1 //===- ArithmeticOps.cpp - MLIR Arithmetic dialect ops implementation -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <utility> 10 11 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 12 #include "mlir/Dialect/CommonFolders.h" 13 #include "mlir/IR/Builders.h" 14 #include "mlir/IR/Matchers.h" 15 #include "mlir/IR/OpImplementation.h" 16 #include "mlir/IR/PatternMatch.h" 17 #include "mlir/IR/TypeUtilities.h" 18 #include "llvm/ADT/SmallString.h" 19 20 #include "llvm/ADT/APSInt.h" 21 22 using namespace mlir; 23 using namespace mlir::arith; 24 25 //===----------------------------------------------------------------------===// 26 // Pattern helpers 27 //===----------------------------------------------------------------------===// 28 29 static IntegerAttr addIntegerAttrs(PatternRewriter &builder, Value res, 30 Attribute lhs, Attribute rhs) { 31 return builder.getIntegerAttr(res.getType(), 32 lhs.cast<IntegerAttr>().getInt() + 33 rhs.cast<IntegerAttr>().getInt()); 34 } 35 36 static IntegerAttr subIntegerAttrs(PatternRewriter &builder, Value res, 37 Attribute lhs, Attribute rhs) { 38 return builder.getIntegerAttr(res.getType(), 39 lhs.cast<IntegerAttr>().getInt() - 40 rhs.cast<IntegerAttr>().getInt()); 41 } 42 43 /// Invert an integer comparison predicate. 44 arith::CmpIPredicate arith::invertPredicate(arith::CmpIPredicate pred) { 45 switch (pred) { 46 case arith::CmpIPredicate::eq: 47 return arith::CmpIPredicate::ne; 48 case arith::CmpIPredicate::ne: 49 return arith::CmpIPredicate::eq; 50 case arith::CmpIPredicate::slt: 51 return arith::CmpIPredicate::sge; 52 case arith::CmpIPredicate::sle: 53 return arith::CmpIPredicate::sgt; 54 case arith::CmpIPredicate::sgt: 55 return arith::CmpIPredicate::sle; 56 case arith::CmpIPredicate::sge: 57 return arith::CmpIPredicate::slt; 58 case arith::CmpIPredicate::ult: 59 return arith::CmpIPredicate::uge; 60 case arith::CmpIPredicate::ule: 61 return arith::CmpIPredicate::ugt; 62 case arith::CmpIPredicate::ugt: 63 return arith::CmpIPredicate::ule; 64 case arith::CmpIPredicate::uge: 65 return arith::CmpIPredicate::ult; 66 } 67 llvm_unreachable("unknown cmpi predicate kind"); 68 } 69 70 static arith::CmpIPredicateAttr invertPredicate(arith::CmpIPredicateAttr pred) { 71 return arith::CmpIPredicateAttr::get(pred.getContext(), 72 invertPredicate(pred.getValue())); 73 } 74 75 //===----------------------------------------------------------------------===// 76 // TableGen'd canonicalization patterns 77 //===----------------------------------------------------------------------===// 78 79 namespace { 80 #include "ArithmeticCanonicalization.inc" 81 } // namespace 82 83 //===----------------------------------------------------------------------===// 84 // ConstantOp 85 //===----------------------------------------------------------------------===// 86 87 void arith::ConstantOp::getAsmResultNames( 88 function_ref<void(Value, StringRef)> setNameFn) { 89 auto type = getType(); 90 if (auto intCst = getValue().dyn_cast<IntegerAttr>()) { 91 auto intType = type.dyn_cast<IntegerType>(); 92 93 // Sugar i1 constants with 'true' and 'false'. 94 if (intType && intType.getWidth() == 1) 95 return setNameFn(getResult(), (intCst.getInt() ? "true" : "false")); 96 97 // Otherwise, build a compex name with the value and type. 98 SmallString<32> specialNameBuffer; 99 llvm::raw_svector_ostream specialName(specialNameBuffer); 100 specialName << 'c' << intCst.getInt(); 101 if (intType) 102 specialName << '_' << type; 103 setNameFn(getResult(), specialName.str()); 104 } else { 105 setNameFn(getResult(), "cst"); 106 } 107 } 108 109 /// TODO: disallow arith.constant to return anything other than signless integer 110 /// or float like. 111 LogicalResult arith::ConstantOp::verify() { 112 auto type = getType(); 113 // The value's type must match the return type. 114 if (getValue().getType() != type) { 115 return emitOpError() << "value type " << getValue().getType() 116 << " must match return type: " << type; 117 } 118 // Integer values must be signless. 119 if (type.isa<IntegerType>() && !type.cast<IntegerType>().isSignless()) 120 return emitOpError("integer return type must be signless"); 121 // Any float or elements attribute are acceptable. 122 if (!getValue().isa<IntegerAttr, FloatAttr, ElementsAttr>()) { 123 return emitOpError( 124 "value must be an integer, float, or elements attribute"); 125 } 126 return success(); 127 } 128 129 bool arith::ConstantOp::isBuildableWith(Attribute value, Type type) { 130 // The value's type must be the same as the provided type. 131 if (value.getType() != type) 132 return false; 133 // Integer values must be signless. 134 if (type.isa<IntegerType>() && !type.cast<IntegerType>().isSignless()) 135 return false; 136 // Integer, float, and element attributes are buildable. 137 return value.isa<IntegerAttr, FloatAttr, ElementsAttr>(); 138 } 139 140 OpFoldResult arith::ConstantOp::fold(ArrayRef<Attribute> operands) { 141 return getValue(); 142 } 143 144 void arith::ConstantIntOp::build(OpBuilder &builder, OperationState &result, 145 int64_t value, unsigned width) { 146 auto type = builder.getIntegerType(width); 147 arith::ConstantOp::build(builder, result, type, 148 builder.getIntegerAttr(type, value)); 149 } 150 151 void arith::ConstantIntOp::build(OpBuilder &builder, OperationState &result, 152 int64_t value, Type type) { 153 assert(type.isSignlessInteger() && 154 "ConstantIntOp can only have signless integer type values"); 155 arith::ConstantOp::build(builder, result, type, 156 builder.getIntegerAttr(type, value)); 157 } 158 159 bool arith::ConstantIntOp::classof(Operation *op) { 160 if (auto constOp = dyn_cast_or_null<arith::ConstantOp>(op)) 161 return constOp.getType().isSignlessInteger(); 162 return false; 163 } 164 165 void arith::ConstantFloatOp::build(OpBuilder &builder, OperationState &result, 166 const APFloat &value, FloatType type) { 167 arith::ConstantOp::build(builder, result, type, 168 builder.getFloatAttr(type, value)); 169 } 170 171 bool arith::ConstantFloatOp::classof(Operation *op) { 172 if (auto constOp = dyn_cast_or_null<arith::ConstantOp>(op)) 173 return constOp.getType().isa<FloatType>(); 174 return false; 175 } 176 177 void arith::ConstantIndexOp::build(OpBuilder &builder, OperationState &result, 178 int64_t value) { 179 arith::ConstantOp::build(builder, result, builder.getIndexType(), 180 builder.getIndexAttr(value)); 181 } 182 183 bool arith::ConstantIndexOp::classof(Operation *op) { 184 if (auto constOp = dyn_cast_or_null<arith::ConstantOp>(op)) 185 return constOp.getType().isIndex(); 186 return false; 187 } 188 189 //===----------------------------------------------------------------------===// 190 // AddIOp 191 //===----------------------------------------------------------------------===// 192 193 OpFoldResult arith::AddIOp::fold(ArrayRef<Attribute> operands) { 194 // addi(x, 0) -> x 195 if (matchPattern(getRhs(), m_Zero())) 196 return getLhs(); 197 198 // addi(subi(a, b), b) -> a 199 if (auto sub = getLhs().getDefiningOp<SubIOp>()) 200 if (getRhs() == sub.getRhs()) 201 return sub.getLhs(); 202 203 // addi(b, subi(a, b)) -> a 204 if (auto sub = getRhs().getDefiningOp<SubIOp>()) 205 if (getLhs() == sub.getRhs()) 206 return sub.getLhs(); 207 208 return constFoldBinaryOp<IntegerAttr>( 209 operands, [](APInt a, const APInt &b) { return std::move(a) + b; }); 210 } 211 212 void arith::AddIOp::getCanonicalizationPatterns( 213 RewritePatternSet &patterns, MLIRContext *context) { 214 patterns.add<AddIAddConstant, AddISubConstantRHS, AddISubConstantLHS>( 215 context); 216 } 217 218 //===----------------------------------------------------------------------===// 219 // SubIOp 220 //===----------------------------------------------------------------------===// 221 222 OpFoldResult arith::SubIOp::fold(ArrayRef<Attribute> operands) { 223 // subi(x,x) -> 0 224 if (getOperand(0) == getOperand(1)) 225 return Builder(getContext()).getZeroAttr(getType()); 226 // subi(x,0) -> x 227 if (matchPattern(getRhs(), m_Zero())) 228 return getLhs(); 229 230 return constFoldBinaryOp<IntegerAttr>( 231 operands, [](APInt a, const APInt &b) { return std::move(a) - b; }); 232 } 233 234 void arith::SubIOp::getCanonicalizationPatterns( 235 RewritePatternSet &patterns, MLIRContext *context) { 236 patterns 237 .add<SubIRHSAddConstant, SubILHSAddConstant, SubIRHSSubConstantRHS, 238 SubIRHSSubConstantLHS, SubILHSSubConstantRHS, SubILHSSubConstantLHS>( 239 context); 240 } 241 242 //===----------------------------------------------------------------------===// 243 // MulIOp 244 //===----------------------------------------------------------------------===// 245 246 OpFoldResult arith::MulIOp::fold(ArrayRef<Attribute> operands) { 247 // muli(x, 0) -> 0 248 if (matchPattern(getRhs(), m_Zero())) 249 return getRhs(); 250 // muli(x, 1) -> x 251 if (matchPattern(getRhs(), m_One())) 252 return getOperand(0); 253 // TODO: Handle the overflow case. 254 255 // default folder 256 return constFoldBinaryOp<IntegerAttr>( 257 operands, [](const APInt &a, const APInt &b) { return a * b; }); 258 } 259 260 //===----------------------------------------------------------------------===// 261 // DivUIOp 262 //===----------------------------------------------------------------------===// 263 264 OpFoldResult arith::DivUIOp::fold(ArrayRef<Attribute> operands) { 265 // Don't fold if it would require a division by zero. 266 bool div0 = false; 267 auto result = 268 constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) { 269 if (div0 || !b) { 270 div0 = true; 271 return a; 272 } 273 return a.udiv(b); 274 }); 275 276 // Fold out division by one. Assumes all tensors of all ones are splats. 277 if (auto rhs = operands[1].dyn_cast_or_null<IntegerAttr>()) { 278 if (rhs.getValue() == 1) 279 return getLhs(); 280 } else if (auto rhs = operands[1].dyn_cast_or_null<SplatElementsAttr>()) { 281 if (rhs.getSplatValue<IntegerAttr>().getValue() == 1) 282 return getLhs(); 283 } 284 285 return div0 ? Attribute() : result; 286 } 287 288 //===----------------------------------------------------------------------===// 289 // DivSIOp 290 //===----------------------------------------------------------------------===// 291 292 OpFoldResult arith::DivSIOp::fold(ArrayRef<Attribute> operands) { 293 // Don't fold if it would overflow or if it requires a division by zero. 294 bool overflowOrDiv0 = false; 295 auto result = 296 constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) { 297 if (overflowOrDiv0 || !b) { 298 overflowOrDiv0 = true; 299 return a; 300 } 301 return a.sdiv_ov(b, overflowOrDiv0); 302 }); 303 304 // Fold out division by one. Assumes all tensors of all ones are splats. 305 if (auto rhs = operands[1].dyn_cast_or_null<IntegerAttr>()) { 306 if (rhs.getValue() == 1) 307 return getLhs(); 308 } else if (auto rhs = operands[1].dyn_cast_or_null<SplatElementsAttr>()) { 309 if (rhs.getSplatValue<IntegerAttr>().getValue() == 1) 310 return getLhs(); 311 } 312 313 return overflowOrDiv0 ? Attribute() : result; 314 } 315 316 //===----------------------------------------------------------------------===// 317 // Ceil and floor division folding helpers 318 //===----------------------------------------------------------------------===// 319 320 static APInt signedCeilNonnegInputs(const APInt &a, const APInt &b, 321 bool &overflow) { 322 // Returns (a-1)/b + 1 323 APInt one(a.getBitWidth(), 1, true); // Signed value 1. 324 APInt val = a.ssub_ov(one, overflow).sdiv_ov(b, overflow); 325 return val.sadd_ov(one, overflow); 326 } 327 328 //===----------------------------------------------------------------------===// 329 // CeilDivUIOp 330 //===----------------------------------------------------------------------===// 331 332 OpFoldResult arith::CeilDivUIOp::fold(ArrayRef<Attribute> operands) { 333 bool overflowOrDiv0 = false; 334 auto result = 335 constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) { 336 if (overflowOrDiv0 || !b) { 337 overflowOrDiv0 = true; 338 return a; 339 } 340 APInt quotient = a.udiv(b); 341 if (!a.urem(b)) 342 return quotient; 343 APInt one(a.getBitWidth(), 1, true); 344 return quotient.uadd_ov(one, overflowOrDiv0); 345 }); 346 // Fold out ceil division by one. Assumes all tensors of all ones are 347 // splats. 348 if (auto rhs = operands[1].dyn_cast_or_null<IntegerAttr>()) { 349 if (rhs.getValue() == 1) 350 return getLhs(); 351 } else if (auto rhs = operands[1].dyn_cast_or_null<SplatElementsAttr>()) { 352 if (rhs.getSplatValue<IntegerAttr>().getValue() == 1) 353 return getLhs(); 354 } 355 356 return overflowOrDiv0 ? Attribute() : result; 357 } 358 359 //===----------------------------------------------------------------------===// 360 // CeilDivSIOp 361 //===----------------------------------------------------------------------===// 362 363 OpFoldResult arith::CeilDivSIOp::fold(ArrayRef<Attribute> operands) { 364 // Don't fold if it would overflow or if it requires a division by zero. 365 bool overflowOrDiv0 = false; 366 auto result = 367 constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) { 368 if (overflowOrDiv0 || !b) { 369 overflowOrDiv0 = true; 370 return a; 371 } 372 if (!a) 373 return a; 374 // After this point we know that neither a or b are zero. 375 unsigned bits = a.getBitWidth(); 376 APInt zero = APInt::getZero(bits); 377 bool aGtZero = a.sgt(zero); 378 bool bGtZero = b.sgt(zero); 379 if (aGtZero && bGtZero) { 380 // Both positive, return ceil(a, b). 381 return signedCeilNonnegInputs(a, b, overflowOrDiv0); 382 } 383 if (!aGtZero && !bGtZero) { 384 // Both negative, return ceil(-a, -b). 385 APInt posA = zero.ssub_ov(a, overflowOrDiv0); 386 APInt posB = zero.ssub_ov(b, overflowOrDiv0); 387 return signedCeilNonnegInputs(posA, posB, overflowOrDiv0); 388 } 389 if (!aGtZero && bGtZero) { 390 // A is negative, b is positive, return - ( -a / b). 391 APInt posA = zero.ssub_ov(a, overflowOrDiv0); 392 APInt div = posA.sdiv_ov(b, overflowOrDiv0); 393 return zero.ssub_ov(div, overflowOrDiv0); 394 } 395 // A is positive, b is negative, return - (a / -b). 396 APInt posB = zero.ssub_ov(b, overflowOrDiv0); 397 APInt div = a.sdiv_ov(posB, overflowOrDiv0); 398 return zero.ssub_ov(div, overflowOrDiv0); 399 }); 400 401 // Fold out ceil division by one. Assumes all tensors of all ones are 402 // splats. 403 if (auto rhs = operands[1].dyn_cast_or_null<IntegerAttr>()) { 404 if (rhs.getValue() == 1) 405 return getLhs(); 406 } else if (auto rhs = operands[1].dyn_cast_or_null<SplatElementsAttr>()) { 407 if (rhs.getSplatValue<IntegerAttr>().getValue() == 1) 408 return getLhs(); 409 } 410 411 return overflowOrDiv0 ? Attribute() : result; 412 } 413 414 //===----------------------------------------------------------------------===// 415 // FloorDivSIOp 416 //===----------------------------------------------------------------------===// 417 418 OpFoldResult arith::FloorDivSIOp::fold(ArrayRef<Attribute> operands) { 419 // Don't fold if it would overflow or if it requires a division by zero. 420 bool overflowOrDiv0 = false; 421 auto result = 422 constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) { 423 if (overflowOrDiv0 || !b) { 424 overflowOrDiv0 = true; 425 return a; 426 } 427 if (!a) 428 return a; 429 // After this point we know that neither a or b are zero. 430 unsigned bits = a.getBitWidth(); 431 APInt zero = APInt::getZero(bits); 432 bool aGtZero = a.sgt(zero); 433 bool bGtZero = b.sgt(zero); 434 if (aGtZero && bGtZero) { 435 // Both positive, return a / b. 436 return a.sdiv_ov(b, overflowOrDiv0); 437 } 438 if (!aGtZero && !bGtZero) { 439 // Both negative, return -a / -b. 440 APInt posA = zero.ssub_ov(a, overflowOrDiv0); 441 APInt posB = zero.ssub_ov(b, overflowOrDiv0); 442 return posA.sdiv_ov(posB, overflowOrDiv0); 443 } 444 if (!aGtZero && bGtZero) { 445 // A is negative, b is positive, return - ceil(-a, b). 446 APInt posA = zero.ssub_ov(a, overflowOrDiv0); 447 APInt ceil = signedCeilNonnegInputs(posA, b, overflowOrDiv0); 448 return zero.ssub_ov(ceil, overflowOrDiv0); 449 } 450 // A is positive, b is negative, return - ceil(a, -b). 451 APInt posB = zero.ssub_ov(b, overflowOrDiv0); 452 APInt ceil = signedCeilNonnegInputs(a, posB, overflowOrDiv0); 453 return zero.ssub_ov(ceil, overflowOrDiv0); 454 }); 455 456 // Fold out floor division by one. Assumes all tensors of all ones are 457 // splats. 458 if (auto rhs = operands[1].dyn_cast_or_null<IntegerAttr>()) { 459 if (rhs.getValue() == 1) 460 return getLhs(); 461 } else if (auto rhs = operands[1].dyn_cast_or_null<SplatElementsAttr>()) { 462 if (rhs.getSplatValue<IntegerAttr>().getValue() == 1) 463 return getLhs(); 464 } 465 466 return overflowOrDiv0 ? Attribute() : result; 467 } 468 469 //===----------------------------------------------------------------------===// 470 // RemUIOp 471 //===----------------------------------------------------------------------===// 472 473 OpFoldResult arith::RemUIOp::fold(ArrayRef<Attribute> operands) { 474 auto rhs = operands.back().dyn_cast_or_null<IntegerAttr>(); 475 if (!rhs) 476 return {}; 477 auto rhsValue = rhs.getValue(); 478 479 // x % 1 = 0 480 if (rhsValue.isOneValue()) 481 return IntegerAttr::get(rhs.getType(), APInt(rhsValue.getBitWidth(), 0)); 482 483 // Don't fold if it requires division by zero. 484 if (rhsValue.isNullValue()) 485 return {}; 486 487 auto lhs = operands.front().dyn_cast_or_null<IntegerAttr>(); 488 if (!lhs) 489 return {}; 490 return IntegerAttr::get(lhs.getType(), lhs.getValue().urem(rhsValue)); 491 } 492 493 //===----------------------------------------------------------------------===// 494 // RemSIOp 495 //===----------------------------------------------------------------------===// 496 497 OpFoldResult arith::RemSIOp::fold(ArrayRef<Attribute> operands) { 498 auto rhs = operands.back().dyn_cast_or_null<IntegerAttr>(); 499 if (!rhs) 500 return {}; 501 auto rhsValue = rhs.getValue(); 502 503 // x % 1 = 0 504 if (rhsValue.isOneValue()) 505 return IntegerAttr::get(rhs.getType(), APInt(rhsValue.getBitWidth(), 0)); 506 507 // Don't fold if it requires division by zero. 508 if (rhsValue.isNullValue()) 509 return {}; 510 511 auto lhs = operands.front().dyn_cast_or_null<IntegerAttr>(); 512 if (!lhs) 513 return {}; 514 return IntegerAttr::get(lhs.getType(), lhs.getValue().srem(rhsValue)); 515 } 516 517 //===----------------------------------------------------------------------===// 518 // AndIOp 519 //===----------------------------------------------------------------------===// 520 521 OpFoldResult arith::AndIOp::fold(ArrayRef<Attribute> operands) { 522 /// and(x, 0) -> 0 523 if (matchPattern(getRhs(), m_Zero())) 524 return getRhs(); 525 /// and(x, allOnes) -> x 526 APInt intValue; 527 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && intValue.isAllOnes()) 528 return getLhs(); 529 530 return constFoldBinaryOp<IntegerAttr>( 531 operands, [](APInt a, const APInt &b) { return std::move(a) & b; }); 532 } 533 534 //===----------------------------------------------------------------------===// 535 // OrIOp 536 //===----------------------------------------------------------------------===// 537 538 OpFoldResult arith::OrIOp::fold(ArrayRef<Attribute> operands) { 539 /// or(x, 0) -> x 540 if (matchPattern(getRhs(), m_Zero())) 541 return getLhs(); 542 /// or(x, <all ones>) -> <all ones> 543 if (auto rhsAttr = operands[1].dyn_cast_or_null<IntegerAttr>()) 544 if (rhsAttr.getValue().isAllOnes()) 545 return rhsAttr; 546 547 return constFoldBinaryOp<IntegerAttr>( 548 operands, [](APInt a, const APInt &b) { return std::move(a) | b; }); 549 } 550 551 //===----------------------------------------------------------------------===// 552 // XOrIOp 553 //===----------------------------------------------------------------------===// 554 555 OpFoldResult arith::XOrIOp::fold(ArrayRef<Attribute> operands) { 556 /// xor(x, 0) -> x 557 if (matchPattern(getRhs(), m_Zero())) 558 return getLhs(); 559 /// xor(x, x) -> 0 560 if (getLhs() == getRhs()) 561 return Builder(getContext()).getZeroAttr(getType()); 562 /// xor(xor(x, a), a) -> x 563 if (arith::XOrIOp prev = getLhs().getDefiningOp<arith::XOrIOp>()) 564 if (prev.getRhs() == getRhs()) 565 return prev.getLhs(); 566 567 return constFoldBinaryOp<IntegerAttr>( 568 operands, [](APInt a, const APInt &b) { return std::move(a) ^ b; }); 569 } 570 571 void arith::XOrIOp::getCanonicalizationPatterns( 572 RewritePatternSet &patterns, MLIRContext *context) { 573 patterns.add<XOrINotCmpI>(context); 574 } 575 576 //===----------------------------------------------------------------------===// 577 // AddFOp 578 //===----------------------------------------------------------------------===// 579 580 OpFoldResult arith::AddFOp::fold(ArrayRef<Attribute> operands) { 581 // addf(x, -0) -> x 582 if (matchPattern(getRhs(), m_NegZeroFloat())) 583 return getLhs(); 584 585 return constFoldBinaryOp<FloatAttr>( 586 operands, [](const APFloat &a, const APFloat &b) { return a + b; }); 587 } 588 589 //===----------------------------------------------------------------------===// 590 // SubFOp 591 //===----------------------------------------------------------------------===// 592 593 OpFoldResult arith::SubFOp::fold(ArrayRef<Attribute> operands) { 594 // subf(x, +0) -> x 595 if (matchPattern(getRhs(), m_PosZeroFloat())) 596 return getLhs(); 597 598 return constFoldBinaryOp<FloatAttr>( 599 operands, [](const APFloat &a, const APFloat &b) { return a - b; }); 600 } 601 602 //===----------------------------------------------------------------------===// 603 // MaxFOp 604 //===----------------------------------------------------------------------===// 605 606 OpFoldResult arith::MaxFOp::fold(ArrayRef<Attribute> operands) { 607 assert(operands.size() == 2 && "maxf takes two operands"); 608 609 // maxf(x,x) -> x 610 if (getLhs() == getRhs()) 611 return getRhs(); 612 613 // maxf(x, -inf) -> x 614 if (matchPattern(getRhs(), m_NegInfFloat())) 615 return getLhs(); 616 617 return constFoldBinaryOp<FloatAttr>( 618 operands, 619 [](const APFloat &a, const APFloat &b) { return llvm::maximum(a, b); }); 620 } 621 622 //===----------------------------------------------------------------------===// 623 // MaxSIOp 624 //===----------------------------------------------------------------------===// 625 626 OpFoldResult MaxSIOp::fold(ArrayRef<Attribute> operands) { 627 assert(operands.size() == 2 && "binary operation takes two operands"); 628 629 // maxsi(x,x) -> x 630 if (getLhs() == getRhs()) 631 return getRhs(); 632 633 APInt intValue; 634 // maxsi(x,MAX_INT) -> MAX_INT 635 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && 636 intValue.isMaxSignedValue()) 637 return getRhs(); 638 639 // maxsi(x, MIN_INT) -> x 640 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && 641 intValue.isMinSignedValue()) 642 return getLhs(); 643 644 return constFoldBinaryOp<IntegerAttr>(operands, 645 [](const APInt &a, const APInt &b) { 646 return llvm::APIntOps::smax(a, b); 647 }); 648 } 649 650 //===----------------------------------------------------------------------===// 651 // MaxUIOp 652 //===----------------------------------------------------------------------===// 653 654 OpFoldResult MaxUIOp::fold(ArrayRef<Attribute> operands) { 655 assert(operands.size() == 2 && "binary operation takes two operands"); 656 657 // maxui(x,x) -> x 658 if (getLhs() == getRhs()) 659 return getRhs(); 660 661 APInt intValue; 662 // maxui(x,MAX_INT) -> MAX_INT 663 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && intValue.isMaxValue()) 664 return getRhs(); 665 666 // maxui(x, MIN_INT) -> x 667 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && intValue.isMinValue()) 668 return getLhs(); 669 670 return constFoldBinaryOp<IntegerAttr>(operands, 671 [](const APInt &a, const APInt &b) { 672 return llvm::APIntOps::umax(a, b); 673 }); 674 } 675 676 //===----------------------------------------------------------------------===// 677 // MinFOp 678 //===----------------------------------------------------------------------===// 679 680 OpFoldResult arith::MinFOp::fold(ArrayRef<Attribute> operands) { 681 assert(operands.size() == 2 && "minf takes two operands"); 682 683 // minf(x,x) -> x 684 if (getLhs() == getRhs()) 685 return getRhs(); 686 687 // minf(x, +inf) -> x 688 if (matchPattern(getRhs(), m_PosInfFloat())) 689 return getLhs(); 690 691 return constFoldBinaryOp<FloatAttr>( 692 operands, 693 [](const APFloat &a, const APFloat &b) { return llvm::minimum(a, b); }); 694 } 695 696 //===----------------------------------------------------------------------===// 697 // MinSIOp 698 //===----------------------------------------------------------------------===// 699 700 OpFoldResult MinSIOp::fold(ArrayRef<Attribute> operands) { 701 assert(operands.size() == 2 && "binary operation takes two operands"); 702 703 // minsi(x,x) -> x 704 if (getLhs() == getRhs()) 705 return getRhs(); 706 707 APInt intValue; 708 // minsi(x,MIN_INT) -> MIN_INT 709 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && 710 intValue.isMinSignedValue()) 711 return getRhs(); 712 713 // minsi(x, MAX_INT) -> x 714 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && 715 intValue.isMaxSignedValue()) 716 return getLhs(); 717 718 return constFoldBinaryOp<IntegerAttr>(operands, 719 [](const APInt &a, const APInt &b) { 720 return llvm::APIntOps::smin(a, b); 721 }); 722 } 723 724 //===----------------------------------------------------------------------===// 725 // MinUIOp 726 //===----------------------------------------------------------------------===// 727 728 OpFoldResult MinUIOp::fold(ArrayRef<Attribute> operands) { 729 assert(operands.size() == 2 && "binary operation takes two operands"); 730 731 // minui(x,x) -> x 732 if (getLhs() == getRhs()) 733 return getRhs(); 734 735 APInt intValue; 736 // minui(x,MIN_INT) -> MIN_INT 737 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && intValue.isMinValue()) 738 return getRhs(); 739 740 // minui(x, MAX_INT) -> x 741 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && intValue.isMaxValue()) 742 return getLhs(); 743 744 return constFoldBinaryOp<IntegerAttr>(operands, 745 [](const APInt &a, const APInt &b) { 746 return llvm::APIntOps::umin(a, b); 747 }); 748 } 749 750 //===----------------------------------------------------------------------===// 751 // MulFOp 752 //===----------------------------------------------------------------------===// 753 754 OpFoldResult arith::MulFOp::fold(ArrayRef<Attribute> operands) { 755 APFloat floatValue(0.0f), inverseValue(0.0f); 756 // mulf(x, 1) -> x 757 if (matchPattern(getRhs(), m_OneFloat())) 758 return getLhs(); 759 760 // mulf(1, x) -> x 761 if (matchPattern(getLhs(), m_OneFloat())) 762 return getRhs(); 763 764 return constFoldBinaryOp<FloatAttr>( 765 operands, [](const APFloat &a, const APFloat &b) { return a * b; }); 766 } 767 768 //===----------------------------------------------------------------------===// 769 // DivFOp 770 //===----------------------------------------------------------------------===// 771 772 OpFoldResult arith::DivFOp::fold(ArrayRef<Attribute> operands) { 773 APFloat floatValue(0.0f), inverseValue(0.0f); 774 // divf(x, 1) -> x 775 if (matchPattern(getRhs(), m_OneFloat())) 776 return getLhs(); 777 778 return constFoldBinaryOp<FloatAttr>( 779 operands, [](const APFloat &a, const APFloat &b) { return a / b; }); 780 } 781 782 //===----------------------------------------------------------------------===// 783 // Utility functions for verifying cast ops 784 //===----------------------------------------------------------------------===// 785 786 template <typename... Types> 787 using type_list = std::tuple<Types...> *; 788 789 /// Returns a non-null type only if the provided type is one of the allowed 790 /// types or one of the allowed shaped types of the allowed types. Returns the 791 /// element type if a valid shaped type is provided. 792 template <typename... ShapedTypes, typename... ElementTypes> 793 static Type getUnderlyingType(Type type, type_list<ShapedTypes...>, 794 type_list<ElementTypes...>) { 795 if (type.isa<ShapedType>() && !type.isa<ShapedTypes...>()) 796 return {}; 797 798 auto underlyingType = getElementTypeOrSelf(type); 799 if (!underlyingType.isa<ElementTypes...>()) 800 return {}; 801 802 return underlyingType; 803 } 804 805 /// Get allowed underlying types for vectors and tensors. 806 template <typename... ElementTypes> 807 static Type getTypeIfLike(Type type) { 808 return getUnderlyingType(type, type_list<VectorType, TensorType>(), 809 type_list<ElementTypes...>()); 810 } 811 812 /// Get allowed underlying types for vectors, tensors, and memrefs. 813 template <typename... ElementTypes> 814 static Type getTypeIfLikeOrMemRef(Type type) { 815 return getUnderlyingType(type, 816 type_list<VectorType, TensorType, MemRefType>(), 817 type_list<ElementTypes...>()); 818 } 819 820 static bool areValidCastInputsAndOutputs(TypeRange inputs, TypeRange outputs) { 821 return inputs.size() == 1 && outputs.size() == 1 && 822 succeeded(verifyCompatibleShapes(inputs.front(), outputs.front())); 823 } 824 825 //===----------------------------------------------------------------------===// 826 // Verifiers for integer and floating point extension/truncation ops 827 //===----------------------------------------------------------------------===// 828 829 // Extend ops can only extend to a wider type. 830 template <typename ValType, typename Op> 831 static LogicalResult verifyExtOp(Op op) { 832 Type srcType = getElementTypeOrSelf(op.getIn().getType()); 833 Type dstType = getElementTypeOrSelf(op.getType()); 834 835 if (srcType.cast<ValType>().getWidth() >= dstType.cast<ValType>().getWidth()) 836 return op.emitError("result type ") 837 << dstType << " must be wider than operand type " << srcType; 838 839 return success(); 840 } 841 842 // Truncate ops can only truncate to a shorter type. 843 template <typename ValType, typename Op> 844 static LogicalResult verifyTruncateOp(Op op) { 845 Type srcType = getElementTypeOrSelf(op.getIn().getType()); 846 Type dstType = getElementTypeOrSelf(op.getType()); 847 848 if (srcType.cast<ValType>().getWidth() <= dstType.cast<ValType>().getWidth()) 849 return op.emitError("result type ") 850 << dstType << " must be shorter than operand type " << srcType; 851 852 return success(); 853 } 854 855 /// Validate a cast that changes the width of a type. 856 template <template <typename> class WidthComparator, typename... ElementTypes> 857 static bool checkWidthChangeCast(TypeRange inputs, TypeRange outputs) { 858 if (!areValidCastInputsAndOutputs(inputs, outputs)) 859 return false; 860 861 auto srcType = getTypeIfLike<ElementTypes...>(inputs.front()); 862 auto dstType = getTypeIfLike<ElementTypes...>(outputs.front()); 863 if (!srcType || !dstType) 864 return false; 865 866 return WidthComparator<unsigned>()(dstType.getIntOrFloatBitWidth(), 867 srcType.getIntOrFloatBitWidth()); 868 } 869 870 //===----------------------------------------------------------------------===// 871 // ExtUIOp 872 //===----------------------------------------------------------------------===// 873 874 OpFoldResult arith::ExtUIOp::fold(ArrayRef<Attribute> operands) { 875 if (auto lhs = operands[0].dyn_cast_or_null<IntegerAttr>()) 876 return IntegerAttr::get( 877 getType(), lhs.getValue().zext(getType().getIntOrFloatBitWidth())); 878 879 if (auto lhs = getIn().getDefiningOp<ExtUIOp>()) { 880 getInMutable().assign(lhs.getIn()); 881 return getResult(); 882 } 883 884 return {}; 885 } 886 887 bool arith::ExtUIOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 888 return checkWidthChangeCast<std::greater, IntegerType>(inputs, outputs); 889 } 890 891 LogicalResult arith::ExtUIOp::verify() { 892 return verifyExtOp<IntegerType>(*this); 893 } 894 895 //===----------------------------------------------------------------------===// 896 // ExtSIOp 897 //===----------------------------------------------------------------------===// 898 899 OpFoldResult arith::ExtSIOp::fold(ArrayRef<Attribute> operands) { 900 if (auto lhs = operands[0].dyn_cast_or_null<IntegerAttr>()) 901 return IntegerAttr::get( 902 getType(), lhs.getValue().sext(getType().getIntOrFloatBitWidth())); 903 904 if (auto lhs = getIn().getDefiningOp<ExtSIOp>()) { 905 getInMutable().assign(lhs.getIn()); 906 return getResult(); 907 } 908 909 return {}; 910 } 911 912 bool arith::ExtSIOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 913 return checkWidthChangeCast<std::greater, IntegerType>(inputs, outputs); 914 } 915 916 void arith::ExtSIOp::getCanonicalizationPatterns( 917 RewritePatternSet &patterns, MLIRContext *context) { 918 patterns.add<ExtSIOfExtUI>(context); 919 } 920 921 LogicalResult arith::ExtSIOp::verify() { 922 return verifyExtOp<IntegerType>(*this); 923 } 924 925 //===----------------------------------------------------------------------===// 926 // ExtFOp 927 //===----------------------------------------------------------------------===// 928 929 bool arith::ExtFOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 930 return checkWidthChangeCast<std::greater, FloatType>(inputs, outputs); 931 } 932 933 LogicalResult arith::ExtFOp::verify() { return verifyExtOp<FloatType>(*this); } 934 935 //===----------------------------------------------------------------------===// 936 // TruncIOp 937 //===----------------------------------------------------------------------===// 938 939 OpFoldResult arith::TruncIOp::fold(ArrayRef<Attribute> operands) { 940 assert(operands.size() == 1 && "unary operation takes one operand"); 941 942 // trunci(zexti(a)) -> a 943 // trunci(sexti(a)) -> a 944 if (matchPattern(getOperand(), m_Op<arith::ExtUIOp>()) || 945 matchPattern(getOperand(), m_Op<arith::ExtSIOp>())) 946 return getOperand().getDefiningOp()->getOperand(0); 947 948 // trunci(trunci(a)) -> trunci(a)) 949 if (matchPattern(getOperand(), m_Op<arith::TruncIOp>())) { 950 setOperand(getOperand().getDefiningOp()->getOperand(0)); 951 return getResult(); 952 } 953 954 if (!operands[0]) 955 return {}; 956 957 if (auto lhs = operands[0].dyn_cast<IntegerAttr>()) { 958 return IntegerAttr::get( 959 getType(), lhs.getValue().trunc(getType().getIntOrFloatBitWidth())); 960 } 961 962 return {}; 963 } 964 965 bool arith::TruncIOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 966 return checkWidthChangeCast<std::less, IntegerType>(inputs, outputs); 967 } 968 969 LogicalResult arith::TruncIOp::verify() { 970 return verifyTruncateOp<IntegerType>(*this); 971 } 972 973 //===----------------------------------------------------------------------===// 974 // TruncFOp 975 //===----------------------------------------------------------------------===// 976 977 /// Perform safe const propagation for truncf, i.e. only propagate if FP value 978 /// can be represented without precision loss or rounding. 979 OpFoldResult arith::TruncFOp::fold(ArrayRef<Attribute> operands) { 980 assert(operands.size() == 1 && "unary operation takes one operand"); 981 982 auto constOperand = operands.front(); 983 if (!constOperand || !constOperand.isa<FloatAttr>()) 984 return {}; 985 986 // Convert to target type via 'double'. 987 double sourceValue = 988 constOperand.dyn_cast<FloatAttr>().getValue().convertToDouble(); 989 auto targetAttr = FloatAttr::get(getType(), sourceValue); 990 991 // Propagate if constant's value does not change after truncation. 992 if (sourceValue == targetAttr.getValue().convertToDouble()) 993 return targetAttr; 994 995 return {}; 996 } 997 998 bool arith::TruncFOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 999 return checkWidthChangeCast<std::less, FloatType>(inputs, outputs); 1000 } 1001 1002 LogicalResult arith::TruncFOp::verify() { 1003 return verifyTruncateOp<FloatType>(*this); 1004 } 1005 1006 //===----------------------------------------------------------------------===// 1007 // AndIOp 1008 //===----------------------------------------------------------------------===// 1009 1010 void arith::AndIOp::getCanonicalizationPatterns( 1011 RewritePatternSet &patterns, MLIRContext *context) { 1012 patterns.add<AndOfExtUI, AndOfExtSI>(context); 1013 } 1014 1015 //===----------------------------------------------------------------------===// 1016 // OrIOp 1017 //===----------------------------------------------------------------------===// 1018 1019 void arith::OrIOp::getCanonicalizationPatterns( 1020 RewritePatternSet &patterns, MLIRContext *context) { 1021 patterns.add<OrOfExtUI, OrOfExtSI>(context); 1022 } 1023 1024 //===----------------------------------------------------------------------===// 1025 // Verifiers for casts between integers and floats. 1026 //===----------------------------------------------------------------------===// 1027 1028 template <typename From, typename To> 1029 static bool checkIntFloatCast(TypeRange inputs, TypeRange outputs) { 1030 if (!areValidCastInputsAndOutputs(inputs, outputs)) 1031 return false; 1032 1033 auto srcType = getTypeIfLike<From>(inputs.front()); 1034 auto dstType = getTypeIfLike<To>(outputs.back()); 1035 1036 return srcType && dstType; 1037 } 1038 1039 //===----------------------------------------------------------------------===// 1040 // UIToFPOp 1041 //===----------------------------------------------------------------------===// 1042 1043 bool arith::UIToFPOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 1044 return checkIntFloatCast<IntegerType, FloatType>(inputs, outputs); 1045 } 1046 1047 OpFoldResult arith::UIToFPOp::fold(ArrayRef<Attribute> operands) { 1048 if (auto lhs = operands[0].dyn_cast_or_null<IntegerAttr>()) { 1049 const APInt &api = lhs.getValue(); 1050 FloatType floatTy = getType().cast<FloatType>(); 1051 APFloat apf(floatTy.getFloatSemantics(), 1052 APInt::getZero(floatTy.getWidth())); 1053 apf.convertFromAPInt(api, /*IsSigned=*/false, APFloat::rmNearestTiesToEven); 1054 return FloatAttr::get(floatTy, apf); 1055 } 1056 return {}; 1057 } 1058 1059 //===----------------------------------------------------------------------===// 1060 // SIToFPOp 1061 //===----------------------------------------------------------------------===// 1062 1063 bool arith::SIToFPOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 1064 return checkIntFloatCast<IntegerType, FloatType>(inputs, outputs); 1065 } 1066 1067 OpFoldResult arith::SIToFPOp::fold(ArrayRef<Attribute> operands) { 1068 if (auto lhs = operands[0].dyn_cast_or_null<IntegerAttr>()) { 1069 const APInt &api = lhs.getValue(); 1070 FloatType floatTy = getType().cast<FloatType>(); 1071 APFloat apf(floatTy.getFloatSemantics(), 1072 APInt::getZero(floatTy.getWidth())); 1073 apf.convertFromAPInt(api, /*IsSigned=*/true, APFloat::rmNearestTiesToEven); 1074 return FloatAttr::get(floatTy, apf); 1075 } 1076 return {}; 1077 } 1078 //===----------------------------------------------------------------------===// 1079 // FPToUIOp 1080 //===----------------------------------------------------------------------===// 1081 1082 bool arith::FPToUIOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 1083 return checkIntFloatCast<FloatType, IntegerType>(inputs, outputs); 1084 } 1085 1086 OpFoldResult arith::FPToUIOp::fold(ArrayRef<Attribute> operands) { 1087 if (auto lhs = operands[0].dyn_cast_or_null<FloatAttr>()) { 1088 const APFloat &apf = lhs.getValue(); 1089 IntegerType intTy = getType().cast<IntegerType>(); 1090 bool ignored; 1091 APSInt api(intTy.getWidth(), /*isUnsigned=*/true); 1092 if (APFloat::opInvalidOp == 1093 apf.convertToInteger(api, APFloat::rmTowardZero, &ignored)) { 1094 // Undefined behavior invoked - the destination type can't represent 1095 // the input constant. 1096 return {}; 1097 } 1098 return IntegerAttr::get(getType(), api); 1099 } 1100 1101 return {}; 1102 } 1103 1104 //===----------------------------------------------------------------------===// 1105 // FPToSIOp 1106 //===----------------------------------------------------------------------===// 1107 1108 bool arith::FPToSIOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 1109 return checkIntFloatCast<FloatType, IntegerType>(inputs, outputs); 1110 } 1111 1112 OpFoldResult arith::FPToSIOp::fold(ArrayRef<Attribute> operands) { 1113 if (auto lhs = operands[0].dyn_cast_or_null<FloatAttr>()) { 1114 const APFloat &apf = lhs.getValue(); 1115 IntegerType intTy = getType().cast<IntegerType>(); 1116 bool ignored; 1117 APSInt api(intTy.getWidth(), /*isUnsigned=*/false); 1118 if (APFloat::opInvalidOp == 1119 apf.convertToInteger(api, APFloat::rmTowardZero, &ignored)) { 1120 // Undefined behavior invoked - the destination type can't represent 1121 // the input constant. 1122 return {}; 1123 } 1124 return IntegerAttr::get(getType(), api); 1125 } 1126 1127 return {}; 1128 } 1129 1130 //===----------------------------------------------------------------------===// 1131 // IndexCastOp 1132 //===----------------------------------------------------------------------===// 1133 1134 bool arith::IndexCastOp::areCastCompatible(TypeRange inputs, 1135 TypeRange outputs) { 1136 if (!areValidCastInputsAndOutputs(inputs, outputs)) 1137 return false; 1138 1139 auto srcType = getTypeIfLikeOrMemRef<IntegerType, IndexType>(inputs.front()); 1140 auto dstType = getTypeIfLikeOrMemRef<IntegerType, IndexType>(outputs.front()); 1141 if (!srcType || !dstType) 1142 return false; 1143 1144 return (srcType.isIndex() && dstType.isSignlessInteger()) || 1145 (srcType.isSignlessInteger() && dstType.isIndex()); 1146 } 1147 1148 OpFoldResult arith::IndexCastOp::fold(ArrayRef<Attribute> operands) { 1149 // index_cast(constant) -> constant 1150 // A little hack because we go through int. Otherwise, the size of the 1151 // constant might need to change. 1152 if (auto value = operands[0].dyn_cast_or_null<IntegerAttr>()) 1153 return IntegerAttr::get(getType(), value.getInt()); 1154 1155 return {}; 1156 } 1157 1158 void arith::IndexCastOp::getCanonicalizationPatterns( 1159 RewritePatternSet &patterns, MLIRContext *context) { 1160 patterns.add<IndexCastOfIndexCast, IndexCastOfExtSI>(context); 1161 } 1162 1163 //===----------------------------------------------------------------------===// 1164 // BitcastOp 1165 //===----------------------------------------------------------------------===// 1166 1167 bool arith::BitcastOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 1168 if (!areValidCastInputsAndOutputs(inputs, outputs)) 1169 return false; 1170 1171 auto srcType = 1172 getTypeIfLikeOrMemRef<IntegerType, IndexType, FloatType>(inputs.front()); 1173 auto dstType = 1174 getTypeIfLikeOrMemRef<IntegerType, IndexType, FloatType>(outputs.front()); 1175 if (!srcType || !dstType) 1176 return false; 1177 1178 return srcType.getIntOrFloatBitWidth() == dstType.getIntOrFloatBitWidth(); 1179 } 1180 1181 OpFoldResult arith::BitcastOp::fold(ArrayRef<Attribute> operands) { 1182 assert(operands.size() == 1 && "bitcast op expects 1 operand"); 1183 1184 auto resType = getType(); 1185 auto operand = operands[0]; 1186 if (!operand) 1187 return {}; 1188 1189 /// Bitcast dense elements. 1190 if (auto denseAttr = operand.dyn_cast_or_null<DenseElementsAttr>()) 1191 return denseAttr.bitcast(resType.cast<ShapedType>().getElementType()); 1192 /// Other shaped types unhandled. 1193 if (resType.isa<ShapedType>()) 1194 return {}; 1195 1196 /// Bitcast integer or float to integer or float. 1197 APInt bits = operand.isa<FloatAttr>() 1198 ? operand.cast<FloatAttr>().getValue().bitcastToAPInt() 1199 : operand.cast<IntegerAttr>().getValue(); 1200 1201 if (auto resFloatType = resType.dyn_cast<FloatType>()) 1202 return FloatAttr::get(resType, 1203 APFloat(resFloatType.getFloatSemantics(), bits)); 1204 return IntegerAttr::get(resType, bits); 1205 } 1206 1207 void arith::BitcastOp::getCanonicalizationPatterns( 1208 RewritePatternSet &patterns, MLIRContext *context) { 1209 patterns.add<BitcastOfBitcast>(context); 1210 } 1211 1212 //===----------------------------------------------------------------------===// 1213 // Helpers for compare ops 1214 //===----------------------------------------------------------------------===// 1215 1216 /// Return the type of the same shape (scalar, vector or tensor) containing i1. 1217 static Type getI1SameShape(Type type) { 1218 auto i1Type = IntegerType::get(type.getContext(), 1); 1219 if (auto tensorType = type.dyn_cast<RankedTensorType>()) 1220 return RankedTensorType::get(tensorType.getShape(), i1Type); 1221 if (type.isa<UnrankedTensorType>()) 1222 return UnrankedTensorType::get(i1Type); 1223 if (auto vectorType = type.dyn_cast<VectorType>()) 1224 return VectorType::get(vectorType.getShape(), i1Type, 1225 vectorType.getNumScalableDims()); 1226 return i1Type; 1227 } 1228 1229 //===----------------------------------------------------------------------===// 1230 // CmpIOp 1231 //===----------------------------------------------------------------------===// 1232 1233 /// Compute `lhs` `pred` `rhs`, where `pred` is one of the known integer 1234 /// comparison predicates. 1235 bool mlir::arith::applyCmpPredicate(arith::CmpIPredicate predicate, 1236 const APInt &lhs, const APInt &rhs) { 1237 switch (predicate) { 1238 case arith::CmpIPredicate::eq: 1239 return lhs.eq(rhs); 1240 case arith::CmpIPredicate::ne: 1241 return lhs.ne(rhs); 1242 case arith::CmpIPredicate::slt: 1243 return lhs.slt(rhs); 1244 case arith::CmpIPredicate::sle: 1245 return lhs.sle(rhs); 1246 case arith::CmpIPredicate::sgt: 1247 return lhs.sgt(rhs); 1248 case arith::CmpIPredicate::sge: 1249 return lhs.sge(rhs); 1250 case arith::CmpIPredicate::ult: 1251 return lhs.ult(rhs); 1252 case arith::CmpIPredicate::ule: 1253 return lhs.ule(rhs); 1254 case arith::CmpIPredicate::ugt: 1255 return lhs.ugt(rhs); 1256 case arith::CmpIPredicate::uge: 1257 return lhs.uge(rhs); 1258 } 1259 llvm_unreachable("unknown cmpi predicate kind"); 1260 } 1261 1262 /// Returns true if the predicate is true for two equal operands. 1263 static bool applyCmpPredicateToEqualOperands(arith::CmpIPredicate predicate) { 1264 switch (predicate) { 1265 case arith::CmpIPredicate::eq: 1266 case arith::CmpIPredicate::sle: 1267 case arith::CmpIPredicate::sge: 1268 case arith::CmpIPredicate::ule: 1269 case arith::CmpIPredicate::uge: 1270 return true; 1271 case arith::CmpIPredicate::ne: 1272 case arith::CmpIPredicate::slt: 1273 case arith::CmpIPredicate::sgt: 1274 case arith::CmpIPredicate::ult: 1275 case arith::CmpIPredicate::ugt: 1276 return false; 1277 } 1278 llvm_unreachable("unknown cmpi predicate kind"); 1279 } 1280 1281 static Attribute getBoolAttribute(Type type, MLIRContext *ctx, bool value) { 1282 auto boolAttr = BoolAttr::get(ctx, value); 1283 ShapedType shapedType = type.dyn_cast_or_null<ShapedType>(); 1284 if (!shapedType) 1285 return boolAttr; 1286 return DenseElementsAttr::get(shapedType, boolAttr); 1287 } 1288 1289 OpFoldResult arith::CmpIOp::fold(ArrayRef<Attribute> operands) { 1290 assert(operands.size() == 2 && "cmpi takes two operands"); 1291 1292 // cmpi(pred, x, x) 1293 if (getLhs() == getRhs()) { 1294 auto val = applyCmpPredicateToEqualOperands(getPredicate()); 1295 return getBoolAttribute(getType(), getContext(), val); 1296 } 1297 1298 if (matchPattern(getRhs(), m_Zero())) { 1299 if (auto extOp = getLhs().getDefiningOp<ExtSIOp>()) { 1300 if (extOp.getOperand().getType().cast<IntegerType>().getWidth() == 1) { 1301 // extsi(%x : i1 -> iN) != 0 -> %x 1302 if (getPredicate() == arith::CmpIPredicate::ne) { 1303 return extOp.getOperand(); 1304 } 1305 } 1306 } 1307 if (auto extOp = getLhs().getDefiningOp<ExtUIOp>()) { 1308 if (extOp.getOperand().getType().cast<IntegerType>().getWidth() == 1) { 1309 // extui(%x : i1 -> iN) != 0 -> %x 1310 if (getPredicate() == arith::CmpIPredicate::ne) { 1311 return extOp.getOperand(); 1312 } 1313 } 1314 } 1315 } 1316 1317 auto lhs = operands.front().dyn_cast_or_null<IntegerAttr>(); 1318 auto rhs = operands.back().dyn_cast_or_null<IntegerAttr>(); 1319 if (!lhs || !rhs) 1320 return {}; 1321 1322 auto val = applyCmpPredicate(getPredicate(), lhs.getValue(), rhs.getValue()); 1323 return BoolAttr::get(getContext(), val); 1324 } 1325 1326 void arith::CmpIOp::getCanonicalizationPatterns(RewritePatternSet &patterns, 1327 MLIRContext *context) { 1328 patterns.insert<CmpIExtSI, CmpIExtUI>(context); 1329 } 1330 1331 //===----------------------------------------------------------------------===// 1332 // CmpFOp 1333 //===----------------------------------------------------------------------===// 1334 1335 /// Compute `lhs` `pred` `rhs`, where `pred` is one of the known floating point 1336 /// comparison predicates. 1337 bool mlir::arith::applyCmpPredicate(arith::CmpFPredicate predicate, 1338 const APFloat &lhs, const APFloat &rhs) { 1339 auto cmpResult = lhs.compare(rhs); 1340 switch (predicate) { 1341 case arith::CmpFPredicate::AlwaysFalse: 1342 return false; 1343 case arith::CmpFPredicate::OEQ: 1344 return cmpResult == APFloat::cmpEqual; 1345 case arith::CmpFPredicate::OGT: 1346 return cmpResult == APFloat::cmpGreaterThan; 1347 case arith::CmpFPredicate::OGE: 1348 return cmpResult == APFloat::cmpGreaterThan || 1349 cmpResult == APFloat::cmpEqual; 1350 case arith::CmpFPredicate::OLT: 1351 return cmpResult == APFloat::cmpLessThan; 1352 case arith::CmpFPredicate::OLE: 1353 return cmpResult == APFloat::cmpLessThan || cmpResult == APFloat::cmpEqual; 1354 case arith::CmpFPredicate::ONE: 1355 return cmpResult != APFloat::cmpUnordered && cmpResult != APFloat::cmpEqual; 1356 case arith::CmpFPredicate::ORD: 1357 return cmpResult != APFloat::cmpUnordered; 1358 case arith::CmpFPredicate::UEQ: 1359 return cmpResult == APFloat::cmpUnordered || cmpResult == APFloat::cmpEqual; 1360 case arith::CmpFPredicate::UGT: 1361 return cmpResult == APFloat::cmpUnordered || 1362 cmpResult == APFloat::cmpGreaterThan; 1363 case arith::CmpFPredicate::UGE: 1364 return cmpResult == APFloat::cmpUnordered || 1365 cmpResult == APFloat::cmpGreaterThan || 1366 cmpResult == APFloat::cmpEqual; 1367 case arith::CmpFPredicate::ULT: 1368 return cmpResult == APFloat::cmpUnordered || 1369 cmpResult == APFloat::cmpLessThan; 1370 case arith::CmpFPredicate::ULE: 1371 return cmpResult == APFloat::cmpUnordered || 1372 cmpResult == APFloat::cmpLessThan || cmpResult == APFloat::cmpEqual; 1373 case arith::CmpFPredicate::UNE: 1374 return cmpResult != APFloat::cmpEqual; 1375 case arith::CmpFPredicate::UNO: 1376 return cmpResult == APFloat::cmpUnordered; 1377 case arith::CmpFPredicate::AlwaysTrue: 1378 return true; 1379 } 1380 llvm_unreachable("unknown cmpf predicate kind"); 1381 } 1382 1383 OpFoldResult arith::CmpFOp::fold(ArrayRef<Attribute> operands) { 1384 assert(operands.size() == 2 && "cmpf takes two operands"); 1385 1386 auto lhs = operands.front().dyn_cast_or_null<FloatAttr>(); 1387 auto rhs = operands.back().dyn_cast_or_null<FloatAttr>(); 1388 1389 // If one operand is NaN, making them both NaN does not change the result. 1390 if (lhs && lhs.getValue().isNaN()) 1391 rhs = lhs; 1392 if (rhs && rhs.getValue().isNaN()) 1393 lhs = rhs; 1394 1395 if (!lhs || !rhs) 1396 return {}; 1397 1398 auto val = applyCmpPredicate(getPredicate(), lhs.getValue(), rhs.getValue()); 1399 return BoolAttr::get(getContext(), val); 1400 } 1401 1402 class CmpFIntToFPConst final : public OpRewritePattern<CmpFOp> { 1403 public: 1404 using OpRewritePattern<CmpFOp>::OpRewritePattern; 1405 1406 static CmpIPredicate convertToIntegerPredicate(CmpFPredicate pred, 1407 bool isUnsigned) { 1408 using namespace arith; 1409 switch (pred) { 1410 case CmpFPredicate::UEQ: 1411 case CmpFPredicate::OEQ: 1412 return CmpIPredicate::eq; 1413 case CmpFPredicate::UGT: 1414 case CmpFPredicate::OGT: 1415 return isUnsigned ? CmpIPredicate::ugt : CmpIPredicate::sgt; 1416 case CmpFPredicate::UGE: 1417 case CmpFPredicate::OGE: 1418 return isUnsigned ? CmpIPredicate::uge : CmpIPredicate::sge; 1419 case CmpFPredicate::ULT: 1420 case CmpFPredicate::OLT: 1421 return isUnsigned ? CmpIPredicate::ult : CmpIPredicate::slt; 1422 case CmpFPredicate::ULE: 1423 case CmpFPredicate::OLE: 1424 return isUnsigned ? CmpIPredicate::ule : CmpIPredicate::sle; 1425 case CmpFPredicate::UNE: 1426 case CmpFPredicate::ONE: 1427 return CmpIPredicate::ne; 1428 default: 1429 llvm_unreachable("Unexpected predicate!"); 1430 } 1431 } 1432 1433 LogicalResult matchAndRewrite(CmpFOp op, 1434 PatternRewriter &rewriter) const override { 1435 FloatAttr flt; 1436 if (!matchPattern(op.getRhs(), m_Constant(&flt))) 1437 return failure(); 1438 1439 const APFloat &rhs = flt.getValue(); 1440 1441 // Don't attempt to fold a nan. 1442 if (rhs.isNaN()) 1443 return failure(); 1444 1445 // Get the width of the mantissa. We don't want to hack on conversions that 1446 // might lose information from the integer, e.g. "i64 -> float" 1447 FloatType floatTy = op.getRhs().getType().cast<FloatType>(); 1448 int mantissaWidth = floatTy.getFPMantissaWidth(); 1449 if (mantissaWidth <= 0) 1450 return failure(); 1451 1452 bool isUnsigned; 1453 Value intVal; 1454 1455 if (auto si = op.getLhs().getDefiningOp<SIToFPOp>()) { 1456 isUnsigned = false; 1457 intVal = si.getIn(); 1458 } else if (auto ui = op.getLhs().getDefiningOp<UIToFPOp>()) { 1459 isUnsigned = true; 1460 intVal = ui.getIn(); 1461 } else { 1462 return failure(); 1463 } 1464 1465 // Check to see that the input is converted from an integer type that is 1466 // small enough that preserves all bits. 1467 auto intTy = intVal.getType().cast<IntegerType>(); 1468 auto intWidth = intTy.getWidth(); 1469 1470 // Number of bits representing values, as opposed to the sign 1471 auto valueBits = isUnsigned ? intWidth : (intWidth - 1); 1472 1473 // Following test does NOT adjust intWidth downwards for signed inputs, 1474 // because the most negative value still requires all the mantissa bits 1475 // to distinguish it from one less than that value. 1476 if ((int)intWidth > mantissaWidth) { 1477 // Conversion would lose accuracy. Check if loss can impact comparison. 1478 int exponent = ilogb(rhs); 1479 if (exponent == APFloat::IEK_Inf) { 1480 int maxExponent = ilogb(APFloat::getLargest(rhs.getSemantics())); 1481 if (maxExponent < (int)valueBits) { 1482 // Conversion could create infinity. 1483 return failure(); 1484 } 1485 } else { 1486 // Note that if rhs is zero or NaN, then Exp is negative 1487 // and first condition is trivially false. 1488 if (mantissaWidth <= exponent && exponent <= (int)valueBits) { 1489 // Conversion could affect comparison. 1490 return failure(); 1491 } 1492 } 1493 } 1494 1495 // Convert to equivalent cmpi predicate 1496 CmpIPredicate pred; 1497 switch (op.getPredicate()) { 1498 case CmpFPredicate::ORD: 1499 // Int to fp conversion doesn't create a nan (ord checks neither is a nan) 1500 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1501 /*width=*/1); 1502 return success(); 1503 case CmpFPredicate::UNO: 1504 // Int to fp conversion doesn't create a nan (uno checks either is a nan) 1505 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1506 /*width=*/1); 1507 return success(); 1508 default: 1509 pred = convertToIntegerPredicate(op.getPredicate(), isUnsigned); 1510 break; 1511 } 1512 1513 if (!isUnsigned) { 1514 // If the rhs value is > SignedMax, fold the comparison. This handles 1515 // +INF and large values. 1516 APFloat signedMax(rhs.getSemantics()); 1517 signedMax.convertFromAPInt(APInt::getSignedMaxValue(intWidth), true, 1518 APFloat::rmNearestTiesToEven); 1519 if (signedMax < rhs) { // smax < 13123.0 1520 if (pred == CmpIPredicate::ne || pred == CmpIPredicate::slt || 1521 pred == CmpIPredicate::sle) 1522 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1523 /*width=*/1); 1524 else 1525 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1526 /*width=*/1); 1527 return success(); 1528 } 1529 } else { 1530 // If the rhs value is > UnsignedMax, fold the comparison. This handles 1531 // +INF and large values. 1532 APFloat unsignedMax(rhs.getSemantics()); 1533 unsignedMax.convertFromAPInt(APInt::getMaxValue(intWidth), false, 1534 APFloat::rmNearestTiesToEven); 1535 if (unsignedMax < rhs) { // umax < 13123.0 1536 if (pred == CmpIPredicate::ne || pred == CmpIPredicate::ult || 1537 pred == CmpIPredicate::ule) 1538 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1539 /*width=*/1); 1540 else 1541 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1542 /*width=*/1); 1543 return success(); 1544 } 1545 } 1546 1547 if (!isUnsigned) { 1548 // See if the rhs value is < SignedMin. 1549 APFloat signedMin(rhs.getSemantics()); 1550 signedMin.convertFromAPInt(APInt::getSignedMinValue(intWidth), true, 1551 APFloat::rmNearestTiesToEven); 1552 if (signedMin > rhs) { // smin > 12312.0 1553 if (pred == CmpIPredicate::ne || pred == CmpIPredicate::sgt || 1554 pred == CmpIPredicate::sge) 1555 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1556 /*width=*/1); 1557 else 1558 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1559 /*width=*/1); 1560 return success(); 1561 } 1562 } else { 1563 // See if the rhs value is < UnsignedMin. 1564 APFloat unsignedMin(rhs.getSemantics()); 1565 unsignedMin.convertFromAPInt(APInt::getMinValue(intWidth), false, 1566 APFloat::rmNearestTiesToEven); 1567 if (unsignedMin > rhs) { // umin > 12312.0 1568 if (pred == CmpIPredicate::ne || pred == CmpIPredicate::ugt || 1569 pred == CmpIPredicate::uge) 1570 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1571 /*width=*/1); 1572 else 1573 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1574 /*width=*/1); 1575 return success(); 1576 } 1577 } 1578 1579 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 1580 // [0, UMAX], but it may still be fractional. See if it is fractional by 1581 // casting the FP value to the integer value and back, checking for 1582 // equality. Don't do this for zero, because -0.0 is not fractional. 1583 bool ignored; 1584 APSInt rhsInt(intWidth, isUnsigned); 1585 if (APFloat::opInvalidOp == 1586 rhs.convertToInteger(rhsInt, APFloat::rmTowardZero, &ignored)) { 1587 // Undefined behavior invoked - the destination type can't represent 1588 // the input constant. 1589 return failure(); 1590 } 1591 1592 if (!rhs.isZero()) { 1593 APFloat apf(floatTy.getFloatSemantics(), 1594 APInt::getZero(floatTy.getWidth())); 1595 apf.convertFromAPInt(rhsInt, !isUnsigned, APFloat::rmNearestTiesToEven); 1596 1597 bool equal = apf == rhs; 1598 if (!equal) { 1599 // If we had a comparison against a fractional value, we have to adjust 1600 // the compare predicate and sometimes the value. rhsInt is rounded 1601 // towards zero at this point. 1602 switch (pred) { 1603 case CmpIPredicate::ne: // (float)int != 4.4 --> true 1604 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1605 /*width=*/1); 1606 return success(); 1607 case CmpIPredicate::eq: // (float)int == 4.4 --> false 1608 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1609 /*width=*/1); 1610 return success(); 1611 case CmpIPredicate::ule: 1612 // (float)int <= 4.4 --> int <= 4 1613 // (float)int <= -4.4 --> false 1614 if (rhs.isNegative()) { 1615 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1616 /*width=*/1); 1617 return success(); 1618 } 1619 break; 1620 case CmpIPredicate::sle: 1621 // (float)int <= 4.4 --> int <= 4 1622 // (float)int <= -4.4 --> int < -4 1623 if (rhs.isNegative()) 1624 pred = CmpIPredicate::slt; 1625 break; 1626 case CmpIPredicate::ult: 1627 // (float)int < -4.4 --> false 1628 // (float)int < 4.4 --> int <= 4 1629 if (rhs.isNegative()) { 1630 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1631 /*width=*/1); 1632 return success(); 1633 } 1634 pred = CmpIPredicate::ule; 1635 break; 1636 case CmpIPredicate::slt: 1637 // (float)int < -4.4 --> int < -4 1638 // (float)int < 4.4 --> int <= 4 1639 if (!rhs.isNegative()) 1640 pred = CmpIPredicate::sle; 1641 break; 1642 case CmpIPredicate::ugt: 1643 // (float)int > 4.4 --> int > 4 1644 // (float)int > -4.4 --> true 1645 if (rhs.isNegative()) { 1646 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1647 /*width=*/1); 1648 return success(); 1649 } 1650 break; 1651 case CmpIPredicate::sgt: 1652 // (float)int > 4.4 --> int > 4 1653 // (float)int > -4.4 --> int >= -4 1654 if (rhs.isNegative()) 1655 pred = CmpIPredicate::sge; 1656 break; 1657 case CmpIPredicate::uge: 1658 // (float)int >= -4.4 --> true 1659 // (float)int >= 4.4 --> int > 4 1660 if (rhs.isNegative()) { 1661 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1662 /*width=*/1); 1663 return success(); 1664 } 1665 pred = CmpIPredicate::ugt; 1666 break; 1667 case CmpIPredicate::sge: 1668 // (float)int >= -4.4 --> int >= -4 1669 // (float)int >= 4.4 --> int > 4 1670 if (!rhs.isNegative()) 1671 pred = CmpIPredicate::sgt; 1672 break; 1673 } 1674 } 1675 } 1676 1677 // Lower this FP comparison into an appropriate integer version of the 1678 // comparison. 1679 rewriter.replaceOpWithNewOp<CmpIOp>( 1680 op, pred, intVal, 1681 rewriter.create<ConstantOp>( 1682 op.getLoc(), intVal.getType(), 1683 rewriter.getIntegerAttr(intVal.getType(), rhsInt))); 1684 return success(); 1685 } 1686 }; 1687 1688 void arith::CmpFOp::getCanonicalizationPatterns(RewritePatternSet &patterns, 1689 MLIRContext *context) { 1690 patterns.insert<CmpFIntToFPConst>(context); 1691 } 1692 1693 //===----------------------------------------------------------------------===// 1694 // SelectOp 1695 //===----------------------------------------------------------------------===// 1696 1697 // Transforms a select of a boolean to arithmetic operations 1698 // 1699 // arith.select %arg, %x, %y : i1 1700 // 1701 // becomes 1702 // 1703 // and(%arg, %x) or and(!%arg, %y) 1704 struct SelectI1Simplify : public OpRewritePattern<arith::SelectOp> { 1705 using OpRewritePattern<arith::SelectOp>::OpRewritePattern; 1706 1707 LogicalResult matchAndRewrite(arith::SelectOp op, 1708 PatternRewriter &rewriter) const override { 1709 if (!op.getType().isInteger(1)) 1710 return failure(); 1711 1712 Value falseConstant = 1713 rewriter.create<arith::ConstantIntOp>(op.getLoc(), true, 1); 1714 Value notCondition = rewriter.create<arith::XOrIOp>( 1715 op.getLoc(), op.getCondition(), falseConstant); 1716 1717 Value trueVal = rewriter.create<arith::AndIOp>( 1718 op.getLoc(), op.getCondition(), op.getTrueValue()); 1719 Value falseVal = rewriter.create<arith::AndIOp>(op.getLoc(), notCondition, 1720 op.getFalseValue()); 1721 rewriter.replaceOpWithNewOp<arith::OrIOp>(op, trueVal, falseVal); 1722 return success(); 1723 } 1724 }; 1725 1726 // select %arg, %c1, %c0 => extui %arg 1727 struct SelectToExtUI : public OpRewritePattern<arith::SelectOp> { 1728 using OpRewritePattern<arith::SelectOp>::OpRewritePattern; 1729 1730 LogicalResult matchAndRewrite(arith::SelectOp op, 1731 PatternRewriter &rewriter) const override { 1732 // Cannot extui i1 to i1, or i1 to f32 1733 if (!op.getType().isa<IntegerType>() || op.getType().isInteger(1)) 1734 return failure(); 1735 1736 // select %x, c1, %c0 => extui %arg 1737 if (matchPattern(op.getTrueValue(), m_One())) 1738 if (matchPattern(op.getFalseValue(), m_Zero())) { 1739 rewriter.replaceOpWithNewOp<arith::ExtUIOp>(op, op.getType(), 1740 op.getCondition()); 1741 return success(); 1742 } 1743 1744 // select %x, c0, %c1 => extui (xor %arg, true) 1745 if (matchPattern(op.getTrueValue(), m_Zero())) 1746 if (matchPattern(op.getFalseValue(), m_One())) { 1747 rewriter.replaceOpWithNewOp<arith::ExtUIOp>( 1748 op, op.getType(), 1749 rewriter.create<arith::XOrIOp>( 1750 op.getLoc(), op.getCondition(), 1751 rewriter.create<arith::ConstantIntOp>( 1752 op.getLoc(), 1, op.getCondition().getType()))); 1753 return success(); 1754 } 1755 1756 return failure(); 1757 } 1758 }; 1759 1760 void arith::SelectOp::getCanonicalizationPatterns(RewritePatternSet &results, 1761 MLIRContext *context) { 1762 results.add<SelectI1Simplify, SelectToExtUI>(context); 1763 } 1764 1765 OpFoldResult arith::SelectOp::fold(ArrayRef<Attribute> operands) { 1766 Value trueVal = getTrueValue(); 1767 Value falseVal = getFalseValue(); 1768 if (trueVal == falseVal) 1769 return trueVal; 1770 1771 Value condition = getCondition(); 1772 1773 // select true, %0, %1 => %0 1774 if (matchPattern(condition, m_One())) 1775 return trueVal; 1776 1777 // select false, %0, %1 => %1 1778 if (matchPattern(condition, m_Zero())) 1779 return falseVal; 1780 1781 // select %x, true, false => %x 1782 if (getType().isInteger(1)) 1783 if (matchPattern(getTrueValue(), m_One())) 1784 if (matchPattern(getFalseValue(), m_Zero())) 1785 return condition; 1786 1787 if (auto cmp = dyn_cast_or_null<arith::CmpIOp>(condition.getDefiningOp())) { 1788 auto pred = cmp.getPredicate(); 1789 if (pred == arith::CmpIPredicate::eq || pred == arith::CmpIPredicate::ne) { 1790 auto cmpLhs = cmp.getLhs(); 1791 auto cmpRhs = cmp.getRhs(); 1792 1793 // %0 = arith.cmpi eq, %arg0, %arg1 1794 // %1 = arith.select %0, %arg0, %arg1 => %arg1 1795 1796 // %0 = arith.cmpi ne, %arg0, %arg1 1797 // %1 = arith.select %0, %arg0, %arg1 => %arg0 1798 1799 if ((cmpLhs == trueVal && cmpRhs == falseVal) || 1800 (cmpRhs == trueVal && cmpLhs == falseVal)) 1801 return pred == arith::CmpIPredicate::ne ? trueVal : falseVal; 1802 } 1803 } 1804 return nullptr; 1805 } 1806 1807 ParseResult SelectOp::parse(OpAsmParser &parser, OperationState &result) { 1808 Type conditionType, resultType; 1809 SmallVector<OpAsmParser::OperandType, 3> operands; 1810 if (parser.parseOperandList(operands, /*requiredOperandCount=*/3) || 1811 parser.parseOptionalAttrDict(result.attributes) || 1812 parser.parseColonType(resultType)) 1813 return failure(); 1814 1815 // Check for the explicit condition type if this is a masked tensor or vector. 1816 if (succeeded(parser.parseOptionalComma())) { 1817 conditionType = resultType; 1818 if (parser.parseType(resultType)) 1819 return failure(); 1820 } else { 1821 conditionType = parser.getBuilder().getI1Type(); 1822 } 1823 1824 result.addTypes(resultType); 1825 return parser.resolveOperands(operands, 1826 {conditionType, resultType, resultType}, 1827 parser.getNameLoc(), result.operands); 1828 } 1829 1830 void arith::SelectOp::print(OpAsmPrinter &p) { 1831 p << " " << getOperands(); 1832 p.printOptionalAttrDict((*this)->getAttrs()); 1833 p << " : "; 1834 if (ShapedType condType = getCondition().getType().dyn_cast<ShapedType>()) 1835 p << condType << ", "; 1836 p << getType(); 1837 } 1838 1839 LogicalResult arith::SelectOp::verify() { 1840 Type conditionType = getCondition().getType(); 1841 if (conditionType.isSignlessInteger(1)) 1842 return success(); 1843 1844 // If the result type is a vector or tensor, the type can be a mask with the 1845 // same elements. 1846 Type resultType = getType(); 1847 if (!resultType.isa<TensorType, VectorType>()) 1848 return emitOpError() << "expected condition to be a signless i1, but got " 1849 << conditionType; 1850 Type shapedConditionType = getI1SameShape(resultType); 1851 if (conditionType != shapedConditionType) { 1852 return emitOpError() << "expected condition type to have the same shape " 1853 "as the result type, expected " 1854 << shapedConditionType << ", but got " 1855 << conditionType; 1856 } 1857 return success(); 1858 } 1859 //===----------------------------------------------------------------------===// 1860 // ShLIOp 1861 //===----------------------------------------------------------------------===// 1862 1863 OpFoldResult arith::ShLIOp::fold(ArrayRef<Attribute> operands) { 1864 // Don't fold if shifting more than the bit width. 1865 bool bounded = false; 1866 auto result = constFoldBinaryOp<IntegerAttr>( 1867 operands, [&](const APInt &a, const APInt &b) { 1868 bounded = b.ule(b.getBitWidth()); 1869 return std::move(a).shl(b); 1870 }); 1871 return bounded ? result : Attribute(); 1872 } 1873 1874 //===----------------------------------------------------------------------===// 1875 // Atomic Enum 1876 //===----------------------------------------------------------------------===// 1877 1878 /// Returns the identity value attribute associated with an AtomicRMWKind op. 1879 Attribute mlir::arith::getIdentityValueAttr(AtomicRMWKind kind, Type resultType, 1880 OpBuilder &builder, Location loc) { 1881 switch (kind) { 1882 case AtomicRMWKind::maxf: 1883 return builder.getFloatAttr( 1884 resultType, 1885 APFloat::getInf(resultType.cast<FloatType>().getFloatSemantics(), 1886 /*Negative=*/true)); 1887 case AtomicRMWKind::addf: 1888 case AtomicRMWKind::addi: 1889 case AtomicRMWKind::maxu: 1890 case AtomicRMWKind::ori: 1891 return builder.getZeroAttr(resultType); 1892 case AtomicRMWKind::andi: 1893 return builder.getIntegerAttr( 1894 resultType, 1895 APInt::getAllOnes(resultType.cast<IntegerType>().getWidth())); 1896 case AtomicRMWKind::maxs: 1897 return builder.getIntegerAttr( 1898 resultType, 1899 APInt::getSignedMinValue(resultType.cast<IntegerType>().getWidth())); 1900 case AtomicRMWKind::minf: 1901 return builder.getFloatAttr( 1902 resultType, 1903 APFloat::getInf(resultType.cast<FloatType>().getFloatSemantics(), 1904 /*Negative=*/false)); 1905 case AtomicRMWKind::mins: 1906 return builder.getIntegerAttr( 1907 resultType, 1908 APInt::getSignedMaxValue(resultType.cast<IntegerType>().getWidth())); 1909 case AtomicRMWKind::minu: 1910 return builder.getIntegerAttr( 1911 resultType, 1912 APInt::getMaxValue(resultType.cast<IntegerType>().getWidth())); 1913 case AtomicRMWKind::muli: 1914 return builder.getIntegerAttr(resultType, 1); 1915 case AtomicRMWKind::mulf: 1916 return builder.getFloatAttr(resultType, 1); 1917 // TODO: Add remaining reduction operations. 1918 default: 1919 (void)emitOptionalError(loc, "Reduction operation type not supported"); 1920 break; 1921 } 1922 return nullptr; 1923 } 1924 1925 /// Returns the identity value associated with an AtomicRMWKind op. 1926 Value mlir::arith::getIdentityValue(AtomicRMWKind op, Type resultType, 1927 OpBuilder &builder, Location loc) { 1928 Attribute attr = getIdentityValueAttr(op, resultType, builder, loc); 1929 return builder.create<arith::ConstantOp>(loc, attr); 1930 } 1931 1932 /// Return the value obtained by applying the reduction operation kind 1933 /// associated with a binary AtomicRMWKind op to `lhs` and `rhs`. 1934 Value mlir::arith::getReductionOp(AtomicRMWKind op, OpBuilder &builder, 1935 Location loc, Value lhs, Value rhs) { 1936 switch (op) { 1937 case AtomicRMWKind::addf: 1938 return builder.create<arith::AddFOp>(loc, lhs, rhs); 1939 case AtomicRMWKind::addi: 1940 return builder.create<arith::AddIOp>(loc, lhs, rhs); 1941 case AtomicRMWKind::mulf: 1942 return builder.create<arith::MulFOp>(loc, lhs, rhs); 1943 case AtomicRMWKind::muli: 1944 return builder.create<arith::MulIOp>(loc, lhs, rhs); 1945 case AtomicRMWKind::maxf: 1946 return builder.create<arith::MaxFOp>(loc, lhs, rhs); 1947 case AtomicRMWKind::minf: 1948 return builder.create<arith::MinFOp>(loc, lhs, rhs); 1949 case AtomicRMWKind::maxs: 1950 return builder.create<arith::MaxSIOp>(loc, lhs, rhs); 1951 case AtomicRMWKind::mins: 1952 return builder.create<arith::MinSIOp>(loc, lhs, rhs); 1953 case AtomicRMWKind::maxu: 1954 return builder.create<arith::MaxUIOp>(loc, lhs, rhs); 1955 case AtomicRMWKind::minu: 1956 return builder.create<arith::MinUIOp>(loc, lhs, rhs); 1957 case AtomicRMWKind::ori: 1958 return builder.create<arith::OrIOp>(loc, lhs, rhs); 1959 case AtomicRMWKind::andi: 1960 return builder.create<arith::AndIOp>(loc, lhs, rhs); 1961 // TODO: Add remaining reduction operations. 1962 default: 1963 (void)emitOptionalError(loc, "Reduction operation type not supported"); 1964 break; 1965 } 1966 return nullptr; 1967 } 1968 1969 //===----------------------------------------------------------------------===// 1970 // TableGen'd op method definitions 1971 //===----------------------------------------------------------------------===// 1972 1973 #define GET_OP_CLASSES 1974 #include "mlir/Dialect/Arithmetic/IR/ArithmeticOps.cpp.inc" 1975 1976 //===----------------------------------------------------------------------===// 1977 // TableGen'd enum attribute definitions 1978 //===----------------------------------------------------------------------===// 1979 1980 #include "mlir/Dialect/Arithmetic/IR/ArithmeticOpsEnums.cpp.inc" 1981