1 //===- ArithmeticOps.cpp - MLIR Arithmetic dialect ops implementation -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <utility> 10 11 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 12 #include "mlir/Dialect/CommonFolders.h" 13 #include "mlir/IR/Builders.h" 14 #include "mlir/IR/Matchers.h" 15 #include "mlir/IR/OpImplementation.h" 16 #include "mlir/IR/PatternMatch.h" 17 #include "mlir/IR/TypeUtilities.h" 18 #include "llvm/ADT/SmallString.h" 19 20 #include "llvm/ADT/APSInt.h" 21 22 using namespace mlir; 23 using namespace mlir::arith; 24 25 //===----------------------------------------------------------------------===// 26 // Pattern helpers 27 //===----------------------------------------------------------------------===// 28 29 static IntegerAttr addIntegerAttrs(PatternRewriter &builder, Value res, 30 Attribute lhs, Attribute rhs) { 31 return builder.getIntegerAttr(res.getType(), 32 lhs.cast<IntegerAttr>().getInt() + 33 rhs.cast<IntegerAttr>().getInt()); 34 } 35 36 static IntegerAttr subIntegerAttrs(PatternRewriter &builder, Value res, 37 Attribute lhs, Attribute rhs) { 38 return builder.getIntegerAttr(res.getType(), 39 lhs.cast<IntegerAttr>().getInt() - 40 rhs.cast<IntegerAttr>().getInt()); 41 } 42 43 /// Invert an integer comparison predicate. 44 arith::CmpIPredicate arith::invertPredicate(arith::CmpIPredicate pred) { 45 switch (pred) { 46 case arith::CmpIPredicate::eq: 47 return arith::CmpIPredicate::ne; 48 case arith::CmpIPredicate::ne: 49 return arith::CmpIPredicate::eq; 50 case arith::CmpIPredicate::slt: 51 return arith::CmpIPredicate::sge; 52 case arith::CmpIPredicate::sle: 53 return arith::CmpIPredicate::sgt; 54 case arith::CmpIPredicate::sgt: 55 return arith::CmpIPredicate::sle; 56 case arith::CmpIPredicate::sge: 57 return arith::CmpIPredicate::slt; 58 case arith::CmpIPredicate::ult: 59 return arith::CmpIPredicate::uge; 60 case arith::CmpIPredicate::ule: 61 return arith::CmpIPredicate::ugt; 62 case arith::CmpIPredicate::ugt: 63 return arith::CmpIPredicate::ule; 64 case arith::CmpIPredicate::uge: 65 return arith::CmpIPredicate::ult; 66 } 67 llvm_unreachable("unknown cmpi predicate kind"); 68 } 69 70 static arith::CmpIPredicateAttr invertPredicate(arith::CmpIPredicateAttr pred) { 71 return arith::CmpIPredicateAttr::get(pred.getContext(), 72 invertPredicate(pred.getValue())); 73 } 74 75 //===----------------------------------------------------------------------===// 76 // TableGen'd canonicalization patterns 77 //===----------------------------------------------------------------------===// 78 79 namespace { 80 #include "ArithmeticCanonicalization.inc" 81 } // namespace 82 83 //===----------------------------------------------------------------------===// 84 // ConstantOp 85 //===----------------------------------------------------------------------===// 86 87 void arith::ConstantOp::getAsmResultNames( 88 function_ref<void(Value, StringRef)> setNameFn) { 89 auto type = getType(); 90 if (auto intCst = getValue().dyn_cast<IntegerAttr>()) { 91 auto intType = type.dyn_cast<IntegerType>(); 92 93 // Sugar i1 constants with 'true' and 'false'. 94 if (intType && intType.getWidth() == 1) 95 return setNameFn(getResult(), (intCst.getInt() ? "true" : "false")); 96 97 // Otherwise, build a compex name with the value and type. 98 SmallString<32> specialNameBuffer; 99 llvm::raw_svector_ostream specialName(specialNameBuffer); 100 specialName << 'c' << intCst.getInt(); 101 if (intType) 102 specialName << '_' << type; 103 setNameFn(getResult(), specialName.str()); 104 } else { 105 setNameFn(getResult(), "cst"); 106 } 107 } 108 109 /// TODO: disallow arith.constant to return anything other than signless integer 110 /// or float like. 111 LogicalResult arith::ConstantOp::verify() { 112 auto type = getType(); 113 // The value's type must match the return type. 114 if (getValue().getType() != type) { 115 return emitOpError() << "value type " << getValue().getType() 116 << " must match return type: " << type; 117 } 118 // Integer values must be signless. 119 if (type.isa<IntegerType>() && !type.cast<IntegerType>().isSignless()) 120 return emitOpError("integer return type must be signless"); 121 // Any float or elements attribute are acceptable. 122 if (!getValue().isa<IntegerAttr, FloatAttr, ElementsAttr>()) { 123 return emitOpError( 124 "value must be an integer, float, or elements attribute"); 125 } 126 return success(); 127 } 128 129 bool arith::ConstantOp::isBuildableWith(Attribute value, Type type) { 130 // The value's type must be the same as the provided type. 131 if (value.getType() != type) 132 return false; 133 // Integer values must be signless. 134 if (type.isa<IntegerType>() && !type.cast<IntegerType>().isSignless()) 135 return false; 136 // Integer, float, and element attributes are buildable. 137 return value.isa<IntegerAttr, FloatAttr, ElementsAttr>(); 138 } 139 140 OpFoldResult arith::ConstantOp::fold(ArrayRef<Attribute> operands) { 141 return getValue(); 142 } 143 144 void arith::ConstantIntOp::build(OpBuilder &builder, OperationState &result, 145 int64_t value, unsigned width) { 146 auto type = builder.getIntegerType(width); 147 arith::ConstantOp::build(builder, result, type, 148 builder.getIntegerAttr(type, value)); 149 } 150 151 void arith::ConstantIntOp::build(OpBuilder &builder, OperationState &result, 152 int64_t value, Type type) { 153 assert(type.isSignlessInteger() && 154 "ConstantIntOp can only have signless integer type values"); 155 arith::ConstantOp::build(builder, result, type, 156 builder.getIntegerAttr(type, value)); 157 } 158 159 bool arith::ConstantIntOp::classof(Operation *op) { 160 if (auto constOp = dyn_cast_or_null<arith::ConstantOp>(op)) 161 return constOp.getType().isSignlessInteger(); 162 return false; 163 } 164 165 void arith::ConstantFloatOp::build(OpBuilder &builder, OperationState &result, 166 const APFloat &value, FloatType type) { 167 arith::ConstantOp::build(builder, result, type, 168 builder.getFloatAttr(type, value)); 169 } 170 171 bool arith::ConstantFloatOp::classof(Operation *op) { 172 if (auto constOp = dyn_cast_or_null<arith::ConstantOp>(op)) 173 return constOp.getType().isa<FloatType>(); 174 return false; 175 } 176 177 void arith::ConstantIndexOp::build(OpBuilder &builder, OperationState &result, 178 int64_t value) { 179 arith::ConstantOp::build(builder, result, builder.getIndexType(), 180 builder.getIndexAttr(value)); 181 } 182 183 bool arith::ConstantIndexOp::classof(Operation *op) { 184 if (auto constOp = dyn_cast_or_null<arith::ConstantOp>(op)) 185 return constOp.getType().isIndex(); 186 return false; 187 } 188 189 //===----------------------------------------------------------------------===// 190 // AddIOp 191 //===----------------------------------------------------------------------===// 192 193 OpFoldResult arith::AddIOp::fold(ArrayRef<Attribute> operands) { 194 // addi(x, 0) -> x 195 if (matchPattern(getRhs(), m_Zero())) 196 return getLhs(); 197 198 // addi(subi(a, b), b) -> a 199 if (auto sub = getLhs().getDefiningOp<SubIOp>()) 200 if (getRhs() == sub.getRhs()) 201 return sub.getLhs(); 202 203 // addi(b, subi(a, b)) -> a 204 if (auto sub = getRhs().getDefiningOp<SubIOp>()) 205 if (getLhs() == sub.getRhs()) 206 return sub.getLhs(); 207 208 return constFoldBinaryOp<IntegerAttr>( 209 operands, [](APInt a, const APInt &b) { return std::move(a) + b; }); 210 } 211 212 void arith::AddIOp::getCanonicalizationPatterns( 213 RewritePatternSet &patterns, MLIRContext *context) { 214 patterns.add<AddIAddConstant, AddISubConstantRHS, AddISubConstantLHS>( 215 context); 216 } 217 218 //===----------------------------------------------------------------------===// 219 // SubIOp 220 //===----------------------------------------------------------------------===// 221 222 OpFoldResult arith::SubIOp::fold(ArrayRef<Attribute> operands) { 223 // subi(x,x) -> 0 224 if (getOperand(0) == getOperand(1)) 225 return Builder(getContext()).getZeroAttr(getType()); 226 // subi(x,0) -> x 227 if (matchPattern(getRhs(), m_Zero())) 228 return getLhs(); 229 230 return constFoldBinaryOp<IntegerAttr>( 231 operands, [](APInt a, const APInt &b) { return std::move(a) - b; }); 232 } 233 234 void arith::SubIOp::getCanonicalizationPatterns( 235 RewritePatternSet &patterns, MLIRContext *context) { 236 patterns 237 .add<SubIRHSAddConstant, SubILHSAddConstant, SubIRHSSubConstantRHS, 238 SubIRHSSubConstantLHS, SubILHSSubConstantRHS, SubILHSSubConstantLHS>( 239 context); 240 } 241 242 //===----------------------------------------------------------------------===// 243 // MulIOp 244 //===----------------------------------------------------------------------===// 245 246 OpFoldResult arith::MulIOp::fold(ArrayRef<Attribute> operands) { 247 // muli(x, 0) -> 0 248 if (matchPattern(getRhs(), m_Zero())) 249 return getRhs(); 250 // muli(x, 1) -> x 251 if (matchPattern(getRhs(), m_One())) 252 return getOperand(0); 253 // TODO: Handle the overflow case. 254 255 // default folder 256 return constFoldBinaryOp<IntegerAttr>( 257 operands, [](const APInt &a, const APInt &b) { return a * b; }); 258 } 259 260 //===----------------------------------------------------------------------===// 261 // DivUIOp 262 //===----------------------------------------------------------------------===// 263 264 OpFoldResult arith::DivUIOp::fold(ArrayRef<Attribute> operands) { 265 // divui (x, 1) -> x. 266 if (matchPattern(getRhs(), m_One())) 267 return getLhs(); 268 269 // Don't fold if it would require a division by zero. 270 bool div0 = false; 271 auto result = 272 constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) { 273 if (div0 || !b) { 274 div0 = true; 275 return a; 276 } 277 return a.udiv(b); 278 }); 279 280 return div0 ? Attribute() : result; 281 } 282 283 //===----------------------------------------------------------------------===// 284 // DivSIOp 285 //===----------------------------------------------------------------------===// 286 287 OpFoldResult arith::DivSIOp::fold(ArrayRef<Attribute> operands) { 288 // divsi (x, 1) -> x. 289 if (matchPattern(getRhs(), m_One())) 290 return getLhs(); 291 292 // Don't fold if it would overflow or if it requires a division by zero. 293 bool overflowOrDiv0 = false; 294 auto result = 295 constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) { 296 if (overflowOrDiv0 || !b) { 297 overflowOrDiv0 = true; 298 return a; 299 } 300 return a.sdiv_ov(b, overflowOrDiv0); 301 }); 302 303 return overflowOrDiv0 ? Attribute() : result; 304 } 305 306 //===----------------------------------------------------------------------===// 307 // Ceil and floor division folding helpers 308 //===----------------------------------------------------------------------===// 309 310 static APInt signedCeilNonnegInputs(const APInt &a, const APInt &b, 311 bool &overflow) { 312 // Returns (a-1)/b + 1 313 APInt one(a.getBitWidth(), 1, true); // Signed value 1. 314 APInt val = a.ssub_ov(one, overflow).sdiv_ov(b, overflow); 315 return val.sadd_ov(one, overflow); 316 } 317 318 //===----------------------------------------------------------------------===// 319 // CeilDivUIOp 320 //===----------------------------------------------------------------------===// 321 322 OpFoldResult arith::CeilDivUIOp::fold(ArrayRef<Attribute> operands) { 323 // ceildivui (x, 1) -> x. 324 if (matchPattern(getRhs(), m_One())) 325 return getLhs(); 326 327 bool overflowOrDiv0 = false; 328 auto result = 329 constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) { 330 if (overflowOrDiv0 || !b) { 331 overflowOrDiv0 = true; 332 return a; 333 } 334 APInt quotient = a.udiv(b); 335 if (!a.urem(b)) 336 return quotient; 337 APInt one(a.getBitWidth(), 1, true); 338 return quotient.uadd_ov(one, overflowOrDiv0); 339 }); 340 341 return overflowOrDiv0 ? Attribute() : result; 342 } 343 344 //===----------------------------------------------------------------------===// 345 // CeilDivSIOp 346 //===----------------------------------------------------------------------===// 347 348 OpFoldResult arith::CeilDivSIOp::fold(ArrayRef<Attribute> operands) { 349 // ceildivsi (x, 1) -> x. 350 if (matchPattern(getRhs(), m_One())) 351 return getLhs(); 352 353 // Don't fold if it would overflow or if it requires a division by zero. 354 bool overflowOrDiv0 = false; 355 auto result = 356 constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) { 357 if (overflowOrDiv0 || !b) { 358 overflowOrDiv0 = true; 359 return a; 360 } 361 if (!a) 362 return a; 363 // After this point we know that neither a or b are zero. 364 unsigned bits = a.getBitWidth(); 365 APInt zero = APInt::getZero(bits); 366 bool aGtZero = a.sgt(zero); 367 bool bGtZero = b.sgt(zero); 368 if (aGtZero && bGtZero) { 369 // Both positive, return ceil(a, b). 370 return signedCeilNonnegInputs(a, b, overflowOrDiv0); 371 } 372 if (!aGtZero && !bGtZero) { 373 // Both negative, return ceil(-a, -b). 374 APInt posA = zero.ssub_ov(a, overflowOrDiv0); 375 APInt posB = zero.ssub_ov(b, overflowOrDiv0); 376 return signedCeilNonnegInputs(posA, posB, overflowOrDiv0); 377 } 378 if (!aGtZero && bGtZero) { 379 // A is negative, b is positive, return - ( -a / b). 380 APInt posA = zero.ssub_ov(a, overflowOrDiv0); 381 APInt div = posA.sdiv_ov(b, overflowOrDiv0); 382 return zero.ssub_ov(div, overflowOrDiv0); 383 } 384 // A is positive, b is negative, return - (a / -b). 385 APInt posB = zero.ssub_ov(b, overflowOrDiv0); 386 APInt div = a.sdiv_ov(posB, overflowOrDiv0); 387 return zero.ssub_ov(div, overflowOrDiv0); 388 }); 389 390 return overflowOrDiv0 ? Attribute() : result; 391 } 392 393 //===----------------------------------------------------------------------===// 394 // FloorDivSIOp 395 //===----------------------------------------------------------------------===// 396 397 OpFoldResult arith::FloorDivSIOp::fold(ArrayRef<Attribute> operands) { 398 // floordivsi (x, 1) -> x. 399 if (matchPattern(getRhs(), m_One())) 400 return getLhs(); 401 402 // Don't fold if it would overflow or if it requires a division by zero. 403 bool overflowOrDiv0 = false; 404 auto result = 405 constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) { 406 if (overflowOrDiv0 || !b) { 407 overflowOrDiv0 = true; 408 return a; 409 } 410 if (!a) 411 return a; 412 // After this point we know that neither a or b are zero. 413 unsigned bits = a.getBitWidth(); 414 APInt zero = APInt::getZero(bits); 415 bool aGtZero = a.sgt(zero); 416 bool bGtZero = b.sgt(zero); 417 if (aGtZero && bGtZero) { 418 // Both positive, return a / b. 419 return a.sdiv_ov(b, overflowOrDiv0); 420 } 421 if (!aGtZero && !bGtZero) { 422 // Both negative, return -a / -b. 423 APInt posA = zero.ssub_ov(a, overflowOrDiv0); 424 APInt posB = zero.ssub_ov(b, overflowOrDiv0); 425 return posA.sdiv_ov(posB, overflowOrDiv0); 426 } 427 if (!aGtZero && bGtZero) { 428 // A is negative, b is positive, return - ceil(-a, b). 429 APInt posA = zero.ssub_ov(a, overflowOrDiv0); 430 APInt ceil = signedCeilNonnegInputs(posA, b, overflowOrDiv0); 431 return zero.ssub_ov(ceil, overflowOrDiv0); 432 } 433 // A is positive, b is negative, return - ceil(a, -b). 434 APInt posB = zero.ssub_ov(b, overflowOrDiv0); 435 APInt ceil = signedCeilNonnegInputs(a, posB, overflowOrDiv0); 436 return zero.ssub_ov(ceil, overflowOrDiv0); 437 }); 438 439 return overflowOrDiv0 ? Attribute() : result; 440 } 441 442 //===----------------------------------------------------------------------===// 443 // RemUIOp 444 //===----------------------------------------------------------------------===// 445 446 OpFoldResult arith::RemUIOp::fold(ArrayRef<Attribute> operands) { 447 // remui (x, 1) -> 0. 448 if (matchPattern(getRhs(), m_One())) 449 return Builder(getContext()).getZeroAttr(getType()); 450 451 // Don't fold if it would require a division by zero. 452 bool div0 = false; 453 auto result = 454 constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) { 455 if (div0 || b.isNullValue()) { 456 div0 = true; 457 return a; 458 } 459 return a.urem(b); 460 }); 461 462 return div0 ? Attribute() : result; 463 } 464 465 //===----------------------------------------------------------------------===// 466 // RemSIOp 467 //===----------------------------------------------------------------------===// 468 469 OpFoldResult arith::RemSIOp::fold(ArrayRef<Attribute> operands) { 470 // remsi (x, 1) -> 0. 471 if (matchPattern(getRhs(), m_One())) 472 return Builder(getContext()).getZeroAttr(getType()); 473 474 // Don't fold if it would require a division by zero. 475 bool div0 = false; 476 auto result = 477 constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) { 478 if (div0 || b.isNullValue()) { 479 div0 = true; 480 return a; 481 } 482 return a.srem(b); 483 }); 484 485 return div0 ? Attribute() : result; 486 } 487 488 //===----------------------------------------------------------------------===// 489 // AndIOp 490 //===----------------------------------------------------------------------===// 491 492 OpFoldResult arith::AndIOp::fold(ArrayRef<Attribute> operands) { 493 /// and(x, 0) -> 0 494 if (matchPattern(getRhs(), m_Zero())) 495 return getRhs(); 496 /// and(x, allOnes) -> x 497 APInt intValue; 498 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && intValue.isAllOnes()) 499 return getLhs(); 500 501 return constFoldBinaryOp<IntegerAttr>( 502 operands, [](APInt a, const APInt &b) { return std::move(a) & b; }); 503 } 504 505 //===----------------------------------------------------------------------===// 506 // OrIOp 507 //===----------------------------------------------------------------------===// 508 509 OpFoldResult arith::OrIOp::fold(ArrayRef<Attribute> operands) { 510 /// or(x, 0) -> x 511 if (matchPattern(getRhs(), m_Zero())) 512 return getLhs(); 513 /// or(x, <all ones>) -> <all ones> 514 if (auto rhsAttr = operands[1].dyn_cast_or_null<IntegerAttr>()) 515 if (rhsAttr.getValue().isAllOnes()) 516 return rhsAttr; 517 518 return constFoldBinaryOp<IntegerAttr>( 519 operands, [](APInt a, const APInt &b) { return std::move(a) | b; }); 520 } 521 522 //===----------------------------------------------------------------------===// 523 // XOrIOp 524 //===----------------------------------------------------------------------===// 525 526 OpFoldResult arith::XOrIOp::fold(ArrayRef<Attribute> operands) { 527 /// xor(x, 0) -> x 528 if (matchPattern(getRhs(), m_Zero())) 529 return getLhs(); 530 /// xor(x, x) -> 0 531 if (getLhs() == getRhs()) 532 return Builder(getContext()).getZeroAttr(getType()); 533 /// xor(xor(x, a), a) -> x 534 if (arith::XOrIOp prev = getLhs().getDefiningOp<arith::XOrIOp>()) 535 if (prev.getRhs() == getRhs()) 536 return prev.getLhs(); 537 538 return constFoldBinaryOp<IntegerAttr>( 539 operands, [](APInt a, const APInt &b) { return std::move(a) ^ b; }); 540 } 541 542 void arith::XOrIOp::getCanonicalizationPatterns( 543 RewritePatternSet &patterns, MLIRContext *context) { 544 patterns.add<XOrINotCmpI>(context); 545 } 546 547 //===----------------------------------------------------------------------===// 548 // NegFOp 549 //===----------------------------------------------------------------------===// 550 551 OpFoldResult arith::NegFOp::fold(ArrayRef<Attribute> operands) { 552 /// negf(negf(x)) -> x 553 if (auto op = this->getOperand().getDefiningOp<arith::NegFOp>()) 554 return op.getOperand(); 555 return constFoldUnaryOp<FloatAttr>(operands, 556 [](const APFloat &a) { return -a; }); 557 } 558 559 //===----------------------------------------------------------------------===// 560 // AddFOp 561 //===----------------------------------------------------------------------===// 562 563 OpFoldResult arith::AddFOp::fold(ArrayRef<Attribute> operands) { 564 // addf(x, -0) -> x 565 if (matchPattern(getRhs(), m_NegZeroFloat())) 566 return getLhs(); 567 568 return constFoldBinaryOp<FloatAttr>( 569 operands, [](const APFloat &a, const APFloat &b) { return a + b; }); 570 } 571 572 //===----------------------------------------------------------------------===// 573 // SubFOp 574 //===----------------------------------------------------------------------===// 575 576 OpFoldResult arith::SubFOp::fold(ArrayRef<Attribute> operands) { 577 // subf(x, +0) -> x 578 if (matchPattern(getRhs(), m_PosZeroFloat())) 579 return getLhs(); 580 581 return constFoldBinaryOp<FloatAttr>( 582 operands, [](const APFloat &a, const APFloat &b) { return a - b; }); 583 } 584 585 //===----------------------------------------------------------------------===// 586 // MaxFOp 587 //===----------------------------------------------------------------------===// 588 589 OpFoldResult arith::MaxFOp::fold(ArrayRef<Attribute> operands) { 590 assert(operands.size() == 2 && "maxf takes two operands"); 591 592 // maxf(x,x) -> x 593 if (getLhs() == getRhs()) 594 return getRhs(); 595 596 // maxf(x, -inf) -> x 597 if (matchPattern(getRhs(), m_NegInfFloat())) 598 return getLhs(); 599 600 return constFoldBinaryOp<FloatAttr>( 601 operands, 602 [](const APFloat &a, const APFloat &b) { return llvm::maximum(a, b); }); 603 } 604 605 //===----------------------------------------------------------------------===// 606 // MaxSIOp 607 //===----------------------------------------------------------------------===// 608 609 OpFoldResult MaxSIOp::fold(ArrayRef<Attribute> operands) { 610 assert(operands.size() == 2 && "binary operation takes two operands"); 611 612 // maxsi(x,x) -> x 613 if (getLhs() == getRhs()) 614 return getRhs(); 615 616 APInt intValue; 617 // maxsi(x,MAX_INT) -> MAX_INT 618 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && 619 intValue.isMaxSignedValue()) 620 return getRhs(); 621 622 // maxsi(x, MIN_INT) -> x 623 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && 624 intValue.isMinSignedValue()) 625 return getLhs(); 626 627 return constFoldBinaryOp<IntegerAttr>(operands, 628 [](const APInt &a, const APInt &b) { 629 return llvm::APIntOps::smax(a, b); 630 }); 631 } 632 633 //===----------------------------------------------------------------------===// 634 // MaxUIOp 635 //===----------------------------------------------------------------------===// 636 637 OpFoldResult MaxUIOp::fold(ArrayRef<Attribute> operands) { 638 assert(operands.size() == 2 && "binary operation takes two operands"); 639 640 // maxui(x,x) -> x 641 if (getLhs() == getRhs()) 642 return getRhs(); 643 644 APInt intValue; 645 // maxui(x,MAX_INT) -> MAX_INT 646 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && intValue.isMaxValue()) 647 return getRhs(); 648 649 // maxui(x, MIN_INT) -> x 650 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && intValue.isMinValue()) 651 return getLhs(); 652 653 return constFoldBinaryOp<IntegerAttr>(operands, 654 [](const APInt &a, const APInt &b) { 655 return llvm::APIntOps::umax(a, b); 656 }); 657 } 658 659 //===----------------------------------------------------------------------===// 660 // MinFOp 661 //===----------------------------------------------------------------------===// 662 663 OpFoldResult arith::MinFOp::fold(ArrayRef<Attribute> operands) { 664 assert(operands.size() == 2 && "minf takes two operands"); 665 666 // minf(x,x) -> x 667 if (getLhs() == getRhs()) 668 return getRhs(); 669 670 // minf(x, +inf) -> x 671 if (matchPattern(getRhs(), m_PosInfFloat())) 672 return getLhs(); 673 674 return constFoldBinaryOp<FloatAttr>( 675 operands, 676 [](const APFloat &a, const APFloat &b) { return llvm::minimum(a, b); }); 677 } 678 679 //===----------------------------------------------------------------------===// 680 // MinSIOp 681 //===----------------------------------------------------------------------===// 682 683 OpFoldResult MinSIOp::fold(ArrayRef<Attribute> operands) { 684 assert(operands.size() == 2 && "binary operation takes two operands"); 685 686 // minsi(x,x) -> x 687 if (getLhs() == getRhs()) 688 return getRhs(); 689 690 APInt intValue; 691 // minsi(x,MIN_INT) -> MIN_INT 692 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && 693 intValue.isMinSignedValue()) 694 return getRhs(); 695 696 // minsi(x, MAX_INT) -> x 697 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && 698 intValue.isMaxSignedValue()) 699 return getLhs(); 700 701 return constFoldBinaryOp<IntegerAttr>(operands, 702 [](const APInt &a, const APInt &b) { 703 return llvm::APIntOps::smin(a, b); 704 }); 705 } 706 707 //===----------------------------------------------------------------------===// 708 // MinUIOp 709 //===----------------------------------------------------------------------===// 710 711 OpFoldResult MinUIOp::fold(ArrayRef<Attribute> operands) { 712 assert(operands.size() == 2 && "binary operation takes two operands"); 713 714 // minui(x,x) -> x 715 if (getLhs() == getRhs()) 716 return getRhs(); 717 718 APInt intValue; 719 // minui(x,MIN_INT) -> MIN_INT 720 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && intValue.isMinValue()) 721 return getRhs(); 722 723 // minui(x, MAX_INT) -> x 724 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && intValue.isMaxValue()) 725 return getLhs(); 726 727 return constFoldBinaryOp<IntegerAttr>(operands, 728 [](const APInt &a, const APInt &b) { 729 return llvm::APIntOps::umin(a, b); 730 }); 731 } 732 733 //===----------------------------------------------------------------------===// 734 // MulFOp 735 //===----------------------------------------------------------------------===// 736 737 OpFoldResult arith::MulFOp::fold(ArrayRef<Attribute> operands) { 738 // mulf(x, 1) -> x 739 if (matchPattern(getRhs(), m_OneFloat())) 740 return getLhs(); 741 742 return constFoldBinaryOp<FloatAttr>( 743 operands, [](const APFloat &a, const APFloat &b) { return a * b; }); 744 } 745 746 //===----------------------------------------------------------------------===// 747 // DivFOp 748 //===----------------------------------------------------------------------===// 749 750 OpFoldResult arith::DivFOp::fold(ArrayRef<Attribute> operands) { 751 // divf(x, 1) -> x 752 if (matchPattern(getRhs(), m_OneFloat())) 753 return getLhs(); 754 755 return constFoldBinaryOp<FloatAttr>( 756 operands, [](const APFloat &a, const APFloat &b) { return a / b; }); 757 } 758 759 //===----------------------------------------------------------------------===// 760 // Utility functions for verifying cast ops 761 //===----------------------------------------------------------------------===// 762 763 template <typename... Types> 764 using type_list = std::tuple<Types...> *; 765 766 /// Returns a non-null type only if the provided type is one of the allowed 767 /// types or one of the allowed shaped types of the allowed types. Returns the 768 /// element type if a valid shaped type is provided. 769 template <typename... ShapedTypes, typename... ElementTypes> 770 static Type getUnderlyingType(Type type, type_list<ShapedTypes...>, 771 type_list<ElementTypes...>) { 772 if (type.isa<ShapedType>() && !type.isa<ShapedTypes...>()) 773 return {}; 774 775 auto underlyingType = getElementTypeOrSelf(type); 776 if (!underlyingType.isa<ElementTypes...>()) 777 return {}; 778 779 return underlyingType; 780 } 781 782 /// Get allowed underlying types for vectors and tensors. 783 template <typename... ElementTypes> 784 static Type getTypeIfLike(Type type) { 785 return getUnderlyingType(type, type_list<VectorType, TensorType>(), 786 type_list<ElementTypes...>()); 787 } 788 789 /// Get allowed underlying types for vectors, tensors, and memrefs. 790 template <typename... ElementTypes> 791 static Type getTypeIfLikeOrMemRef(Type type) { 792 return getUnderlyingType(type, 793 type_list<VectorType, TensorType, MemRefType>(), 794 type_list<ElementTypes...>()); 795 } 796 797 static bool areValidCastInputsAndOutputs(TypeRange inputs, TypeRange outputs) { 798 return inputs.size() == 1 && outputs.size() == 1 && 799 succeeded(verifyCompatibleShapes(inputs.front(), outputs.front())); 800 } 801 802 //===----------------------------------------------------------------------===// 803 // Verifiers for integer and floating point extension/truncation ops 804 //===----------------------------------------------------------------------===// 805 806 // Extend ops can only extend to a wider type. 807 template <typename ValType, typename Op> 808 static LogicalResult verifyExtOp(Op op) { 809 Type srcType = getElementTypeOrSelf(op.getIn().getType()); 810 Type dstType = getElementTypeOrSelf(op.getType()); 811 812 if (srcType.cast<ValType>().getWidth() >= dstType.cast<ValType>().getWidth()) 813 return op.emitError("result type ") 814 << dstType << " must be wider than operand type " << srcType; 815 816 return success(); 817 } 818 819 // Truncate ops can only truncate to a shorter type. 820 template <typename ValType, typename Op> 821 static LogicalResult verifyTruncateOp(Op op) { 822 Type srcType = getElementTypeOrSelf(op.getIn().getType()); 823 Type dstType = getElementTypeOrSelf(op.getType()); 824 825 if (srcType.cast<ValType>().getWidth() <= dstType.cast<ValType>().getWidth()) 826 return op.emitError("result type ") 827 << dstType << " must be shorter than operand type " << srcType; 828 829 return success(); 830 } 831 832 /// Validate a cast that changes the width of a type. 833 template <template <typename> class WidthComparator, typename... ElementTypes> 834 static bool checkWidthChangeCast(TypeRange inputs, TypeRange outputs) { 835 if (!areValidCastInputsAndOutputs(inputs, outputs)) 836 return false; 837 838 auto srcType = getTypeIfLike<ElementTypes...>(inputs.front()); 839 auto dstType = getTypeIfLike<ElementTypes...>(outputs.front()); 840 if (!srcType || !dstType) 841 return false; 842 843 return WidthComparator<unsigned>()(dstType.getIntOrFloatBitWidth(), 844 srcType.getIntOrFloatBitWidth()); 845 } 846 847 //===----------------------------------------------------------------------===// 848 // ExtUIOp 849 //===----------------------------------------------------------------------===// 850 851 OpFoldResult arith::ExtUIOp::fold(ArrayRef<Attribute> operands) { 852 if (auto lhs = getIn().getDefiningOp<ExtUIOp>()) { 853 getInMutable().assign(lhs.getIn()); 854 return getResult(); 855 } 856 Type resType = getType(); 857 unsigned bitWidth; 858 if (auto shapedType = resType.dyn_cast<ShapedType>()) 859 bitWidth = shapedType.getElementTypeBitWidth(); 860 else 861 bitWidth = resType.getIntOrFloatBitWidth(); 862 return constFoldCastOp<IntegerAttr, IntegerAttr>( 863 operands, getType(), [bitWidth](const APInt &a, bool &castStatus) { 864 return a.zext(bitWidth); 865 }); 866 } 867 868 bool arith::ExtUIOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 869 return checkWidthChangeCast<std::greater, IntegerType>(inputs, outputs); 870 } 871 872 LogicalResult arith::ExtUIOp::verify() { 873 return verifyExtOp<IntegerType>(*this); 874 } 875 876 //===----------------------------------------------------------------------===// 877 // ExtSIOp 878 //===----------------------------------------------------------------------===// 879 880 OpFoldResult arith::ExtSIOp::fold(ArrayRef<Attribute> operands) { 881 if (auto lhs = getIn().getDefiningOp<ExtSIOp>()) { 882 getInMutable().assign(lhs.getIn()); 883 return getResult(); 884 } 885 Type resType = getType(); 886 unsigned bitWidth; 887 if (auto shapedType = resType.dyn_cast<ShapedType>()) 888 bitWidth = shapedType.getElementTypeBitWidth(); 889 else 890 bitWidth = resType.getIntOrFloatBitWidth(); 891 return constFoldCastOp<IntegerAttr, IntegerAttr>( 892 operands, getType(), [bitWidth](const APInt &a, bool &castStatus) { 893 return a.sext(bitWidth); 894 }); 895 } 896 897 bool arith::ExtSIOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 898 return checkWidthChangeCast<std::greater, IntegerType>(inputs, outputs); 899 } 900 901 void arith::ExtSIOp::getCanonicalizationPatterns( 902 RewritePatternSet &patterns, MLIRContext *context) { 903 patterns.add<ExtSIOfExtUI>(context); 904 } 905 906 LogicalResult arith::ExtSIOp::verify() { 907 return verifyExtOp<IntegerType>(*this); 908 } 909 910 //===----------------------------------------------------------------------===// 911 // ExtFOp 912 //===----------------------------------------------------------------------===// 913 914 bool arith::ExtFOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 915 return checkWidthChangeCast<std::greater, FloatType>(inputs, outputs); 916 } 917 918 LogicalResult arith::ExtFOp::verify() { return verifyExtOp<FloatType>(*this); } 919 920 //===----------------------------------------------------------------------===// 921 // TruncIOp 922 //===----------------------------------------------------------------------===// 923 924 OpFoldResult arith::TruncIOp::fold(ArrayRef<Attribute> operands) { 925 assert(operands.size() == 1 && "unary operation takes one operand"); 926 927 // trunci(zexti(a)) -> a 928 // trunci(sexti(a)) -> a 929 if (matchPattern(getOperand(), m_Op<arith::ExtUIOp>()) || 930 matchPattern(getOperand(), m_Op<arith::ExtSIOp>())) 931 return getOperand().getDefiningOp()->getOperand(0); 932 933 // trunci(trunci(a)) -> trunci(a)) 934 if (matchPattern(getOperand(), m_Op<arith::TruncIOp>())) { 935 setOperand(getOperand().getDefiningOp()->getOperand(0)); 936 return getResult(); 937 } 938 939 Type resType = getType(); 940 unsigned bitWidth; 941 if (auto shapedType = resType.dyn_cast<ShapedType>()) 942 bitWidth = shapedType.getElementTypeBitWidth(); 943 else 944 bitWidth = resType.getIntOrFloatBitWidth(); 945 946 return constFoldCastOp<IntegerAttr, IntegerAttr>( 947 operands, getType(), [bitWidth](const APInt &a, bool &castStatus) { 948 return a.trunc(bitWidth); 949 }); 950 } 951 952 bool arith::TruncIOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 953 return checkWidthChangeCast<std::less, IntegerType>(inputs, outputs); 954 } 955 956 LogicalResult arith::TruncIOp::verify() { 957 return verifyTruncateOp<IntegerType>(*this); 958 } 959 960 //===----------------------------------------------------------------------===// 961 // TruncFOp 962 //===----------------------------------------------------------------------===// 963 964 /// Perform safe const propagation for truncf, i.e. only propagate if FP value 965 /// can be represented without precision loss or rounding. 966 OpFoldResult arith::TruncFOp::fold(ArrayRef<Attribute> operands) { 967 assert(operands.size() == 1 && "unary operation takes one operand"); 968 969 auto constOperand = operands.front(); 970 if (!constOperand || !constOperand.isa<FloatAttr>()) 971 return {}; 972 973 // Convert to target type via 'double'. 974 double sourceValue = 975 constOperand.dyn_cast<FloatAttr>().getValue().convertToDouble(); 976 auto targetAttr = FloatAttr::get(getType(), sourceValue); 977 978 // Propagate if constant's value does not change after truncation. 979 if (sourceValue == targetAttr.getValue().convertToDouble()) 980 return targetAttr; 981 982 return {}; 983 } 984 985 bool arith::TruncFOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 986 return checkWidthChangeCast<std::less, FloatType>(inputs, outputs); 987 } 988 989 LogicalResult arith::TruncFOp::verify() { 990 return verifyTruncateOp<FloatType>(*this); 991 } 992 993 //===----------------------------------------------------------------------===// 994 // AndIOp 995 //===----------------------------------------------------------------------===// 996 997 void arith::AndIOp::getCanonicalizationPatterns( 998 RewritePatternSet &patterns, MLIRContext *context) { 999 patterns.add<AndOfExtUI, AndOfExtSI>(context); 1000 } 1001 1002 //===----------------------------------------------------------------------===// 1003 // OrIOp 1004 //===----------------------------------------------------------------------===// 1005 1006 void arith::OrIOp::getCanonicalizationPatterns( 1007 RewritePatternSet &patterns, MLIRContext *context) { 1008 patterns.add<OrOfExtUI, OrOfExtSI>(context); 1009 } 1010 1011 //===----------------------------------------------------------------------===// 1012 // Verifiers for casts between integers and floats. 1013 //===----------------------------------------------------------------------===// 1014 1015 template <typename From, typename To> 1016 static bool checkIntFloatCast(TypeRange inputs, TypeRange outputs) { 1017 if (!areValidCastInputsAndOutputs(inputs, outputs)) 1018 return false; 1019 1020 auto srcType = getTypeIfLike<From>(inputs.front()); 1021 auto dstType = getTypeIfLike<To>(outputs.back()); 1022 1023 return srcType && dstType; 1024 } 1025 1026 //===----------------------------------------------------------------------===// 1027 // UIToFPOp 1028 //===----------------------------------------------------------------------===// 1029 1030 bool arith::UIToFPOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 1031 return checkIntFloatCast<IntegerType, FloatType>(inputs, outputs); 1032 } 1033 1034 OpFoldResult arith::UIToFPOp::fold(ArrayRef<Attribute> operands) { 1035 Type resType = getType(); 1036 Type resEleType; 1037 if (auto shapedType = resType.dyn_cast<ShapedType>()) 1038 resEleType = shapedType.getElementType(); 1039 else 1040 resEleType = resType; 1041 return constFoldCastOp<IntegerAttr, FloatAttr>( 1042 operands, getType(), [&resEleType](const APInt &a, bool &castStatus) { 1043 FloatType floatTy = resEleType.cast<FloatType>(); 1044 APFloat apf(floatTy.getFloatSemantics(), 1045 APInt::getZero(floatTy.getWidth())); 1046 apf.convertFromAPInt(a, /*IsSigned=*/false, 1047 APFloat::rmNearestTiesToEven); 1048 return apf; 1049 }); 1050 } 1051 1052 //===----------------------------------------------------------------------===// 1053 // SIToFPOp 1054 //===----------------------------------------------------------------------===// 1055 1056 bool arith::SIToFPOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 1057 return checkIntFloatCast<IntegerType, FloatType>(inputs, outputs); 1058 } 1059 1060 OpFoldResult arith::SIToFPOp::fold(ArrayRef<Attribute> operands) { 1061 Type resType = getType(); 1062 Type resEleType; 1063 if (auto shapedType = resType.dyn_cast<ShapedType>()) 1064 resEleType = shapedType.getElementType(); 1065 else 1066 resEleType = resType; 1067 return constFoldCastOp<IntegerAttr, FloatAttr>( 1068 operands, getType(), [&resEleType](const APInt &a, bool &castStatus) { 1069 FloatType floatTy = resEleType.cast<FloatType>(); 1070 APFloat apf(floatTy.getFloatSemantics(), 1071 APInt::getZero(floatTy.getWidth())); 1072 apf.convertFromAPInt(a, /*IsSigned=*/true, 1073 APFloat::rmNearestTiesToEven); 1074 return apf; 1075 }); 1076 } 1077 //===----------------------------------------------------------------------===// 1078 // FPToUIOp 1079 //===----------------------------------------------------------------------===// 1080 1081 bool arith::FPToUIOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 1082 return checkIntFloatCast<FloatType, IntegerType>(inputs, outputs); 1083 } 1084 1085 OpFoldResult arith::FPToUIOp::fold(ArrayRef<Attribute> operands) { 1086 Type resType = getType(); 1087 Type resEleType; 1088 if (auto shapedType = resType.dyn_cast<ShapedType>()) 1089 resEleType = shapedType.getElementType(); 1090 else 1091 resEleType = resType; 1092 return constFoldCastOp<FloatAttr, IntegerAttr>( 1093 operands, getType(), [&resEleType](const APFloat &a, bool &castStatus) { 1094 IntegerType intTy = resEleType.cast<IntegerType>(); 1095 bool ignored; 1096 APSInt api(intTy.getWidth(), /*isUnsigned=*/true); 1097 castStatus = APFloat::opInvalidOp != 1098 a.convertToInteger(api, APFloat::rmTowardZero, &ignored); 1099 return api; 1100 }); 1101 } 1102 1103 //===----------------------------------------------------------------------===// 1104 // FPToSIOp 1105 //===----------------------------------------------------------------------===// 1106 1107 bool arith::FPToSIOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 1108 return checkIntFloatCast<FloatType, IntegerType>(inputs, outputs); 1109 } 1110 1111 OpFoldResult arith::FPToSIOp::fold(ArrayRef<Attribute> operands) { 1112 Type resType = getType(); 1113 Type resEleType; 1114 if (auto shapedType = resType.dyn_cast<ShapedType>()) 1115 resEleType = shapedType.getElementType(); 1116 else 1117 resEleType = resType; 1118 return constFoldCastOp<FloatAttr, IntegerAttr>( 1119 operands, getType(), [&resEleType](const APFloat &a, bool &castStatus) { 1120 IntegerType intTy = resEleType.cast<IntegerType>(); 1121 bool ignored; 1122 APSInt api(intTy.getWidth(), /*isUnsigned=*/false); 1123 castStatus = APFloat::opInvalidOp != 1124 a.convertToInteger(api, APFloat::rmTowardZero, &ignored); 1125 return api; 1126 }); 1127 } 1128 1129 //===----------------------------------------------------------------------===// 1130 // IndexCastOp 1131 //===----------------------------------------------------------------------===// 1132 1133 bool arith::IndexCastOp::areCastCompatible(TypeRange inputs, 1134 TypeRange outputs) { 1135 if (!areValidCastInputsAndOutputs(inputs, outputs)) 1136 return false; 1137 1138 auto srcType = getTypeIfLikeOrMemRef<IntegerType, IndexType>(inputs.front()); 1139 auto dstType = getTypeIfLikeOrMemRef<IntegerType, IndexType>(outputs.front()); 1140 if (!srcType || !dstType) 1141 return false; 1142 1143 return (srcType.isIndex() && dstType.isSignlessInteger()) || 1144 (srcType.isSignlessInteger() && dstType.isIndex()); 1145 } 1146 1147 OpFoldResult arith::IndexCastOp::fold(ArrayRef<Attribute> operands) { 1148 // index_cast(constant) -> constant 1149 // A little hack because we go through int. Otherwise, the size of the 1150 // constant might need to change. 1151 if (auto value = operands[0].dyn_cast_or_null<IntegerAttr>()) 1152 return IntegerAttr::get(getType(), value.getInt()); 1153 1154 return {}; 1155 } 1156 1157 void arith::IndexCastOp::getCanonicalizationPatterns( 1158 RewritePatternSet &patterns, MLIRContext *context) { 1159 patterns.add<IndexCastOfIndexCast, IndexCastOfExtSI>(context); 1160 } 1161 1162 //===----------------------------------------------------------------------===// 1163 // BitcastOp 1164 //===----------------------------------------------------------------------===// 1165 1166 bool arith::BitcastOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 1167 if (!areValidCastInputsAndOutputs(inputs, outputs)) 1168 return false; 1169 1170 auto srcType = 1171 getTypeIfLikeOrMemRef<IntegerType, IndexType, FloatType>(inputs.front()); 1172 auto dstType = 1173 getTypeIfLikeOrMemRef<IntegerType, IndexType, FloatType>(outputs.front()); 1174 if (!srcType || !dstType) 1175 return false; 1176 1177 return srcType.getIntOrFloatBitWidth() == dstType.getIntOrFloatBitWidth(); 1178 } 1179 1180 OpFoldResult arith::BitcastOp::fold(ArrayRef<Attribute> operands) { 1181 assert(operands.size() == 1 && "bitcast op expects 1 operand"); 1182 1183 auto resType = getType(); 1184 auto operand = operands[0]; 1185 if (!operand) 1186 return {}; 1187 1188 /// Bitcast dense elements. 1189 if (auto denseAttr = operand.dyn_cast_or_null<DenseElementsAttr>()) 1190 return denseAttr.bitcast(resType.cast<ShapedType>().getElementType()); 1191 /// Other shaped types unhandled. 1192 if (resType.isa<ShapedType>()) 1193 return {}; 1194 1195 /// Bitcast integer or float to integer or float. 1196 APInt bits = operand.isa<FloatAttr>() 1197 ? operand.cast<FloatAttr>().getValue().bitcastToAPInt() 1198 : operand.cast<IntegerAttr>().getValue(); 1199 1200 if (auto resFloatType = resType.dyn_cast<FloatType>()) 1201 return FloatAttr::get(resType, 1202 APFloat(resFloatType.getFloatSemantics(), bits)); 1203 return IntegerAttr::get(resType, bits); 1204 } 1205 1206 void arith::BitcastOp::getCanonicalizationPatterns( 1207 RewritePatternSet &patterns, MLIRContext *context) { 1208 patterns.add<BitcastOfBitcast>(context); 1209 } 1210 1211 //===----------------------------------------------------------------------===// 1212 // Helpers for compare ops 1213 //===----------------------------------------------------------------------===// 1214 1215 /// Return the type of the same shape (scalar, vector or tensor) containing i1. 1216 static Type getI1SameShape(Type type) { 1217 auto i1Type = IntegerType::get(type.getContext(), 1); 1218 if (auto tensorType = type.dyn_cast<RankedTensorType>()) 1219 return RankedTensorType::get(tensorType.getShape(), i1Type); 1220 if (type.isa<UnrankedTensorType>()) 1221 return UnrankedTensorType::get(i1Type); 1222 if (auto vectorType = type.dyn_cast<VectorType>()) 1223 return VectorType::get(vectorType.getShape(), i1Type, 1224 vectorType.getNumScalableDims()); 1225 return i1Type; 1226 } 1227 1228 //===----------------------------------------------------------------------===// 1229 // CmpIOp 1230 //===----------------------------------------------------------------------===// 1231 1232 /// Compute `lhs` `pred` `rhs`, where `pred` is one of the known integer 1233 /// comparison predicates. 1234 bool mlir::arith::applyCmpPredicate(arith::CmpIPredicate predicate, 1235 const APInt &lhs, const APInt &rhs) { 1236 switch (predicate) { 1237 case arith::CmpIPredicate::eq: 1238 return lhs.eq(rhs); 1239 case arith::CmpIPredicate::ne: 1240 return lhs.ne(rhs); 1241 case arith::CmpIPredicate::slt: 1242 return lhs.slt(rhs); 1243 case arith::CmpIPredicate::sle: 1244 return lhs.sle(rhs); 1245 case arith::CmpIPredicate::sgt: 1246 return lhs.sgt(rhs); 1247 case arith::CmpIPredicate::sge: 1248 return lhs.sge(rhs); 1249 case arith::CmpIPredicate::ult: 1250 return lhs.ult(rhs); 1251 case arith::CmpIPredicate::ule: 1252 return lhs.ule(rhs); 1253 case arith::CmpIPredicate::ugt: 1254 return lhs.ugt(rhs); 1255 case arith::CmpIPredicate::uge: 1256 return lhs.uge(rhs); 1257 } 1258 llvm_unreachable("unknown cmpi predicate kind"); 1259 } 1260 1261 /// Returns true if the predicate is true for two equal operands. 1262 static bool applyCmpPredicateToEqualOperands(arith::CmpIPredicate predicate) { 1263 switch (predicate) { 1264 case arith::CmpIPredicate::eq: 1265 case arith::CmpIPredicate::sle: 1266 case arith::CmpIPredicate::sge: 1267 case arith::CmpIPredicate::ule: 1268 case arith::CmpIPredicate::uge: 1269 return true; 1270 case arith::CmpIPredicate::ne: 1271 case arith::CmpIPredicate::slt: 1272 case arith::CmpIPredicate::sgt: 1273 case arith::CmpIPredicate::ult: 1274 case arith::CmpIPredicate::ugt: 1275 return false; 1276 } 1277 llvm_unreachable("unknown cmpi predicate kind"); 1278 } 1279 1280 static Attribute getBoolAttribute(Type type, MLIRContext *ctx, bool value) { 1281 auto boolAttr = BoolAttr::get(ctx, value); 1282 ShapedType shapedType = type.dyn_cast_or_null<ShapedType>(); 1283 if (!shapedType) 1284 return boolAttr; 1285 return DenseElementsAttr::get(shapedType, boolAttr); 1286 } 1287 1288 OpFoldResult arith::CmpIOp::fold(ArrayRef<Attribute> operands) { 1289 assert(operands.size() == 2 && "cmpi takes two operands"); 1290 1291 // cmpi(pred, x, x) 1292 if (getLhs() == getRhs()) { 1293 auto val = applyCmpPredicateToEqualOperands(getPredicate()); 1294 return getBoolAttribute(getType(), getContext(), val); 1295 } 1296 1297 if (matchPattern(getRhs(), m_Zero())) { 1298 if (auto extOp = getLhs().getDefiningOp<ExtSIOp>()) { 1299 // extsi(%x : i1 -> iN) != 0 -> %x 1300 if (extOp.getOperand().getType().cast<IntegerType>().getWidth() == 1 && 1301 getPredicate() == arith::CmpIPredicate::ne) 1302 return extOp.getOperand(); 1303 } 1304 if (auto extOp = getLhs().getDefiningOp<ExtUIOp>()) { 1305 // extui(%x : i1 -> iN) != 0 -> %x 1306 if (extOp.getOperand().getType().cast<IntegerType>().getWidth() == 1 && 1307 getPredicate() == arith::CmpIPredicate::ne) 1308 return extOp.getOperand(); 1309 } 1310 } 1311 1312 auto lhs = operands.front().dyn_cast_or_null<IntegerAttr>(); 1313 auto rhs = operands.back().dyn_cast_or_null<IntegerAttr>(); 1314 if (!lhs || !rhs) 1315 return {}; 1316 1317 auto val = applyCmpPredicate(getPredicate(), lhs.getValue(), rhs.getValue()); 1318 return BoolAttr::get(getContext(), val); 1319 } 1320 1321 void arith::CmpIOp::getCanonicalizationPatterns(RewritePatternSet &patterns, 1322 MLIRContext *context) { 1323 patterns.insert<CmpIExtSI, CmpIExtUI>(context); 1324 } 1325 1326 //===----------------------------------------------------------------------===// 1327 // CmpFOp 1328 //===----------------------------------------------------------------------===// 1329 1330 /// Compute `lhs` `pred` `rhs`, where `pred` is one of the known floating point 1331 /// comparison predicates. 1332 bool mlir::arith::applyCmpPredicate(arith::CmpFPredicate predicate, 1333 const APFloat &lhs, const APFloat &rhs) { 1334 auto cmpResult = lhs.compare(rhs); 1335 switch (predicate) { 1336 case arith::CmpFPredicate::AlwaysFalse: 1337 return false; 1338 case arith::CmpFPredicate::OEQ: 1339 return cmpResult == APFloat::cmpEqual; 1340 case arith::CmpFPredicate::OGT: 1341 return cmpResult == APFloat::cmpGreaterThan; 1342 case arith::CmpFPredicate::OGE: 1343 return cmpResult == APFloat::cmpGreaterThan || 1344 cmpResult == APFloat::cmpEqual; 1345 case arith::CmpFPredicate::OLT: 1346 return cmpResult == APFloat::cmpLessThan; 1347 case arith::CmpFPredicate::OLE: 1348 return cmpResult == APFloat::cmpLessThan || cmpResult == APFloat::cmpEqual; 1349 case arith::CmpFPredicate::ONE: 1350 return cmpResult != APFloat::cmpUnordered && cmpResult != APFloat::cmpEqual; 1351 case arith::CmpFPredicate::ORD: 1352 return cmpResult != APFloat::cmpUnordered; 1353 case arith::CmpFPredicate::UEQ: 1354 return cmpResult == APFloat::cmpUnordered || cmpResult == APFloat::cmpEqual; 1355 case arith::CmpFPredicate::UGT: 1356 return cmpResult == APFloat::cmpUnordered || 1357 cmpResult == APFloat::cmpGreaterThan; 1358 case arith::CmpFPredicate::UGE: 1359 return cmpResult == APFloat::cmpUnordered || 1360 cmpResult == APFloat::cmpGreaterThan || 1361 cmpResult == APFloat::cmpEqual; 1362 case arith::CmpFPredicate::ULT: 1363 return cmpResult == APFloat::cmpUnordered || 1364 cmpResult == APFloat::cmpLessThan; 1365 case arith::CmpFPredicate::ULE: 1366 return cmpResult == APFloat::cmpUnordered || 1367 cmpResult == APFloat::cmpLessThan || cmpResult == APFloat::cmpEqual; 1368 case arith::CmpFPredicate::UNE: 1369 return cmpResult != APFloat::cmpEqual; 1370 case arith::CmpFPredicate::UNO: 1371 return cmpResult == APFloat::cmpUnordered; 1372 case arith::CmpFPredicate::AlwaysTrue: 1373 return true; 1374 } 1375 llvm_unreachable("unknown cmpf predicate kind"); 1376 } 1377 1378 OpFoldResult arith::CmpFOp::fold(ArrayRef<Attribute> operands) { 1379 assert(operands.size() == 2 && "cmpf takes two operands"); 1380 1381 auto lhs = operands.front().dyn_cast_or_null<FloatAttr>(); 1382 auto rhs = operands.back().dyn_cast_or_null<FloatAttr>(); 1383 1384 // If one operand is NaN, making them both NaN does not change the result. 1385 if (lhs && lhs.getValue().isNaN()) 1386 rhs = lhs; 1387 if (rhs && rhs.getValue().isNaN()) 1388 lhs = rhs; 1389 1390 if (!lhs || !rhs) 1391 return {}; 1392 1393 auto val = applyCmpPredicate(getPredicate(), lhs.getValue(), rhs.getValue()); 1394 return BoolAttr::get(getContext(), val); 1395 } 1396 1397 class CmpFIntToFPConst final : public OpRewritePattern<CmpFOp> { 1398 public: 1399 using OpRewritePattern<CmpFOp>::OpRewritePattern; 1400 1401 static CmpIPredicate convertToIntegerPredicate(CmpFPredicate pred, 1402 bool isUnsigned) { 1403 using namespace arith; 1404 switch (pred) { 1405 case CmpFPredicate::UEQ: 1406 case CmpFPredicate::OEQ: 1407 return CmpIPredicate::eq; 1408 case CmpFPredicate::UGT: 1409 case CmpFPredicate::OGT: 1410 return isUnsigned ? CmpIPredicate::ugt : CmpIPredicate::sgt; 1411 case CmpFPredicate::UGE: 1412 case CmpFPredicate::OGE: 1413 return isUnsigned ? CmpIPredicate::uge : CmpIPredicate::sge; 1414 case CmpFPredicate::ULT: 1415 case CmpFPredicate::OLT: 1416 return isUnsigned ? CmpIPredicate::ult : CmpIPredicate::slt; 1417 case CmpFPredicate::ULE: 1418 case CmpFPredicate::OLE: 1419 return isUnsigned ? CmpIPredicate::ule : CmpIPredicate::sle; 1420 case CmpFPredicate::UNE: 1421 case CmpFPredicate::ONE: 1422 return CmpIPredicate::ne; 1423 default: 1424 llvm_unreachable("Unexpected predicate!"); 1425 } 1426 } 1427 1428 LogicalResult matchAndRewrite(CmpFOp op, 1429 PatternRewriter &rewriter) const override { 1430 FloatAttr flt; 1431 if (!matchPattern(op.getRhs(), m_Constant(&flt))) 1432 return failure(); 1433 1434 const APFloat &rhs = flt.getValue(); 1435 1436 // Don't attempt to fold a nan. 1437 if (rhs.isNaN()) 1438 return failure(); 1439 1440 // Get the width of the mantissa. We don't want to hack on conversions that 1441 // might lose information from the integer, e.g. "i64 -> float" 1442 FloatType floatTy = op.getRhs().getType().cast<FloatType>(); 1443 int mantissaWidth = floatTy.getFPMantissaWidth(); 1444 if (mantissaWidth <= 0) 1445 return failure(); 1446 1447 bool isUnsigned; 1448 Value intVal; 1449 1450 if (auto si = op.getLhs().getDefiningOp<SIToFPOp>()) { 1451 isUnsigned = false; 1452 intVal = si.getIn(); 1453 } else if (auto ui = op.getLhs().getDefiningOp<UIToFPOp>()) { 1454 isUnsigned = true; 1455 intVal = ui.getIn(); 1456 } else { 1457 return failure(); 1458 } 1459 1460 // Check to see that the input is converted from an integer type that is 1461 // small enough that preserves all bits. 1462 auto intTy = intVal.getType().cast<IntegerType>(); 1463 auto intWidth = intTy.getWidth(); 1464 1465 // Number of bits representing values, as opposed to the sign 1466 auto valueBits = isUnsigned ? intWidth : (intWidth - 1); 1467 1468 // Following test does NOT adjust intWidth downwards for signed inputs, 1469 // because the most negative value still requires all the mantissa bits 1470 // to distinguish it from one less than that value. 1471 if ((int)intWidth > mantissaWidth) { 1472 // Conversion would lose accuracy. Check if loss can impact comparison. 1473 int exponent = ilogb(rhs); 1474 if (exponent == APFloat::IEK_Inf) { 1475 int maxExponent = ilogb(APFloat::getLargest(rhs.getSemantics())); 1476 if (maxExponent < (int)valueBits) { 1477 // Conversion could create infinity. 1478 return failure(); 1479 } 1480 } else { 1481 // Note that if rhs is zero or NaN, then Exp is negative 1482 // and first condition is trivially false. 1483 if (mantissaWidth <= exponent && exponent <= (int)valueBits) { 1484 // Conversion could affect comparison. 1485 return failure(); 1486 } 1487 } 1488 } 1489 1490 // Convert to equivalent cmpi predicate 1491 CmpIPredicate pred; 1492 switch (op.getPredicate()) { 1493 case CmpFPredicate::ORD: 1494 // Int to fp conversion doesn't create a nan (ord checks neither is a nan) 1495 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1496 /*width=*/1); 1497 return success(); 1498 case CmpFPredicate::UNO: 1499 // Int to fp conversion doesn't create a nan (uno checks either is a nan) 1500 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1501 /*width=*/1); 1502 return success(); 1503 default: 1504 pred = convertToIntegerPredicate(op.getPredicate(), isUnsigned); 1505 break; 1506 } 1507 1508 if (!isUnsigned) { 1509 // If the rhs value is > SignedMax, fold the comparison. This handles 1510 // +INF and large values. 1511 APFloat signedMax(rhs.getSemantics()); 1512 signedMax.convertFromAPInt(APInt::getSignedMaxValue(intWidth), true, 1513 APFloat::rmNearestTiesToEven); 1514 if (signedMax < rhs) { // smax < 13123.0 1515 if (pred == CmpIPredicate::ne || pred == CmpIPredicate::slt || 1516 pred == CmpIPredicate::sle) 1517 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1518 /*width=*/1); 1519 else 1520 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1521 /*width=*/1); 1522 return success(); 1523 } 1524 } else { 1525 // If the rhs value is > UnsignedMax, fold the comparison. This handles 1526 // +INF and large values. 1527 APFloat unsignedMax(rhs.getSemantics()); 1528 unsignedMax.convertFromAPInt(APInt::getMaxValue(intWidth), false, 1529 APFloat::rmNearestTiesToEven); 1530 if (unsignedMax < rhs) { // umax < 13123.0 1531 if (pred == CmpIPredicate::ne || pred == CmpIPredicate::ult || 1532 pred == CmpIPredicate::ule) 1533 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1534 /*width=*/1); 1535 else 1536 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1537 /*width=*/1); 1538 return success(); 1539 } 1540 } 1541 1542 if (!isUnsigned) { 1543 // See if the rhs value is < SignedMin. 1544 APFloat signedMin(rhs.getSemantics()); 1545 signedMin.convertFromAPInt(APInt::getSignedMinValue(intWidth), true, 1546 APFloat::rmNearestTiesToEven); 1547 if (signedMin > rhs) { // smin > 12312.0 1548 if (pred == CmpIPredicate::ne || pred == CmpIPredicate::sgt || 1549 pred == CmpIPredicate::sge) 1550 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1551 /*width=*/1); 1552 else 1553 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1554 /*width=*/1); 1555 return success(); 1556 } 1557 } else { 1558 // See if the rhs value is < UnsignedMin. 1559 APFloat unsignedMin(rhs.getSemantics()); 1560 unsignedMin.convertFromAPInt(APInt::getMinValue(intWidth), false, 1561 APFloat::rmNearestTiesToEven); 1562 if (unsignedMin > rhs) { // umin > 12312.0 1563 if (pred == CmpIPredicate::ne || pred == CmpIPredicate::ugt || 1564 pred == CmpIPredicate::uge) 1565 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1566 /*width=*/1); 1567 else 1568 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1569 /*width=*/1); 1570 return success(); 1571 } 1572 } 1573 1574 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 1575 // [0, UMAX], but it may still be fractional. See if it is fractional by 1576 // casting the FP value to the integer value and back, checking for 1577 // equality. Don't do this for zero, because -0.0 is not fractional. 1578 bool ignored; 1579 APSInt rhsInt(intWidth, isUnsigned); 1580 if (APFloat::opInvalidOp == 1581 rhs.convertToInteger(rhsInt, APFloat::rmTowardZero, &ignored)) { 1582 // Undefined behavior invoked - the destination type can't represent 1583 // the input constant. 1584 return failure(); 1585 } 1586 1587 if (!rhs.isZero()) { 1588 APFloat apf(floatTy.getFloatSemantics(), 1589 APInt::getZero(floatTy.getWidth())); 1590 apf.convertFromAPInt(rhsInt, !isUnsigned, APFloat::rmNearestTiesToEven); 1591 1592 bool equal = apf == rhs; 1593 if (!equal) { 1594 // If we had a comparison against a fractional value, we have to adjust 1595 // the compare predicate and sometimes the value. rhsInt is rounded 1596 // towards zero at this point. 1597 switch (pred) { 1598 case CmpIPredicate::ne: // (float)int != 4.4 --> true 1599 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1600 /*width=*/1); 1601 return success(); 1602 case CmpIPredicate::eq: // (float)int == 4.4 --> false 1603 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1604 /*width=*/1); 1605 return success(); 1606 case CmpIPredicate::ule: 1607 // (float)int <= 4.4 --> int <= 4 1608 // (float)int <= -4.4 --> false 1609 if (rhs.isNegative()) { 1610 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1611 /*width=*/1); 1612 return success(); 1613 } 1614 break; 1615 case CmpIPredicate::sle: 1616 // (float)int <= 4.4 --> int <= 4 1617 // (float)int <= -4.4 --> int < -4 1618 if (rhs.isNegative()) 1619 pred = CmpIPredicate::slt; 1620 break; 1621 case CmpIPredicate::ult: 1622 // (float)int < -4.4 --> false 1623 // (float)int < 4.4 --> int <= 4 1624 if (rhs.isNegative()) { 1625 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1626 /*width=*/1); 1627 return success(); 1628 } 1629 pred = CmpIPredicate::ule; 1630 break; 1631 case CmpIPredicate::slt: 1632 // (float)int < -4.4 --> int < -4 1633 // (float)int < 4.4 --> int <= 4 1634 if (!rhs.isNegative()) 1635 pred = CmpIPredicate::sle; 1636 break; 1637 case CmpIPredicate::ugt: 1638 // (float)int > 4.4 --> int > 4 1639 // (float)int > -4.4 --> true 1640 if (rhs.isNegative()) { 1641 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1642 /*width=*/1); 1643 return success(); 1644 } 1645 break; 1646 case CmpIPredicate::sgt: 1647 // (float)int > 4.4 --> int > 4 1648 // (float)int > -4.4 --> int >= -4 1649 if (rhs.isNegative()) 1650 pred = CmpIPredicate::sge; 1651 break; 1652 case CmpIPredicate::uge: 1653 // (float)int >= -4.4 --> true 1654 // (float)int >= 4.4 --> int > 4 1655 if (rhs.isNegative()) { 1656 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1657 /*width=*/1); 1658 return success(); 1659 } 1660 pred = CmpIPredicate::ugt; 1661 break; 1662 case CmpIPredicate::sge: 1663 // (float)int >= -4.4 --> int >= -4 1664 // (float)int >= 4.4 --> int > 4 1665 if (!rhs.isNegative()) 1666 pred = CmpIPredicate::sgt; 1667 break; 1668 } 1669 } 1670 } 1671 1672 // Lower this FP comparison into an appropriate integer version of the 1673 // comparison. 1674 rewriter.replaceOpWithNewOp<CmpIOp>( 1675 op, pred, intVal, 1676 rewriter.create<ConstantOp>( 1677 op.getLoc(), intVal.getType(), 1678 rewriter.getIntegerAttr(intVal.getType(), rhsInt))); 1679 return success(); 1680 } 1681 }; 1682 1683 void arith::CmpFOp::getCanonicalizationPatterns(RewritePatternSet &patterns, 1684 MLIRContext *context) { 1685 patterns.insert<CmpFIntToFPConst>(context); 1686 } 1687 1688 //===----------------------------------------------------------------------===// 1689 // SelectOp 1690 //===----------------------------------------------------------------------===// 1691 1692 // Transforms a select of a boolean to arithmetic operations 1693 // 1694 // arith.select %arg, %x, %y : i1 1695 // 1696 // becomes 1697 // 1698 // and(%arg, %x) or and(!%arg, %y) 1699 struct SelectI1Simplify : public OpRewritePattern<arith::SelectOp> { 1700 using OpRewritePattern<arith::SelectOp>::OpRewritePattern; 1701 1702 LogicalResult matchAndRewrite(arith::SelectOp op, 1703 PatternRewriter &rewriter) const override { 1704 if (!op.getType().isInteger(1)) 1705 return failure(); 1706 1707 Value falseConstant = 1708 rewriter.create<arith::ConstantIntOp>(op.getLoc(), true, 1); 1709 Value notCondition = rewriter.create<arith::XOrIOp>( 1710 op.getLoc(), op.getCondition(), falseConstant); 1711 1712 Value trueVal = rewriter.create<arith::AndIOp>( 1713 op.getLoc(), op.getCondition(), op.getTrueValue()); 1714 Value falseVal = rewriter.create<arith::AndIOp>(op.getLoc(), notCondition, 1715 op.getFalseValue()); 1716 rewriter.replaceOpWithNewOp<arith::OrIOp>(op, trueVal, falseVal); 1717 return success(); 1718 } 1719 }; 1720 1721 // select %arg, %c1, %c0 => extui %arg 1722 struct SelectToExtUI : public OpRewritePattern<arith::SelectOp> { 1723 using OpRewritePattern<arith::SelectOp>::OpRewritePattern; 1724 1725 LogicalResult matchAndRewrite(arith::SelectOp op, 1726 PatternRewriter &rewriter) const override { 1727 // Cannot extui i1 to i1, or i1 to f32 1728 if (!op.getType().isa<IntegerType>() || op.getType().isInteger(1)) 1729 return failure(); 1730 1731 // select %x, c1, %c0 => extui %arg 1732 if (matchPattern(op.getTrueValue(), m_One()) && 1733 matchPattern(op.getFalseValue(), m_Zero())) { 1734 rewriter.replaceOpWithNewOp<arith::ExtUIOp>(op, op.getType(), 1735 op.getCondition()); 1736 return success(); 1737 } 1738 1739 // select %x, c0, %c1 => extui (xor %arg, true) 1740 if (matchPattern(op.getTrueValue(), m_Zero()) && 1741 matchPattern(op.getFalseValue(), m_One())) { 1742 rewriter.replaceOpWithNewOp<arith::ExtUIOp>( 1743 op, op.getType(), 1744 rewriter.create<arith::XOrIOp>( 1745 op.getLoc(), op.getCondition(), 1746 rewriter.create<arith::ConstantIntOp>( 1747 op.getLoc(), 1, op.getCondition().getType()))); 1748 return success(); 1749 } 1750 1751 return failure(); 1752 } 1753 }; 1754 1755 void arith::SelectOp::getCanonicalizationPatterns(RewritePatternSet &results, 1756 MLIRContext *context) { 1757 results.add<SelectI1Simplify, SelectToExtUI>(context); 1758 } 1759 1760 OpFoldResult arith::SelectOp::fold(ArrayRef<Attribute> operands) { 1761 Value trueVal = getTrueValue(); 1762 Value falseVal = getFalseValue(); 1763 if (trueVal == falseVal) 1764 return trueVal; 1765 1766 Value condition = getCondition(); 1767 1768 // select true, %0, %1 => %0 1769 if (matchPattern(condition, m_One())) 1770 return trueVal; 1771 1772 // select false, %0, %1 => %1 1773 if (matchPattern(condition, m_Zero())) 1774 return falseVal; 1775 1776 // select %x, true, false => %x 1777 if (getType().isInteger(1) && matchPattern(getTrueValue(), m_One()) && 1778 matchPattern(getFalseValue(), m_Zero())) 1779 return condition; 1780 1781 if (auto cmp = dyn_cast_or_null<arith::CmpIOp>(condition.getDefiningOp())) { 1782 auto pred = cmp.getPredicate(); 1783 if (pred == arith::CmpIPredicate::eq || pred == arith::CmpIPredicate::ne) { 1784 auto cmpLhs = cmp.getLhs(); 1785 auto cmpRhs = cmp.getRhs(); 1786 1787 // %0 = arith.cmpi eq, %arg0, %arg1 1788 // %1 = arith.select %0, %arg0, %arg1 => %arg1 1789 1790 // %0 = arith.cmpi ne, %arg0, %arg1 1791 // %1 = arith.select %0, %arg0, %arg1 => %arg0 1792 1793 if ((cmpLhs == trueVal && cmpRhs == falseVal) || 1794 (cmpRhs == trueVal && cmpLhs == falseVal)) 1795 return pred == arith::CmpIPredicate::ne ? trueVal : falseVal; 1796 } 1797 } 1798 return nullptr; 1799 } 1800 1801 ParseResult SelectOp::parse(OpAsmParser &parser, OperationState &result) { 1802 Type conditionType, resultType; 1803 SmallVector<OpAsmParser::UnresolvedOperand, 3> operands; 1804 if (parser.parseOperandList(operands, /*requiredOperandCount=*/3) || 1805 parser.parseOptionalAttrDict(result.attributes) || 1806 parser.parseColonType(resultType)) 1807 return failure(); 1808 1809 // Check for the explicit condition type if this is a masked tensor or vector. 1810 if (succeeded(parser.parseOptionalComma())) { 1811 conditionType = resultType; 1812 if (parser.parseType(resultType)) 1813 return failure(); 1814 } else { 1815 conditionType = parser.getBuilder().getI1Type(); 1816 } 1817 1818 result.addTypes(resultType); 1819 return parser.resolveOperands(operands, 1820 {conditionType, resultType, resultType}, 1821 parser.getNameLoc(), result.operands); 1822 } 1823 1824 void arith::SelectOp::print(OpAsmPrinter &p) { 1825 p << " " << getOperands(); 1826 p.printOptionalAttrDict((*this)->getAttrs()); 1827 p << " : "; 1828 if (ShapedType condType = getCondition().getType().dyn_cast<ShapedType>()) 1829 p << condType << ", "; 1830 p << getType(); 1831 } 1832 1833 LogicalResult arith::SelectOp::verify() { 1834 Type conditionType = getCondition().getType(); 1835 if (conditionType.isSignlessInteger(1)) 1836 return success(); 1837 1838 // If the result type is a vector or tensor, the type can be a mask with the 1839 // same elements. 1840 Type resultType = getType(); 1841 if (!resultType.isa<TensorType, VectorType>()) 1842 return emitOpError() << "expected condition to be a signless i1, but got " 1843 << conditionType; 1844 Type shapedConditionType = getI1SameShape(resultType); 1845 if (conditionType != shapedConditionType) { 1846 return emitOpError() << "expected condition type to have the same shape " 1847 "as the result type, expected " 1848 << shapedConditionType << ", but got " 1849 << conditionType; 1850 } 1851 return success(); 1852 } 1853 //===----------------------------------------------------------------------===// 1854 // ShLIOp 1855 //===----------------------------------------------------------------------===// 1856 1857 OpFoldResult arith::ShLIOp::fold(ArrayRef<Attribute> operands) { 1858 // Don't fold if shifting more than the bit width. 1859 bool bounded = false; 1860 auto result = constFoldBinaryOp<IntegerAttr>( 1861 operands, [&](const APInt &a, const APInt &b) { 1862 bounded = b.ule(b.getBitWidth()); 1863 return a.shl(b); 1864 }); 1865 return bounded ? result : Attribute(); 1866 } 1867 1868 //===----------------------------------------------------------------------===// 1869 // ShRUIOp 1870 //===----------------------------------------------------------------------===// 1871 1872 OpFoldResult arith::ShRUIOp::fold(ArrayRef<Attribute> operands) { 1873 // Don't fold if shifting more than the bit width. 1874 bool bounded = false; 1875 auto result = constFoldBinaryOp<IntegerAttr>( 1876 operands, [&](const APInt &a, const APInt &b) { 1877 bounded = b.ule(b.getBitWidth()); 1878 return a.lshr(b); 1879 }); 1880 return bounded ? result : Attribute(); 1881 } 1882 1883 //===----------------------------------------------------------------------===// 1884 // ShRSIOp 1885 //===----------------------------------------------------------------------===// 1886 1887 OpFoldResult arith::ShRSIOp::fold(ArrayRef<Attribute> operands) { 1888 // Don't fold if shifting more than the bit width. 1889 bool bounded = false; 1890 auto result = constFoldBinaryOp<IntegerAttr>( 1891 operands, [&](const APInt &a, const APInt &b) { 1892 bounded = b.ule(b.getBitWidth()); 1893 return a.ashr(b); 1894 }); 1895 return bounded ? result : Attribute(); 1896 } 1897 1898 //===----------------------------------------------------------------------===// 1899 // Atomic Enum 1900 //===----------------------------------------------------------------------===// 1901 1902 /// Returns the identity value attribute associated with an AtomicRMWKind op. 1903 Attribute mlir::arith::getIdentityValueAttr(AtomicRMWKind kind, Type resultType, 1904 OpBuilder &builder, Location loc) { 1905 switch (kind) { 1906 case AtomicRMWKind::maxf: 1907 return builder.getFloatAttr( 1908 resultType, 1909 APFloat::getInf(resultType.cast<FloatType>().getFloatSemantics(), 1910 /*Negative=*/true)); 1911 case AtomicRMWKind::addf: 1912 case AtomicRMWKind::addi: 1913 case AtomicRMWKind::maxu: 1914 case AtomicRMWKind::ori: 1915 return builder.getZeroAttr(resultType); 1916 case AtomicRMWKind::andi: 1917 return builder.getIntegerAttr( 1918 resultType, 1919 APInt::getAllOnes(resultType.cast<IntegerType>().getWidth())); 1920 case AtomicRMWKind::maxs: 1921 return builder.getIntegerAttr( 1922 resultType, 1923 APInt::getSignedMinValue(resultType.cast<IntegerType>().getWidth())); 1924 case AtomicRMWKind::minf: 1925 return builder.getFloatAttr( 1926 resultType, 1927 APFloat::getInf(resultType.cast<FloatType>().getFloatSemantics(), 1928 /*Negative=*/false)); 1929 case AtomicRMWKind::mins: 1930 return builder.getIntegerAttr( 1931 resultType, 1932 APInt::getSignedMaxValue(resultType.cast<IntegerType>().getWidth())); 1933 case AtomicRMWKind::minu: 1934 return builder.getIntegerAttr( 1935 resultType, 1936 APInt::getMaxValue(resultType.cast<IntegerType>().getWidth())); 1937 case AtomicRMWKind::muli: 1938 return builder.getIntegerAttr(resultType, 1); 1939 case AtomicRMWKind::mulf: 1940 return builder.getFloatAttr(resultType, 1); 1941 // TODO: Add remaining reduction operations. 1942 default: 1943 (void)emitOptionalError(loc, "Reduction operation type not supported"); 1944 break; 1945 } 1946 return nullptr; 1947 } 1948 1949 /// Returns the identity value associated with an AtomicRMWKind op. 1950 Value mlir::arith::getIdentityValue(AtomicRMWKind op, Type resultType, 1951 OpBuilder &builder, Location loc) { 1952 Attribute attr = getIdentityValueAttr(op, resultType, builder, loc); 1953 return builder.create<arith::ConstantOp>(loc, attr); 1954 } 1955 1956 /// Return the value obtained by applying the reduction operation kind 1957 /// associated with a binary AtomicRMWKind op to `lhs` and `rhs`. 1958 Value mlir::arith::getReductionOp(AtomicRMWKind op, OpBuilder &builder, 1959 Location loc, Value lhs, Value rhs) { 1960 switch (op) { 1961 case AtomicRMWKind::addf: 1962 return builder.create<arith::AddFOp>(loc, lhs, rhs); 1963 case AtomicRMWKind::addi: 1964 return builder.create<arith::AddIOp>(loc, lhs, rhs); 1965 case AtomicRMWKind::mulf: 1966 return builder.create<arith::MulFOp>(loc, lhs, rhs); 1967 case AtomicRMWKind::muli: 1968 return builder.create<arith::MulIOp>(loc, lhs, rhs); 1969 case AtomicRMWKind::maxf: 1970 return builder.create<arith::MaxFOp>(loc, lhs, rhs); 1971 case AtomicRMWKind::minf: 1972 return builder.create<arith::MinFOp>(loc, lhs, rhs); 1973 case AtomicRMWKind::maxs: 1974 return builder.create<arith::MaxSIOp>(loc, lhs, rhs); 1975 case AtomicRMWKind::mins: 1976 return builder.create<arith::MinSIOp>(loc, lhs, rhs); 1977 case AtomicRMWKind::maxu: 1978 return builder.create<arith::MaxUIOp>(loc, lhs, rhs); 1979 case AtomicRMWKind::minu: 1980 return builder.create<arith::MinUIOp>(loc, lhs, rhs); 1981 case AtomicRMWKind::ori: 1982 return builder.create<arith::OrIOp>(loc, lhs, rhs); 1983 case AtomicRMWKind::andi: 1984 return builder.create<arith::AndIOp>(loc, lhs, rhs); 1985 // TODO: Add remaining reduction operations. 1986 default: 1987 (void)emitOptionalError(loc, "Reduction operation type not supported"); 1988 break; 1989 } 1990 return nullptr; 1991 } 1992 1993 //===----------------------------------------------------------------------===// 1994 // TableGen'd op method definitions 1995 //===----------------------------------------------------------------------===// 1996 1997 #define GET_OP_CLASSES 1998 #include "mlir/Dialect/Arithmetic/IR/ArithmeticOps.cpp.inc" 1999 2000 //===----------------------------------------------------------------------===// 2001 // TableGen'd enum attribute definitions 2002 //===----------------------------------------------------------------------===// 2003 2004 #include "mlir/Dialect/Arithmetic/IR/ArithmeticOpsEnums.cpp.inc" 2005