); 656 }); 657 } 658 659 //===----------------------------------------------------------------------===// 660 // MaxUIOp 661 //===----------------------------------------------------------------------===// 662 663 OpFoldResult MaxUIOp::fold(ArrayRef<Attribute> operands) { 664 assert(operands.size() == 2 && "binary operation takes two operands"); 665 666 // maxui(x,x) -> x 667 if (getLhs() == getRhs()) 668 return getRhs(); 669 670 APInt intValue; 671 // maxui(x,MAX_INT) -> MAX_INT 672 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && intValue.isMaxValue()) 673 return getRhs(); 674 675 // maxui(x, MIN_INT) -> x 676 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && intValue.isMinValue()) 677 return getLhs(); 678 679 return constFoldBinaryOp<IntegerAttr>(operands, 680 [](const APInt &a, const APInt &b) { 681 return llvm::APIntOps::umax(a, b); 682 }); 683 } 684 685 //===----------------------------------------------------------------------===// 686 // MinFOp 687 //===----------------------------------------------------------------------===// 688 689 OpFoldResult arith::MinFOp::fold(ArrayRef<Attribute> operands) { 690 assert(operands.size() == 2 && "minf takes two operands"); 691 692 // minf(x,x) -> x 693 if (getLhs() == getRhs()) 694 return getRhs(); 695 696 // minf(x, +inf) -> x 697 if (matchPattern(getRhs(), m_PosInfFloat())) 698 return getLhs(); 699 700 return constFoldBinaryOp<FloatAttr>( 701 operands, 702 [](const APFloat &a, const APFloat &b) { return llvm::minimum(a, b); }); 703 } 704 705 //===----------------------------------------------------------------------===// 706 // MinSIOp 707 //===----------------------------------------------------------------------===// 708 709 OpFoldResult MinSIOp::fold(ArrayRef<Attribute> operands) { 710 assert(operands.size() == 2 && "binary operation takes two operands"); 711 712 // minsi(x,x) -> x 713 if (getLhs() == getRhs()) 714 return getRhs(); 715 716 APInt intValue; 717 // minsi(x,MIN_INT) -> MIN_INT 718 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && 719 intValue.isMinSignedValue()) 720 return getRhs(); 721 722 // minsi(x, MAX_INT) -> x 723 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && 724 intValue.isMaxSignedValue()) 725 return getLhs(); 726 727 return constFoldBinaryOp<IntegerAttr>(operands, 728 [](const APInt &a, const APInt &b) { 729 return llvm::APIntOps::smin(a, b); 730 }); 731 } 732 733 //===----------------------------------------------------------------------===// 734 // MinUIOp 735 //===----------------------------------------------------------------------===// 736 737 OpFoldResult MinUIOp::fold(ArrayRef<Attribute> operands) { 738 assert(operands.size() == 2 && "binary operation takes two operands"); 739 740 // minui(x,x) -> x 741 if (getLhs() == getRhs()) 742 return getRhs(); 743 744 APInt intValue; 745 // minui(x,MIN_INT) -> MIN_INT 746 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && intValue.isMinValue()) 747 return getRhs(); 748 749 // minui(x, MAX_INT) -> x 750 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && intValue.isMaxValue()) 751 return getLhs(); 752 753 return constFoldBinaryOp<IntegerAttr>(operands, 754 [](const APInt &a, const APInt &b) { 755 return llvm::APIntOps::umin(a, b); 756 }); 757 } 758 759 //===----------------------------------------------------------------------===// 760 // MulFOp 761 //===----------------------------------------------------------------------===// 762 763 OpFoldResult arith::MulFOp::fold(ArrayRef<Attribute> operands) { 764 APFloat floatValue(0.0f), inverseValue(0.0f); 765 // mulf(x, 1) -> x 766 if (matchPattern(getRhs(), m_OneFloat())) 767 return getLhs(); 768 769 // mulf(1, x) -> x 770 if (matchPattern(getLhs(), m_OneFloat())) 771 return getRhs(); 772 773 return constFoldBinaryOp<FloatAttr>( 774 operands, [](const APFloat &a, const APFloat &b) { return a * b; }); 775 } 776 777 //===----------------------------------------------------------------------===// 778 // DivFOp 779 //===----------------------------------------------------------------------===// 780 781 OpFoldResult arith::DivFOp::fold(ArrayRef<Attribute> operands) { 782 APFloat floatValue(0.0f), inverseValue(0.0f); 783 // divf(x, 1) -> x 784 if (matchPattern(getRhs(), m_OneFloat())) 785 return getLhs(); 786 787 return constFoldBinaryOp<FloatAttr>( 788 operands, [](const APFloat &a, const APFloat &b) { return a / b; }); 789 } 790 791 //===----------------------------------------------------------------------===// 792 // Utility functions for verifying cast ops 793 //===----------------------------------------------------------------------===// 794 795 template <typename... Types> 796 using type_list = std::tuple<Types...> *; 797 798 /// Returns a non-null type only if the provided type is one of the allowed 799 /// types or one of the allowed shaped types of the allowed types. Returns the 800 /// element type if a valid shaped type is provided. 801 template <typename... ShapedTypes, typename... ElementTypes> 802 static Type getUnderlyingType(Type type, type_list<ShapedTypes...>, 803 type_list<ElementTypes...>) { 804 if (type.isa<ShapedType>() && !type.isa<ShapedTypes...>()) 805 return {}; 806 807 auto underlyingType = getElementTypeOrSelf(type); 808 if (!underlyingType.isa<ElementTypes...>()) 809 return {}; 810 811 return underlyingType; 812 } 813 814 /// Get allowed underlying types for vectors and tensors. 815 template <typename... ElementTypes> 816 static Type getTypeIfLike(Type type) { 817 return getUnderlyingType(type, type_list<VectorType, TensorType>(), 818 type_list<ElementTypes...>()); 819 } 820 821 /// Get allowed underlying types for vectors, tensors, and memrefs. 822 template <typename... ElementTypes> 823 static Type getTypeIfLikeOrMemRef(Type type) { 824 return getUnderlyingType(type, 825 type_list<VectorType, TensorType, MemRefType>(), 826 type_list<ElementTypes...>()); 827 } 828 829 static bool areValidCastInputsAndOutputs(TypeRange inputs, TypeRange outputs) { 830 return inputs.size() == 1 && outputs.size() == 1 && 831 succeeded(verifyCompatibleShapes(inputs.front(), outputs.front())); 832 } 833 834 //===----------------------------------------------------------------------===// 835 // Verifiers for integer and floating point extension/truncation ops 836 //===----------------------------------------------------------------------===// 837 838 // Extend ops can only extend to a wider type. 839 template <typename ValType, typename Op> 840 static LogicalResult verifyExtOp(Op op) { 841 Type srcType = getElementTypeOrSelf(op.getIn().getType()); 842 Type dstType = getElementTypeOrSelf(op.getType()); 843 844 if (srcType.cast<ValType>().getWidth() >= dstType.cast<ValType>().getWidth()) 845 return op.emitError("result type ") 846 << dstType << " must be wider than operand type " << srcType; 847 848 return success(); 849 } 850 851 // Truncate ops can only truncate to a shorter type. 852 template <typename ValType, typename Op> 853 static LogicalResult verifyTruncateOp(Op op) { 854 Type srcType = getElementTypeOrSelf(op.getIn().getType()); 855 Type dstType = getElementTypeOrSelf(op.getType()); 856 857 if (srcType.cast<ValType>().getWidth() <= dstType.cast<ValType>().getWidth()) 858 return op.emitError("result type ") 859 << dstType << " must be shorter than operand type " << srcType; 860 861 return success(); 862 } 863 864 /// Validate a cast that changes the width of a type. 865 template <template <typename> class WidthComparator, typename... ElementTypes> 866 static bool checkWidthChangeCast(TypeRange inputs, TypeRange outputs) { 867 if (!areValidCastInputsAndOutputs(inputs, outputs)) 868 return false; 869 870 auto srcType = getTypeIfLike<ElementTypes...>(inputs.front()); 871 auto dstType = getTypeIfLike<ElementTypes...>(outputs.front()); 872 if (!srcType || !dstType) 873 return false; 874 875 return WidthComparator<unsigned>()(dstType.getIntOrFloatBitWidth(), 876 srcType.getIntOrFloatBitWidth()); 877 } 878 879 //===----------------------------------------------------------------------===// 880 // ExtUIOp 881 //===----------------------------------------------------------------------===// 882 883 OpFoldResult arith::ExtUIOp::fold(ArrayRef<Attribute> operands) { 884 if (auto lhs = operands[0].dyn_cast_or_null<IntegerAttr>()) 885 return IntegerAttr::get( 886 getType(), lhs.getValue().zext(getType().getIntOrFloatBitWidth())); 887 888 if (auto lhs = getIn().getDefiningOp<ExtUIOp>()) { 889 getInMutable().assign(lhs.getIn()); 890 return getResult(); 891 } 892 893 return {}; 894 } 895 896 bool arith::ExtUIOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 897 return checkWidthChangeCast<std::greater, IntegerType>(inputs, outputs); 898 } 899 900 LogicalResult arith::ExtUIOp::verify() { 901 return verifyExtOp<IntegerType>(*this); 902 } 903 904 //===----------------------------------------------------------------------===// 905 // ExtSIOp 906 //===----------------------------------------------------------------------===// 907 908 OpFoldResult arith::ExtSIOp::fold(ArrayRef<Attribute> operands) { 909 if (auto lhs = operands[0].dyn_cast_or_null<IntegerAttr>()) 910 return IntegerAttr::get( 911 getType(), lhs.getValue().sext(getType().getIntOrFloatBitWidth())); 912 913 if (auto lhs = getIn().getDefiningOp<ExtSIOp>()) { 914 getInMutable().assign(lhs.getIn()); 915 return getResult(); 916 } 917 918 return {}; 919 } 920 921 bool arith::ExtSIOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 922 return checkWidthChangeCast<std::greater, IntegerType>(inputs, outputs); 923 } 924 925 void arith::ExtSIOp::getCanonicalizationPatterns( 926 RewritePatternSet &patterns, MLIRContext *context) { 927 patterns.add<ExtSIOfExtUI>(context); 928 } 929 930 LogicalResult arith::ExtSIOp::verify() { 931 return verifyExtOp<IntegerType>(*this); 932 } 933 934 //===----------------------------------------------------------------------===// 935 // ExtFOp 936 //===----------------------------------------------------------------------===// 937 938 bool arith::ExtFOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 939 return checkWidthChangeCast<std::greater, FloatType>(inputs, outputs); 940 } 941 942 LogicalResult arith::ExtFOp::verify() { return verifyExtOp<FloatType>(*this); } 943 944 //===----------------------------------------------------------------------===// 945 // TruncIOp 946 //===----------------------------------------------------------------------===// 947 948 OpFoldResult arith::TruncIOp::fold(ArrayRef<Attribute> operands) { 949 assert(operands.size() == 1 && "unary operation takes one operand"); 950 951 // trunci(zexti(a)) -> a 952 // trunci(sexti(a)) -> a 953 if (matchPattern(getOperand(), m_Op<arith::ExtUIOp>()) || 954 matchPattern(getOperand(), m_Op<arith::ExtSIOp>())) 955 return getOperand().getDefiningOp()->getOperand(0); 956 957 // trunci(trunci(a)) -> trunci(a)) 958 if (matchPattern(getOperand(), m_Op<arith::TruncIOp>())) { 959 setOperand(getOperand().getDefiningOp()->getOperand(0)); 960 return getResult(); 961 } 962 963 if (!operands[0]) 964 return {}; 965 966 if (auto lhs = operands[0].dyn_cast<IntegerAttr>()) { 967 return IntegerAttr::get( 968 getType(), lhs.getValue().trunc(getType().getIntOrFloatBitWidth())); 969 } 970 971 return {}; 972 } 973 974 bool arith::TruncIOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 975 return checkWidthChangeCast<std::less, IntegerType>(inputs, outputs); 976 } 977 978 LogicalResult arith::TruncIOp::verify() { 979 return verifyTruncateOp<IntegerType>(*this); 980 } 981 982 //===----------------------------------------------------------------------===// 983 // TruncFOp 984 //===----------------------------------------------------------------------===// 985 986 /// Perform safe const propagation for truncf, i.e. only propagate if FP value 987 /// can be represented without precision loss or rounding. 988 OpFoldResult arith::TruncFOp::fold(ArrayRef<Attribute> operands) { 989 assert(operands.size() == 1 && "unary operation takes one operand"); 990 991 auto constOperand = operands.front(); 992 if (!constOperand || !constOperand.isa<FloatAttr>()) 993 return {}; 994 995 // Convert to target type via 'double'. 996 double sourceValue = 997 constOperand.dyn_cast<FloatAttr>().getValue().convertToDouble(); 998 auto targetAttr = FloatAttr::get(getType(), sourceValue); 999 1000 // Propagate if constant's value does not change after truncation. 1001 if (sourceValue == targetAttr.getValue().convertToDouble()) 1002 return targetAttr; 1003 1004 return {}; 1005 } 1006 1007 bool arith::TruncFOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 1008 return checkWidthChangeCast<std::less, FloatType>(inputs, outputs); 1009 } 1010 1011 LogicalResult arith::TruncFOp::verify() { 1012 return verifyTruncateOp<FloatType>(*this); 1013 } 1014 1015 //===----------------------------------------------------------------------===// 1016 // AndIOp 1017 //===----------------------------------------------------------------------===// 1018 1019 void arith::AndIOp::getCanonicalizationPatterns( 1020 RewritePatternSet &patterns, MLIRContext *context) { 1021 patterns.add<AndOfExtUI, AndOfExtSI>(context); 1022 } 1023 1024 //===----------------------------------------------------------------------===// 1025 // OrIOp 1026 //===----------------------------------------------------------------------===// 1027 1028 void arith::OrIOp::getCanonicalizationPatterns( 1029 RewritePatternSet &patterns, MLIRContext *context) { 1030 patterns.add<OrOfExtUI, OrOfExtSI>(context); 1031 } 1032 1033 //===----------------------------------------------------------------------===// 1034 // Verifiers for casts between integers and floats. 1035 //===----------------------------------------------------------------------===// 1036 1037 template <typename From, typename To> 1038 static bool checkIntFloatCast(TypeRange inputs, TypeRange outputs) { 1039 if (!areValidCastInputsAndOutputs(inputs, outputs)) 1040 return false; 1041 1042 auto srcType = getTypeIfLike<From>(inputs.front()); 1043 auto dstType = getTypeIfLike<To>(outputs.back()); 1044 1045 return srcType && dstType; 1046 } 1047 1048 //===----------------------------------------------------------------------===// 1049 // UIToFPOp 1050 //===----------------------------------------------------------------------===// 1051 1052 bool arith::UIToFPOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 1053 return checkIntFloatCast<IntegerType, FloatType>(inputs, outputs); 1054 } 1055 1056 OpFoldResult arith::UIToFPOp::fold(ArrayRef<Attribute> operands) { 1057 if (auto lhs = operands[0].dyn_cast_or_null<IntegerAttr>()) { 1058 const APInt &api = lhs.getValue(); 1059 FloatType floatTy = getType().cast<FloatType>(); 1060 APFloat apf(floatTy.getFloatSemantics(), 1061 APInt::getZero(floatTy.getWidth())); 1062 apf.convertFromAPInt(api, /*IsSigned=*/false, APFloat::rmNearestTiesToEven); 1063 return FloatAttr::get(floatTy, apf); 1064 } 1065 return {}; 1066 } 1067 1068 //===----------------------------------------------------------------------===// 1069 // SIToFPOp 1070 //===----------------------------------------------------------------------===// 1071 1072 bool arith::SIToFPOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 1073 return checkIntFloatCast<IntegerType, FloatType>(inputs, outputs); 1074 } 1075 1076 OpFoldResult arith::SIToFPOp::fold(ArrayRef<Attribute> operands) { 1077 if (auto lhs = operands[0].dyn_cast_or_null<IntegerAttr>()) { 1078 const APInt &api = lhs.getValue(); 1079 FloatType floatTy = getType().cast<FloatType>(); 1080 APFloat apf(floatTy.getFloatSemantics(), 1081 APInt::getZero(floatTy.getWidth())); 1082 apf.convertFromAPInt(api, /*IsSigned=*/true, APFloat::rmNearestTiesToEven); 1083 return FloatAttr::get(floatTy, apf); 1084 } 1085 return {}; 1086 } 1087 //===----------------------------------------------------------------------===// 1088 // FPToUIOp 1089 //===----------------------------------------------------------------------===// 1090 1091 bool arith::FPToUIOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 1092 return checkIntFloatCast<FloatType, IntegerType>(inputs, outputs); 1093 } 1094 1095 OpFoldResult arith::FPToUIOp::fold(ArrayRef<Attribute> operands) { 1096 if (auto lhs = operands[0].dyn_cast_or_null<FloatAttr>()) { 1097 const APFloat &apf = lhs.getValue(); 1098 IntegerType intTy = getType().cast<IntegerType>(); 1099 bool ignored; 1100 APSInt api(intTy.getWidth(), /*isUnsigned=*/true); 1101 if (APFloat::opInvalidOp == 1102 apf.convertToInteger(api, APFloat::rmTowardZero, &ignored)) { 1103 // Undefined behavior invoked - the destination type can't represent 1104 // the input constant. 1105 return {}; 1106 } 1107 return IntegerAttr::get(getType(), api); 1108 } 1109 1110 return {}; 1111 } 1112 1113 //===----------------------------------------------------------------------===// 1114 // FPToSIOp 1115 //===----------------------------------------------------------------------===// 1116 1117 bool arith::FPToSIOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 1118 return checkIntFloatCast<FloatType, IntegerType>(inputs, outputs); 1119 } 1120 1121 OpFoldResult arith::FPToSIOp::fold(ArrayRef<Attribute> operands) { 1122 if (auto lhs = operands[0].dyn_cast_or_null<FloatAttr>()) { 1123 const APFloat &apf = lhs.getValue(); 1124 IntegerType intTy = getType().cast<IntegerType>(); 1125 bool ignored; 1126 APSInt api(intTy.getWidth(), /*isUnsigned=*/false); 1127 if (APFloat::opInvalidOp == 1128 apf.convertToInteger(api, APFloat::rmTowardZero, &ignored)) { 1129 // Undefined behavior invoked - the destination type can't represent 1130 // the input constant. 1131 return {}; 1132 } 1133 return IntegerAttr::get(getType(), api); 1134 } 1135 1136 return {}; 1137 } 1138 1139 //===----------------------------------------------------------------------===// 1140 // IndexCastOp 1141 //===----------------------------------------------------------------------===// 1142 1143 bool arith::IndexCastOp::areCastCompatible(TypeRange inputs, 1144 TypeRange outputs) { 1145 if (!areValidCastInputsAndOutputs(inputs, outputs)) 1146 return false; 1147 1148 auto srcType = getTypeIfLikeOrMemRef<IntegerType, IndexType>(inputs.front()); 1149 auto dstType = getTypeIfLikeOrMemRef<IntegerType, IndexType>(outputs.front()); 1150 if (!srcType || !dstType) 1151 return false; 1152 1153 return (srcType.isIndex() && dstType.isSignlessInteger()) || 1154 (srcType.isSignlessInteger() && dstType.isIndex()); 1155 } 1156 1157 OpFoldResult arith::IndexCastOp::fold(ArrayRef<Attribute> operands) { 1158 // index_cast(constant) -> constant 1159 // A little hack because we go through int. Otherwise, the size of the 1160 // constant might need to change. 1161 if (auto value = operands[0].dyn_cast_or_null<IntegerAttr>()) 1162 return IntegerAttr::get(getType(), value.getInt()); 1163 1164 return {}; 1165 } 1166 1167 void arith::IndexCastOp::getCanonicalizationPatterns( 1168 RewritePatternSet &patterns, MLIRContext *context) { 1169 patterns.add<IndexCastOfIndexCast, IndexCastOfExtSI>(context); 1170 } 1171 1172 //===----------------------------------------------------------------------===// 1173 // BitcastOp 1174 //===----------------------------------------------------------------------===// 1175 1176 bool arith::BitcastOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 1177 if (!areValidCastInputsAndOutputs(inputs, outputs)) 1178 return false; 1179 1180 auto srcType = 1181 getTypeIfLikeOrMemRef<IntegerType, IndexType, FloatType>(inputs.front()); 1182 auto dstType = 1183 getTypeIfLikeOrMemRef<IntegerType, IndexType, FloatType>(outputs.front()); 1184 if (!srcType || !dstType) 1185 return false; 1186 1187 return srcType.getIntOrFloatBitWidth() == dstType.getIntOrFloatBitWidth(); 1188 } 1189 1190 OpFoldResult arith::BitcastOp::fold(ArrayRef<Attribute> operands) { 1191 assert(operands.size() == 1 && "bitcast op expects 1 operand"); 1192 1193 auto resType = getType(); 1194 auto operand = operands[0]; 1195 if (!operand) 1196 return {}; 1197 1198 /// Bitcast dense elements. 1199 if (auto denseAttr = operand.dyn_cast_or_null<DenseElementsAttr>()) 1200 return denseAttr.bitcast(resType.cast<ShapedType>().getElementType()); 1201 /// Other shaped types unhandled. 1202 if (resType.isa<ShapedType>()) 1203 return {}; 1204 1205 /// Bitcast integer or float to integer or float. 1206 APInt bits = operand.isa<FloatAttr>() 1207 ? operand.cast<FloatAttr>().getValue().bitcastToAPInt() 1208 : operand.cast<IntegerAttr>().getValue(); 1209 1210 if (auto resFloatType = resType.dyn_cast<FloatType>()) 1211 return FloatAttr::get(resType, 1212 APFloat(resFloatType.getFloatSemantics(), bits)); 1213 return IntegerAttr::get(resType, bits); 1214 } 1215 1216 void arith::BitcastOp::getCanonicalizationPatterns( 1217 RewritePatternSet &patterns, MLIRContext *context) { 1218 patterns.add<BitcastOfBitcast>(context); 1219 } 1220 1221 //===----------------------------------------------------------------------===// 1222 // Helpers for compare ops 1223 //===----------------------------------------------------------------------===// 1224 1225 /// Return the type of the same shape (scalar, vector or tensor) containing i1. 1226 static Type getI1SameShape(Type type) { 1227 auto i1Type = IntegerType::get(type.getContext(), 1); 1228 if (auto tensorType = type.dyn_cast<RankedTensorType>()) 1229 return RankedTensorType::get(tensorType.getShape(), i1Type); 1230 if (type.isa<UnrankedTensorType>()) 1231 return UnrankedTensorType::get(i1Type); 1232 if (auto vectorType = type.dyn_cast<VectorType>()) 1233 return VectorType::get(vectorType.getShape(), i1Type, 1234 vectorType.getNumScalableDims()); 1235 return i1Type; 1236 } 1237 1238 //===----------------------------------------------------------------------===// 1239 // CmpIOp 1240 //===----------------------------------------------------------------------===// 1241 1242 /// Compute `lhs` `pred` `rhs`, where `pred` is one of the known integer 1243 /// comparison predicates. 1244 bool mlir::arith::applyCmpPredicate(arith::CmpIPredicate predicate, 1245 const APInt &lhs, const APInt &rhs) { 1246 switch (predicate) { 1247 case arith::CmpIPredicate::eq: 1248 return lhs.eq(rhs); 1249 case arith::CmpIPredicate::ne: 1250 return lhs.ne(rhs); 1251 case arith::CmpIPredicate::slt: 1252 return lhs.slt(rhs); 1253 case arith::CmpIPredicate::sle: 1254 return lhs.sle(rhs); 1255 case arith::CmpIPredicate::sgt: 1256 return lhs.sgt(rhs); 1257 case arith::CmpIPredicate::sge: 1258 return lhs.sge(rhs); 1259 case arith::CmpIPredicate::ult: 1260 return lhs.ult(rhs); 1261 case arith::CmpIPredicate::ule: 1262 return lhs.ule(rhs); 1263 case arith::CmpIPredicate::ugt: 1264 return lhs.ugt(rhs); 1265 case arith::CmpIPredicate::uge: 1266 return lhs.uge(rhs); 1267 } 1268 llvm_unreachable("unknown cmpi predicate kind"); 1269 } 1270 1271 /// Returns true if the predicate is true for two equal operands. 1272 static bool applyCmpPredicateToEqualOperands(arith::CmpIPredicate predicate) { 1273 switch (predicate) { 1274 case arith::CmpIPredicate::eq: 1275 case arith::CmpIPredicate::sle: 1276 case arith::CmpIPredicate::sge: 1277 case arith::CmpIPredicate::ule: 1278 case arith::CmpIPredicate::uge: 1279 return true; 1280 case arith::CmpIPredicate::ne: 1281 case arith::CmpIPredicate::slt: 1282 case arith::CmpIPredicate::sgt: 1283 case arith::CmpIPredicate::ult: 1284 case arith::CmpIPredicate::ugt: 1285 return false; 1286 } 1287 llvm_unreachable("unknown cmpi predicate kind"); 1288 } 1289 1290 static Attribute getBoolAttribute(Type type, MLIRContext *ctx, bool value) { 1291 auto boolAttr = BoolAttr::get(ctx, value); 1292 ShapedType shapedType = type.dyn_cast_or_null<ShapedType>(); 1293 if (!shapedType) 1294 return boolAttr; 1295 return DenseElementsAttr::get(shapedType, boolAttr); 1296 } 1297 1298 OpFoldResult arith::CmpIOp::fold(ArrayRef<Attribute> operands) { 1299 assert(operands.size() == 2 && "cmpi takes two operands"); 1300 1301 // cmpi(pred, x, x) 1302 if (getLhs() == getRhs()) { 1303 auto val = applyCmpPredicateToEqualOperands(getPredicate()); 1304 return getBoolAttribute(getType(), getContext(), val); 1305 } 1306 1307 if (matchPattern(getRhs(), m_Zero())) { 1308 if (auto extOp = getLhs().getDefiningOp<ExtSIOp>()) { 1309 if (extOp.getOperand().getType().cast<IntegerType>().getWidth() == 1) { 1310 // extsi(%x : i1 -> iN) != 0 -> %x 1311 if (getPredicate() == arith::CmpIPredicate::ne) { 1312 return extOp.getOperand(); 1313 } 1314 } 1315 } 1316 if (auto extOp = getLhs().getDefiningOp<ExtUIOp>()) { 1317 if (extOp.getOperand().getType().cast<IntegerType>().getWidth() == 1) { 1318 // extui(%x : i1 -> iN) != 0 -> %x 1319 if (getPredicate() == arith::CmpIPredicate::ne) { 1320 return extOp.getOperand(); 1321 } 1322 } 1323 } 1324 } 1325 1326 auto lhs = operands.front().dyn_cast_or_null<IntegerAttr>(); 1327 auto rhs = operands.back().dyn_cast_or_null<IntegerAttr>(); 1328 if (!lhs || !rhs) 1329 return {}; 1330 1331 auto val = applyCmpPredicate(getPredicate(), lhs.getValue(), rhs.getValue()); 1332 return BoolAttr::get(getContext(), val); 1333 } 1334 1335 void arith::CmpIOp::getCanonicalizationPatterns(RewritePatternSet &patterns, 1336 MLIRContext *context) { 1337 patterns.insert<CmpIExtSI, CmpIExtUI>(context); 1338 } 1339 1340 //===----------------------------------------------------------------------===// 1341 // CmpFOp 1342 //===----------------------------------------------------------------------===// 1343 1344 /// Compute `lhs` `pred` `rhs`, where `pred` is one of the known floating point 1345 /// comparison predicates. 1346 bool mlir::arith::applyCmpPredicate(arith::CmpFPredicate predicate, 1347 const APFloat &lhs, const APFloat &rhs) { 1348 auto cmpResult = lhs.compare(rhs); 1349 switch (predicate) { 1350 case arith::CmpFPredicate::AlwaysFalse: 1351 return false; 1352 case arith::CmpFPredicate::OEQ: 1353 return cmpResult == APFloat::cmpEqual; 1354 case arith::CmpFPredicate::OGT: 1355 return cmpResult == APFloat::cmpGreaterThan; 1356 case arith::CmpFPredicate::OGE: 1357 return cmpResult == APFloat::cmpGreaterThan || 1358 cmpResult == APFloat::cmpEqual; 1359 case arith::CmpFPredicate::OLT: 1360 return cmpResult == APFloat::cmpLessThan; 1361 case arith::CmpFPredicate::OLE: 1362 return cmpResult == APFloat::cmpLessThan || cmpResult == APFloat::cmpEqual; 1363 case arith::CmpFPredicate::ONE: 1364 return cmpResult != APFloat::cmpUnordered && cmpResult != APFloat::cmpEqual; 1365 case arith::CmpFPredicate::ORD: 1366 return cmpResult != APFloat::cmpUnordered; 1367 case arith::CmpFPredicate::UEQ: 1368 return cmpResult == APFloat::cmpUnordered || cmpResult == APFloat::cmpEqual; 1369 case arith::CmpFPredicate::UGT: 1370 return cmpResult == APFloat::cmpUnordered || 1371 cmpResult == APFloat::cmpGreaterThan; 1372 case arith::CmpFPredicate::UGE: 1373 return cmpResult == APFloat::cmpUnordered || 1374 cmpResult == APFloat::cmpGreaterThan || 1375 cmpResult == APFloat::cmpEqual; 1376 case arith::CmpFPredicate::ULT: 1377 return cmpResult == APFloat::cmpUnordered || 1378 cmpResult == APFloat::cmpLessThan; 1379 case arith::CmpFPredicate::ULE: 1380 return cmpResult == APFloat::cmpUnordered || 1381 cmpResult == APFloat::cmpLessThan || cmpResult == APFloat::cmpEqual; 1382 case arith::CmpFPredicate::UNE: 1383 return cmpResult != APFloat::cmpEqual; 1384 case arith::CmpFPredicate::UNO: 1385 return cmpResult == APFloat::cmpUnordered; 1386 case arith::CmpFPredicate::AlwaysTrue: 1387 return true; 1388 } 1389 llvm_unreachable("unknown cmpf predicate kind"); 1390 } 1391 1392 OpFoldResult arith::CmpFOp::fold(ArrayRef<Attribute> operands) { 1393 assert(operands.size() == 2 && "cmpf takes two operands"); 1394 1395 auto lhs = operands.front().dyn_cast_or_null<FloatAttr>(); 1396 auto rhs = operands.back().dyn_cast_or_null<FloatAttr>(); 1397 1398 // If one operand is NaN, making them both NaN does not change the result. 1399 if (lhs && lhs.getValue().isNaN()) 1400 rhs = lhs; 1401 if (rhs && rhs.getValue().isNaN()) 1402 lhs = rhs; 1403 1404 if (!lhs || !rhs) 1405 return {}; 1406 1407 auto val = applyCmpPredicate(getPredicate(), lhs.getValue(), rhs.getValue()); 1408 return BoolAttr::get(getContext(), val); 1409 } 1410 1411 class CmpFIntToFPConst final : public OpRewritePattern<CmpFOp> { 1412 public: 1413 using OpRewritePattern<CmpFOp>::OpRewritePattern; 1414 1415 static CmpIPredicate convertToIntegerPredicate(CmpFPredicate pred, 1416 bool isUnsigned) { 1417 using namespace arith; 1418 switch (pred) { 1419 case CmpFPredicate::UEQ: 1420 case CmpFPredicate::OEQ: 1421 return CmpIPredicate::eq; 1422 case CmpFPredicate::UGT: 1423 case CmpFPredicate::OGT: 1424 return isUnsigned ? CmpIPredicate::ugt : CmpIPredicate::sgt; 1425 case CmpFPredicate::UGE: 1426 case CmpFPredicate::OGE: 1427 return isUnsigned ? CmpIPredicate::uge : CmpIPredicate::sge; 1428 case CmpFPredicate::ULT: 1429 case CmpFPredicate::OLT: 1430 return isUnsigned ? CmpIPredicate::ult : CmpIPredicate::slt; 1431 case CmpFPredicate::ULE: 1432 case CmpFPredicate::OLE: 1433 return isUnsigned ? CmpIPredicate::ule : CmpIPredicate::sle; 1434 case CmpFPredicate::UNE: 1435 case CmpFPredicate::ONE: 1436 return CmpIPredicate::ne; 1437 default: 1438 llvm_unreachable("Unexpected predicate!"); 1439 } 1440 } 1441 1442 LogicalResult matchAndRewrite(CmpFOp op, 1443 PatternRewriter &rewriter) const override { 1444 FloatAttr flt; 1445 if (!matchPattern(op.getRhs(), m_Constant(&flt))) 1446 return failure(); 1447 1448 const APFloat &rhs = flt.getValue(); 1449 1450 // Don't attempt to fold a nan. 1451 if (rhs.isNaN()) 1452 return failure(); 1453 1454 // Get the width of the mantissa. We don't want to hack on conversions that 1455 // might lose information from the integer, e.g. "i64 -> float" 1456 FloatType floatTy = op.getRhs().getType().cast<FloatType>(); 1457 int mantissaWidth = floatTy.getFPMantissaWidth(); 1458 if (mantissaWidth <= 0) 1459 return failure(); 1460 1461 bool isUnsigned; 1462 Value intVal; 1463 1464 if (auto si = op.getLhs().getDefiningOp<SIToFPOp>()) { 1465 isUnsigned = false; 1466 intVal = si.getIn(); 1467 } else if (auto ui = op.getLhs().getDefiningOp<UIToFPOp>()) { 1468 isUnsigned = true; 1469 intVal = ui.getIn(); 1470 } else { 1471 return failure(); 1472 } 1473 1474 // Check to see that the input is converted from an integer type that is 1475 // small enough that preserves all bits. 1476 auto intTy = intVal.getType().cast<IntegerType>(); 1477 auto intWidth = intTy.getWidth(); 1478 1479 // Number of bits representing values, as opposed to the sign 1480 auto valueBits = isUnsigned ? intWidth : (intWidth - 1); 1481 1482 // Following test does NOT adjust intWidth downwards for signed inputs, 1483 // because the most negative value still requires all the mantissa bits 1484 // to distinguish it from one less than that value. 1485 if ((int)intWidth > mantissaWidth) { 1486 // Conversion would lose accuracy. Check if loss can impact comparison. 1487 int exponent = ilogb(rhs); 1488 if (exponent == APFloat::IEK_Inf) { 1489 int maxExponent = ilogb(APFloat::getLargest(rhs.getSemantics())); 1490 if (maxExponent < (int)valueBits) { 1491 // Conversion could create infinity. 1492 return failure(); 1493 } 1494 } else { 1495 // Note that if rhs is zero or NaN, then Exp is negative 1496 // and first condition is trivially false. 1497 if (mantissaWidth <= exponent && exponent <= (int)valueBits) { 1498 // Conversion could affect comparison. 1499 return failure(); 1500 } 1501 } 1502 } 1503 1504 // Convert to equivalent cmpi predicate 1505 CmpIPredicate pred; 1506 switch (op.getPredicate()) { 1507 case CmpFPredicate::ORD: 1508 // Int to fp conversion doesn't create a nan (ord checks neither is a nan) 1509 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1510 /*width=*/1); 1511 return success(); 1512 case CmpFPredicate::UNO: 1513 // Int to fp conversion doesn't create a nan (uno checks either is a nan) 1514 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1515 /*width=*/1); 1516 return success(); 1517 default: 1518 pred = convertToIntegerPredicate(op.getPredicate(), isUnsigned); 1519 break; 1520 } 1521 1522 if (!isUnsigned) { 1523 // If the rhs value is > SignedMax, fold the comparison. This handles 1524 // +INF and large values. 1525 APFloat signedMax(rhs.getSemantics()); 1526 signedMax.convertFromAPInt(APInt::getSignedMaxValue(intWidth), true, 1527 APFloat::rmNearestTiesToEven); 1528 if (signedMax < rhs) { // smax < 13123.0 1529 if (pred == CmpIPredicate::ne || pred == CmpIPredicate::slt || 1530 pred == CmpIPredicate::sle) 1531 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1532 /*width=*/1); 1533 else 1534 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1535 /*width=*/1); 1536 return success(); 1537 } 1538 } else { 1539 // If the rhs value is > UnsignedMax, fold the comparison. This handles 1540 // +INF and large values. 1541 APFloat unsignedMax(rhs.getSemantics()); 1542 unsignedMax.convertFromAPInt(APInt::getMaxValue(intWidth), false, 1543 APFloat::rmNearestTiesToEven); 1544 if (unsignedMax < rhs) { // umax < 13123.0 1545 if (pred == CmpIPredicate::ne || pred == CmpIPredicate::ult || 1546 pred == CmpIPredicate::ule) 1547 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1548 /*width=*/1); 1549 else 1550 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1551 /*width=*/1); 1552 return success(); 1553 } 1554 } 1555 1556 if (!isUnsigned) { 1557 // See if the rhs value is < SignedMin. 1558 APFloat signedMin(rhs.getSemantics()); 1559 signedMin.convertFromAPInt(APInt::getSignedMinValue(intWidth), true, 1560 APFloat::rmNearestTiesToEven); 1561 if (signedMin > rhs) { // smin > 12312.0 1562 if (pred == CmpIPredicate::ne || pred == CmpIPredicate::sgt || 1563 pred == CmpIPredicate::sge) 1564 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1565 /*width=*/1); 1566 else 1567 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1568 /*width=*/1); 1569 return success(); 1570 } 1571 } else { 1572 // See if the rhs value is < UnsignedMin. 1573 APFloat unsignedMin(rhs.getSemantics()); 1574 unsignedMin.convertFromAPInt(APInt::getMinValue(intWidth), false, 1575 APFloat::rmNearestTiesToEven); 1576 if (unsignedMin > rhs) { // umin > 12312.0 1577 if (pred == CmpIPredicate::ne || pred == CmpIPredicate::ugt || 1578 pred == CmpIPredicate::uge) 1579 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1580 /*width=*/1); 1581 else 1582 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1583 /*width=*/1); 1584 return success(); 1585 } 1586 } 1587 1588 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 1589 // [0, UMAX], but it may still be fractional. See if it is fractional by 1590 // casting the FP value to the integer value and back, checking for 1591 // equality. Don't do this for zero, because -0.0 is not fractional. 1592 bool ignored; 1593 APSInt rhsInt(intWidth, isUnsigned); 1594 if (APFloat::opInvalidOp == 1595 rhs.convertToInteger(rhsInt, APFloat::rmTowardZero, &ignored)) { 1596 // Undefined behavior invoked - the destination type can't represent 1597 // the input constant. 1598 return failure(); 1599 } 1600 1601 if (!rhs.isZero()) { 1602 APFloat apf(floatTy.getFloatSemantics(), 1603 APInt::getZero(floatTy.getWidth())); 1604 apf.convertFromAPInt(rhsInt, !isUnsigned, APFloat::rmNearestTiesToEven); 1605 1606 bool equal = apf == rhs; 1607 if (!equal) { 1608 // If we had a comparison against a fractional value, we have to adjust 1609 // the compare predicate and sometimes the value. rhsInt is rounded 1610 // towards zero at this point. 1611 switch (pred) { 1612 case CmpIPredicate::ne: // (float)int != 4.4 --> true 1613 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1614 /*width=*/1); 1615 return success(); 1616 case CmpIPredicate::eq: // (float)int == 4.4 --> false 1617 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1618 /*width=*/1); 1619 return success(); 1620 case CmpIPredicate::ule: 1621 // (float)int <= 4.4 --> int <= 4 1622 // (float)int <= -4.4 --> false 1623 if (rhs.isNegative()) { 1624 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1625 /*width=*/1); 1626 return success(); 1627 } 1628 break; 1629 case CmpIPredicate::sle: 1630 // (float)int <= 4.4 --> int <= 4 1631 // (float)int <= -4.4 --> int < -4 1632 if (rhs.isNegative()) 1633 pred = CmpIPredicate::slt; 1634 break; 1635 case CmpIPredicate::ult: 1636 // (float)int < -4.4 --> false 1637 // (float)int < 4.4 --> int <= 4 1638 if (rhs.isNegative()) { 1639 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1640 /*width=*/1); 1641 return success(); 1642 } 1643 pred = CmpIPredicate::ule; 1644 break; 1645 case CmpIPredicate::slt: 1646 // (float)int < -4.4 --> int < -4 1647 // (float)int < 4.4 --> int <= 4 1648 if (!rhs.isNegative()) 1649 pred = CmpIPredicate::sle; 1650 break; 1651 case CmpIPredicate::ugt: 1652 // (float)int > 4.4 --> int > 4 1653 // (float)int > -4.4 --> true 1654 if (rhs.isNegative()) { 1655 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1656 /*width=*/1); 1657 return success(); 1658 } 1659 break; 1660 case CmpIPredicate::sgt: 1661 // (float)int > 4.4 --> int > 4 1662 // (float)int > -4.4 --> int >= -4 1663 if (rhs.isNegative()) 1664 pred = CmpIPredicate::sge; 1665 break; 1666 case CmpIPredicate::uge: 1667 // (float)int >= -4.4 --> true 1668 // (float)int >= 4.4 --> int > 4 1669 if (rhs.isNegative()) { 1670 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1671 /*width=*/1); 1672 return success(); 1673 } 1674 pred = CmpIPredicate::ugt; 1675 break; 1676 case CmpIPredicate::sge: 1677 // (float)int >= -4.4 --> int >= -4 1678 // (float)int >= 4.4 --> int > 4 1679 if (!rhs.isNegative()) 1680 pred = CmpIPredicate::sgt; 1681 break; 1682 } 1683 } 1684 } 1685 1686 // Lower this FP comparison into an appropriate integer version of the 1687 // comparison. 1688 rewriter.replaceOpWithNewOp<CmpIOp>( 1689 op, pred, intVal, 1690 rewriter.create<ConstantOp>( 1691 op.getLoc(), intVal.getType(), 1692 rewriter.getIntegerAttr(intVal.getType(), rhsInt))); 1693 return success(); 1694 } 1695 }; 1696 1697 void arith::CmpFOp::getCanonicalizationPatterns(RewritePatternSet &patterns, 1698 MLIRContext *context) { 1699 patterns.insert<CmpFIntToFPConst>(context); 1700 } 1701 1702 //===----------------------------------------------------------------------===// 1703 // SelectOp 1704 //===----------------------------------------------------------------------===// 1705 1706 // Transforms a select of a boolean to arithmetic operations 1707 // 1708 // arith.select %arg, %x, %y : i1 1709 // 1710 // becomes 1711 // 1712 // and(%arg, %x) or and(!%arg, %y) 1713 struct SelectI1Simplify : public OpRewritePattern<arith::SelectOp> { 1714 using OpRewritePattern<arith::SelectOp>::OpRewritePattern; 1715 1716 LogicalResult matchAndRewrite(arith::SelectOp op, 1717 PatternRewriter &rewriter) const override { 1718 if (!op.getType().isInteger(1)) 1719 return failure(); 1720 1721 Value falseConstant = 1722 rewriter.create<arith::ConstantIntOp>(op.getLoc(), true, 1); 1723 Value notCondition = rewriter.create<arith::XOrIOp>( 1724 op.getLoc(), op.getCondition(), falseConstant); 1725 1726 Value trueVal = rewriter.create<arith::AndIOp>( 1727 op.getLoc(), op.getCondition(), op.getTrueValue()); 1728 Value falseVal = rewriter.create<arith::AndIOp>(op.getLoc(), notCondition, 1729 op.getFalseValue()); 1730 rewriter.replaceOpWithNewOp<arith::OrIOp>(op, trueVal, falseVal); 1731 return success(); 1732 } 1733 }; 1734 1735 // select %arg, %c1, %c0 => extui %arg 1736 struct SelectToExtUI : public OpRewritePattern<arith::SelectOp> { 1737 using OpRewritePattern<arith::SelectOp>::OpRewritePattern; 1738 1739 LogicalResult matchAndRewrite(arith::SelectOp op, 1740 PatternRewriter &rewriter) const override { 1741 // Cannot extui i1 to i1, or i1 to f32 1742 if (!op.getType().isa<IntegerType>() || op.getType().isInteger(1)) 1743 return failure(); 1744 1745 // select %x, c1, %c0 => extui %arg 1746 if (matchPattern(op.getTrueValue(), m_One())) 1747 if (matchPattern(op.getFalseValue(), m_Zero())) { 1748 rewriter.replaceOpWithNewOp<arith::ExtUIOp>(op, op.getType(), 1749 op.getCondition()); 1750 return success(); 1751 } 1752 1753 // select %x, c0, %c1 => extui (xor %arg, true) 1754 if (matchPattern(op.getTrueValue(), m_Zero())) 1755 if (matchPattern(op.getFalseValue(), m_One())) { 1756 rewriter.replaceOpWithNewOp<arith::ExtUIOp>( 1757 op, op.getType(), 1758 rewriter.create<arith::XOrIOp>( 1759 op.getLoc(), op.getCondition(), 1760 rewriter.create<arith::ConstantIntOp>( 1761 op.getLoc(), 1, op.getCondition().getType()))); 1762 return success(); 1763 } 1764 1765 return failure(); 1766 } 1767 }; 1768 1769 void arith::SelectOp::getCanonicalizationPatterns(RewritePatternSet &results, 1770 MLIRContext *context) { 1771 results.add<SelectI1Simplify, SelectToExtUI>(context); 1772 } 1773 1774 OpFoldResult arith::SelectOp::fold(ArrayRef<Attribute> operands) { 1775 Value trueVal = getTrueValue(); 1776 Value falseVal = getFalseValue(); 1777 if (trueVal == falseVal) 1778 return trueVal; 1779 1780 Value condition = getCondition(); 1781 1782 // select true, %0, %1 => %0 1783 if (matchPattern(condition, m_One())) 1784 return trueVal; 1785 1786 // select false, %0, %1 => %1 1787 if (matchPattern(condition, m_Zero())) 1788 return falseVal; 1789 1790 // select %x, true, false => %x 1791 if (getType().isInteger(1)) 1792 if (matchPattern(getTrueValue(), m_One())) 1793 if (matchPattern(getFalseValue(), m_Zero())) 1794 return condition; 1795 1796 if (auto cmp = dyn_cast_or_null<arith::CmpIOp>(condition.getDefiningOp())) { 1797 auto pred = cmp.getPredicate(); 1798 if (pred == arith::CmpIPredicate::eq || pred == arith::CmpIPredicate::ne) { 1799 auto cmpLhs = cmp.getLhs(); 1800 auto cmpRhs = cmp.getRhs(); 1801 1802 // %0 = arith.cmpi eq, %arg0, %arg1 1803 // %1 = arith.select %0, %arg0, %arg1 => %arg1 1804 1805 // %0 = arith.cmpi ne, %arg0, %arg1 1806 // %1 = arith.select %0, %arg0, %arg1 => %arg0 1807 1808 if ((cmpLhs == trueVal && cmpRhs == falseVal) || 1809 (cmpRhs == trueVal && cmpLhs == falseVal)) 1810 return pred == arith::CmpIPredicate::ne ? trueVal : falseVal; 1811 } 1812 } 1813 return nullptr; 1814 } 1815 1816 ParseResult SelectOp::parse(OpAsmParser &parser, OperationState &result) { 1817 Type conditionType, resultType; 1818 SmallVector<OpAsmParser::UnresolvedOperand, 3> operands; 1819 if (parser.parseOperandList(operands, /*requiredOperandCount=*/3) || 1820 parser.parseOptionalAttrDict(result.attributes) || 1821 parser.parseColonType(resultType)) 1822 return failure(); 1823 1824 // Check for the explicit condition type if this is a masked tensor or vector. 1825 if (succeeded(parser.parseOptionalComma())) { 1826 conditionType = resultType; 1827 if (parser.parseType(resultType)) 1828 return failure(); 1829 } else { 1830 conditionType = parser.getBuilder().getI1Type(); 1831 } 1832 1833 result.addTypes(resultType); 1834 return parser.resolveOperands(operands, 1835 {conditionType, resultType, resultType}, 1836 parser.getNameLoc(), result.operands); 1837 } 1838 1839 void arith::SelectOp::print(OpAsmPrinter &p) { 1840 p << " " << getOperands(); 1841 p.printOptionalAttrDict((*this)->getAttrs()); 1842 p << " : "; 1843 if (ShapedType condType = getCondition().getType().dyn_cast<ShapedType>()) 1844 p << condType << ", "; 1845 p << getType(); 1846 } 1847 1848 LogicalResult arith::SelectOp::verify() { 1849 Type conditionType = getCondition().getType(); 1850 if (conditionType.isSignlessInteger(1)) 1851 return success(); 1852 1853 // If the result type is a vector or tensor, the type can be a mask with the 1854 // same elements. 1855 Type resultType = getType(); 1856 if (!resultType.isa<TensorType, VectorType>()) 1857 return emitOpError() << "expected condition to be a signless i1, but got " 1858 << conditionType; 1859 Type shapedConditionType = getI1SameShape(resultType); 1860 if (conditionType != shapedConditionType) { 1861 return emitOpError() << "expected condition type to have the same shape " 1862 "as the result type, expected " 1863 << shapedConditionType << ", but got " 1864 << conditionType; 1865 } 1866 return success(); 1867 } 1868 //===----------------------------------------------------------------------===// 1869 // ShLIOp 1870 //===----------------------------------------------------------------------===// 1871 1872 OpFoldResult arith::ShLIOp::fold(ArrayRef<Attribute> operands) { 1873 // Don't fold if shifting more than the bit width. 1874 bool bounded = false; 1875 auto result = constFoldBinaryOp<IntegerAttr>( 1876 operands, [&](const APInt &a, const APInt &b) { 1877 bounded = b.ule(b.getBitWidth()); 1878 return std::move(a).shl(b); 1879 }); 1880 return bounded ? result : Attribute(); 1881 } 1882 1883 //===----------------------------------------------------------------------===// 1884 // ShRUIOp 1885 //===----------------------------------------------------------------------===// 1886 1887 OpFoldResult arith::ShRUIOp::fold(ArrayRef<Attribute> operands) { 1888 // Don't fold if shifting more than the bit width. 1889 bool bounded = false; 1890 auto result = constFoldBinaryOp<IntegerAttr>( 1891 operands, [&](const APInt &a, const APInt &b) { 1892 bounded = b.ule(b.getBitWidth()); 1893 return std::move(a).lshr(b); 1894 }); 1895 return bounded ? result : Attribute(); 1896 } 1897 1898 //===----------------------------------------------------------------------===// 1899 // ShRSIOp 1900 //===----------------------------------------------------------------------===// 1901 1902 OpFoldResult arith::ShRSIOp::fold(ArrayRef<Attribute> operands) { 1903 // Don't fold if shifting more than the bit width. 1904 bool bounded = false; 1905 auto result = constFoldBinaryOp<IntegerAttr>( 1906 operands, [&](const APInt &a, const APInt &b) { 1907 bounded = b.ule(b.getBitWidth()); 1908 return std::move(a).ashr(b); 1909 }); 1910 return bounded ? result : Attribute(); 1911 } 1912 1913 //===----------------------------------------------------------------------===// 1914 // Atomic Enum 1915 //===----------------------------------------------------------------------===// 1916 1917 /// Returns the identity value attribute associated with an AtomicRMWKind op. 1918 Attribute mlir::arith::getIdentityValueAttr(AtomicRMWKind kind, Type resultType, 1919 OpBuilder &builder, Location loc) { 1920 switch (kind) { 1921 case AtomicRMWKind::maxf: 1922 return builder.getFloatAttr( 1923 resultType, 1924 APFloat::getInf(resultType.cast<FloatType>().getFloatSemantics(), 1925 /*Negative=*/true)); 1926 case AtomicRMWKind::addf: 1927 case AtomicRMWKind::addi: 1928 case AtomicRMWKind::maxu: 1929 case AtomicRMWKind::ori: 1930 return builder.getZeroAttr(resultType); 1931 case AtomicRMWKind::andi: 1932 return builder.getIntegerAttr( 1933 resultType, 1934 APInt::getAllOnes(resultType.cast<IntegerType>().getWidth())); 1935 case AtomicRMWKind::maxs: 1936 return builder.getIntegerAttr( 1937 resultType, 1938 APInt::getSignedMinValue(resultType.cast<IntegerType>().getWidth())); 1939 case AtomicRMWKind::minf: 1940 return builder.getFloatAttr( 1941 resultType, 1942 APFloat::getInf(resultType.cast<FloatType>().getFloatSemantics(), 1943 /*Negative=*/false)); 1944 case AtomicRMWKind::mins: 1945 return builder.getIntegerAttr( 1946 resultType, 1947 APInt::getSignedMaxValue(resultType.cast<IntegerType>().getWidth())); 1948 case AtomicRMWKind::minu: 1949 return builder.getIntegerAttr( 1950 resultType, 1951 APInt::getMaxValue(resultType.cast<IntegerType>().getWidth())); 1952 case AtomicRMWKind::muli: 1953 return builder.getIntegerAttr(resultType, 1); 1954 case AtomicRMWKind::mulf: 1955 return builder.getFloatAttr(resultType, 1); 1956 // TODO: Add remaining reduction operations. 1957 default: 1958 (void)emitOptionalError(loc, "Reduction operation type not supported"); 1959 break; 1960 } 1961 return nullptr; 1962 } 1963 1964 /// Returns the identity value associated with an AtomicRMWKind op. 1965 Value mlir::arith::getIdentityValue(AtomicRMWKind op, Type resultType, 1966 OpBuilder &builder, Location loc) { 1967 Attribute attr = getIdentityValueAttr(op, resultType, builder, loc); 1968 return builder.create<arith::ConstantOp>(loc, attr); 1969 } 1970 1971 /// Return the value obtained by applying the reduction operation kind 1972 /// associated with a binary AtomicRMWKind op to `lhs` and `rhs`. 1973 Value mlir::arith::getReductionOp(AtomicRMWKind op, OpBuilder &builder, 1974 Location loc, Value lhs, Value rhs) { 1975 switch (op) { 1976 case AtomicRMWKind::addf: 1977 return builder.create<arith::AddFOp>(loc, lhs, rhs); 1978 case AtomicRMWKind::addi: 1979 return builder.create<arith::AddIOp>(loc, lhs, rhs); 1980 case AtomicRMWKind::mulf: 1981 return builder.create<arith::MulFOp>(loc, lhs, rhs); 1982 case AtomicRMWKind::muli: 1983 return builder.create<arith::MulIOp>(loc, lhs, rhs); 1984 case AtomicRMWKind::maxf: 1985 return builder.create<arith::MaxFOp>(loc, lhs, rhs); 1986 case AtomicRMWKind::minf: 1987 return builder.create<arith::MinFOp>(loc, lhs, rhs); 1988 case AtomicRMWKind::maxs: 1989 return builder.create<arith::MaxSIOp>(loc, lhs, rhs); 1990 case AtomicRMWKind::mins: 1991 return builder.create<arith::MinSIOp>(loc, lhs, rhs); 1992 case AtomicRMWKind::maxu: 1993 return builder.create<arith::MaxUIOp>(loc, lhs, rhs); 1994 case AtomicRMWKind::minu: 1995 return builder.create<arith::MinUIOp>(loc, lhs, rhs); 1996 case AtomicRMWKind::ori: 1997 return builder.create<arith::OrIOp>(loc, lhs, rhs); 1998 case AtomicRMWKind::andi: 1999 return builder.create<arith::AndIOp>(loc, lhs, rhs); 2000 // TODO: Add remaining reduction operations. 2001 default: 2002 (void)emitOptionalError(loc, "Reduction operation type not supported"); 2003 break; 2004 } 2005 return nullptr; 2006 } 2007 2008 //===----------------------------------------------------------------------===// 2009 // TableGen'd op method definitions 2010 //===----------------------------------------------------------------------===// 2011 2012 #define GET_OP_CLASSES 2013 #include "mlir/Dialect/Arithmetic/IR/ArithmeticOps.cpp.inc" 2014 2015 //===----------------------------------------------------------------------===// 2016 // TableGen'd enum attribute definitions 2017 //===----------------------------------------------------------------------===// 2018 2019 #include "mlir/Dialect/Arithmetic/IR/ArithmeticOpsEnums.cpp.inc" 2020