1 //===- ArithmeticOps.cpp - MLIR Arithmetic dialect ops implementation -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <utility> 10 11 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 12 #include "mlir/Dialect/CommonFolders.h" 13 #include "mlir/IR/Builders.h" 14 #include "mlir/IR/Matchers.h" 15 #include "mlir/IR/OpImplementation.h" 16 #include "mlir/IR/PatternMatch.h" 17 #include "mlir/IR/TypeUtilities.h" 18 #include "llvm/ADT/SmallString.h" 19 20 #include "llvm/ADT/APSInt.h" 21 22 using namespace mlir; 23 using namespace mlir::arith; 24 25 //===----------------------------------------------------------------------===// 26 // Pattern helpers 27 //===----------------------------------------------------------------------===// 28 29 static IntegerAttr addIntegerAttrs(PatternRewriter &builder, Value res, 30 Attribute lhs, Attribute rhs) { 31 return builder.getIntegerAttr(res.getType(), 32 lhs.cast<IntegerAttr>().getInt() + 33 rhs.cast<IntegerAttr>().getInt()); 34 } 35 36 static IntegerAttr subIntegerAttrs(PatternRewriter &builder, Value res, 37 Attribute lhs, Attribute rhs) { 38 return builder.getIntegerAttr(res.getType(), 39 lhs.cast<IntegerAttr>().getInt() - 40 rhs.cast<IntegerAttr>().getInt()); 41 } 42 43 /// Invert an integer comparison predicate. 44 arith::CmpIPredicate arith::invertPredicate(arith::CmpIPredicate pred) { 45 switch (pred) { 46 case arith::CmpIPredicate::eq: 47 return arith::CmpIPredicate::ne; 48 case arith::CmpIPredicate::ne: 49 return arith::CmpIPredicate::eq; 50 case arith::CmpIPredicate::slt: 51 return arith::CmpIPredicate::sge; 52 case arith::CmpIPredicate::sle: 53 return arith::CmpIPredicate::sgt; 54 case arith::CmpIPredicate::sgt: 55 return arith::CmpIPredicate::sle; 56 case arith::CmpIPredicate::sge: 57 return arith::CmpIPredicate::slt; 58 case arith::CmpIPredicate::ult: 59 return arith::CmpIPredicate::uge; 60 case arith::CmpIPredicate::ule: 61 return arith::CmpIPredicate::ugt; 62 case arith::CmpIPredicate::ugt: 63 return arith::CmpIPredicate::ule; 64 case arith::CmpIPredicate::uge: 65 return arith::CmpIPredicate::ult; 66 } 67 llvm_unreachable("unknown cmpi predicate kind"); 68 } 69 70 static arith::CmpIPredicateAttr invertPredicate(arith::CmpIPredicateAttr pred) { 71 return arith::CmpIPredicateAttr::get(pred.getContext(), 72 invertPredicate(pred.getValue())); 73 } 74 75 //===----------------------------------------------------------------------===// 76 // TableGen'd canonicalization patterns 77 //===----------------------------------------------------------------------===// 78 79 namespace { 80 #include "ArithmeticCanonicalization.inc" 81 } // namespace 82 83 //===----------------------------------------------------------------------===// 84 // ConstantOp 85 //===----------------------------------------------------------------------===// 86 87 void arith::ConstantOp::getAsmResultNames( 88 function_ref<void(Value, StringRef)> setNameFn) { 89 auto type = getType(); 90 if (auto intCst = getValue().dyn_cast<IntegerAttr>()) { 91 auto intType = type.dyn_cast<IntegerType>(); 92 93 // Sugar i1 constants with 'true' and 'false'. 94 if (intType && intType.getWidth() == 1) 95 return setNameFn(getResult(), (intCst.getInt() ? "true" : "false")); 96 97 // Otherwise, build a compex name with the value and type. 98 SmallString<32> specialNameBuffer; 99 llvm::raw_svector_ostream specialName(specialNameBuffer); 100 specialName << 'c' << intCst.getInt(); 101 if (intType) 102 specialName << '_' << type; 103 setNameFn(getResult(), specialName.str()); 104 } else { 105 setNameFn(getResult(), "cst"); 106 } 107 } 108 109 /// TODO: disallow arith.constant to return anything other than signless integer 110 /// or float like. 111 LogicalResult arith::ConstantOp::verify() { 112 auto type = getType(); 113 // The value's type must match the return type. 114 if (getValue().getType() != type) { 115 return emitOpError() << "value type " << getValue().getType() 116 << " must match return type: " << type; 117 } 118 // Integer values must be signless. 119 if (type.isa<IntegerType>() && !type.cast<IntegerType>().isSignless()) 120 return emitOpError("integer return type must be signless"); 121 // Any float or elements attribute are acceptable. 122 if (!getValue().isa<IntegerAttr, FloatAttr, ElementsAttr>()) { 123 return emitOpError( 124 "value must be an integer, float, or elements attribute"); 125 } 126 return success(); 127 } 128 129 bool arith::ConstantOp::isBuildableWith(Attribute value, Type type) { 130 // The value's type must be the same as the provided type. 131 if (value.getType() != type) 132 return false; 133 // Integer values must be signless. 134 if (type.isa<IntegerType>() && !type.cast<IntegerType>().isSignless()) 135 return false; 136 // Integer, float, and element attributes are buildable. 137 return value.isa<IntegerAttr, FloatAttr, ElementsAttr>(); 138 } 139 140 OpFoldResult arith::ConstantOp::fold(ArrayRef<Attribute> operands) { 141 return getValue(); 142 } 143 144 void arith::ConstantIntOp::build(OpBuilder &builder, OperationState &result, 145 int64_t value, unsigned width) { 146 auto type = builder.getIntegerType(width); 147 arith::ConstantOp::build(builder, result, type, 148 builder.getIntegerAttr(type, value)); 149 } 150 151 void arith::ConstantIntOp::build(OpBuilder &builder, OperationState &result, 152 int64_t value, Type type) { 153 assert(type.isSignlessInteger() && 154 "ConstantIntOp can only have signless integer type values"); 155 arith::ConstantOp::build(builder, result, type, 156 builder.getIntegerAttr(type, value)); 157 } 158 159 bool arith::ConstantIntOp::classof(Operation *op) { 160 if (auto constOp = dyn_cast_or_null<arith::ConstantOp>(op)) 161 return constOp.getType().isSignlessInteger(); 162 return false; 163 } 164 165 void arith::ConstantFloatOp::build(OpBuilder &builder, OperationState &result, 166 const APFloat &value, FloatType type) { 167 arith::ConstantOp::build(builder, result, type, 168 builder.getFloatAttr(type, value)); 169 } 170 171 bool arith::ConstantFloatOp::classof(Operation *op) { 172 if (auto constOp = dyn_cast_or_null<arith::ConstantOp>(op)) 173 return constOp.getType().isa<FloatType>(); 174 return false; 175 } 176 177 void arith::ConstantIndexOp::build(OpBuilder &builder, OperationState &result, 178 int64_t value) { 179 arith::ConstantOp::build(builder, result, builder.getIndexType(), 180 builder.getIndexAttr(value)); 181 } 182 183 bool arith::ConstantIndexOp::classof(Operation *op) { 184 if (auto constOp = dyn_cast_or_null<arith::ConstantOp>(op)) 185 return constOp.getType().isIndex(); 186 return false; 187 } 188 189 //===----------------------------------------------------------------------===// 190 // AddIOp 191 //===----------------------------------------------------------------------===// 192 193 OpFoldResult arith::AddIOp::fold(ArrayRef<Attribute> operands) { 194 // addi(x, 0) -> x 195 if (matchPattern(getRhs(), m_Zero())) 196 return getLhs(); 197 198 // addi(subi(a, b), b) -> a 199 if (auto sub = getLhs().getDefiningOp<SubIOp>()) 200 if (getRhs() == sub.getRhs()) 201 return sub.getLhs(); 202 203 // addi(b, subi(a, b)) -> a 204 if (auto sub = getRhs().getDefiningOp<SubIOp>()) 205 if (getLhs() == sub.getRhs()) 206 return sub.getLhs(); 207 208 return constFoldBinaryOp<IntegerAttr>( 209 operands, [](APInt a, const APInt &b) { return std::move(a) + b; }); 210 } 211 212 void arith::AddIOp::getCanonicalizationPatterns( 213 RewritePatternSet &patterns, MLIRContext *context) { 214 patterns.add<AddIAddConstant, AddISubConstantRHS, AddISubConstantLHS>( 215 context); 216 } 217 218 //===----------------------------------------------------------------------===// 219 // SubIOp 220 //===----------------------------------------------------------------------===// 221 222 OpFoldResult arith::SubIOp::fold(ArrayRef<Attribute> operands) { 223 // subi(x,x) -> 0 224 if (getOperand(0) == getOperand(1)) 225 return Builder(getContext()).getZeroAttr(getType()); 226 // subi(x,0) -> x 227 if (matchPattern(getRhs(), m_Zero())) 228 return getLhs(); 229 230 return constFoldBinaryOp<IntegerAttr>( 231 operands, [](APInt a, const APInt &b) { return std::move(a) - b; }); 232 } 233 234 void arith::SubIOp::getCanonicalizationPatterns( 235 RewritePatternSet &patterns, MLIRContext *context) { 236 patterns 237 .add<SubIRHSAddConstant, SubILHSAddConstant, SubIRHSSubConstantRHS, 238 SubIRHSSubConstantLHS, SubILHSSubConstantRHS, SubILHSSubConstantLHS>( 239 context); 240 } 241 242 //===----------------------------------------------------------------------===// 243 // MulIOp 244 //===----------------------------------------------------------------------===// 245 246 OpFoldResult arith::MulIOp::fold(ArrayRef<Attribute> operands) { 247 // muli(x, 0) -> 0 248 if (matchPattern(getRhs(), m_Zero())) 249 return getRhs(); 250 // muli(x, 1) -> x 251 if (matchPattern(getRhs(), m_One())) 252 return getOperand(0); 253 // TODO: Handle the overflow case. 254 255 // default folder 256 return constFoldBinaryOp<IntegerAttr>( 257 operands, [](const APInt &a, const APInt &b) { return a * b; }); 258 } 259 260 //===----------------------------------------------------------------------===// 261 // DivUIOp 262 //===----------------------------------------------------------------------===// 263 264 OpFoldResult arith::DivUIOp::fold(ArrayRef<Attribute> operands) { 265 // divui (x, 1) -> x. 266 if (matchPattern(getRhs(), m_One())) 267 return getLhs(); 268 269 // Don't fold if it would require a division by zero. 270 bool div0 = false; 271 auto result = 272 constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) { 273 if (div0 || !b) { 274 div0 = true; 275 return a; 276 } 277 return a.udiv(b); 278 }); 279 280 return div0 ? Attribute() : result; 281 } 282 283 //===----------------------------------------------------------------------===// 284 // DivSIOp 285 //===----------------------------------------------------------------------===// 286 287 OpFoldResult arith::DivSIOp::fold(ArrayRef<Attribute> operands) { 288 // divsi (x, 1) -> x. 289 if (matchPattern(getRhs(), m_One())) 290 return getLhs(); 291 292 // Don't fold if it would overflow or if it requires a division by zero. 293 bool overflowOrDiv0 = false; 294 auto result = 295 constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) { 296 if (overflowOrDiv0 || !b) { 297 overflowOrDiv0 = true; 298 return a; 299 } 300 return a.sdiv_ov(b, overflowOrDiv0); 301 }); 302 303 return overflowOrDiv0 ? Attribute() : result; 304 } 305 306 //===----------------------------------------------------------------------===// 307 // Ceil and floor division folding helpers 308 //===----------------------------------------------------------------------===// 309 310 static APInt signedCeilNonnegInputs(const APInt &a, const APInt &b, 311 bool &overflow) { 312 // Returns (a-1)/b + 1 313 APInt one(a.getBitWidth(), 1, true); // Signed value 1. 314 APInt val = a.ssub_ov(one, overflow).sdiv_ov(b, overflow); 315 return val.sadd_ov(one, overflow); 316 } 317 318 //===----------------------------------------------------------------------===// 319 // CeilDivUIOp 320 //===----------------------------------------------------------------------===// 321 322 OpFoldResult arith::CeilDivUIOp::fold(ArrayRef<Attribute> operands) { 323 // ceildivui (x, 1) -> x. 324 if (matchPattern(getRhs(), m_One())) 325 return getLhs(); 326 327 bool overflowOrDiv0 = false; 328 auto result = 329 constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) { 330 if (overflowOrDiv0 || !b) { 331 overflowOrDiv0 = true; 332 return a; 333 } 334 APInt quotient = a.udiv(b); 335 if (!a.urem(b)) 336 return quotient; 337 APInt one(a.getBitWidth(), 1, true); 338 return quotient.uadd_ov(one, overflowOrDiv0); 339 }); 340 341 return overflowOrDiv0 ? Attribute() : result; 342 } 343 344 //===----------------------------------------------------------------------===// 345 // CeilDivSIOp 346 //===----------------------------------------------------------------------===// 347 348 OpFoldResult arith::CeilDivSIOp::fold(ArrayRef<Attribute> operands) { 349 // ceildivsi (x, 1) -> x. 350 if (matchPattern(getRhs(), m_One())) 351 return getLhs(); 352 353 // Don't fold if it would overflow or if it requires a division by zero. 354 bool overflowOrDiv0 = false; 355 auto result = 356 constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) { 357 if (overflowOrDiv0 || !b) { 358 overflowOrDiv0 = true; 359 return a; 360 } 361 if (!a) 362 return a; 363 // After this point we know that neither a or b are zero. 364 unsigned bits = a.getBitWidth(); 365 APInt zero = APInt::getZero(bits); 366 bool aGtZero = a.sgt(zero); 367 bool bGtZero = b.sgt(zero); 368 if (aGtZero && bGtZero) { 369 // Both positive, return ceil(a, b). 370 return signedCeilNonnegInputs(a, b, overflowOrDiv0); 371 } 372 if (!aGtZero && !bGtZero) { 373 // Both negative, return ceil(-a, -b). 374 APInt posA = zero.ssub_ov(a, overflowOrDiv0); 375 APInt posB = zero.ssub_ov(b, overflowOrDiv0); 376 return signedCeilNonnegInputs(posA, posB, overflowOrDiv0); 377 } 378 if (!aGtZero && bGtZero) { 379 // A is negative, b is positive, return - ( -a / b). 380 APInt posA = zero.ssub_ov(a, overflowOrDiv0); 381 APInt div = posA.sdiv_ov(b, overflowOrDiv0); 382 return zero.ssub_ov(div, overflowOrDiv0); 383 } 384 // A is positive, b is negative, return - (a / -b). 385 APInt posB = zero.ssub_ov(b, overflowOrDiv0); 386 APInt div = a.sdiv_ov(posB, overflowOrDiv0); 387 return zero.ssub_ov(div, overflowOrDiv0); 388 }); 389 390 return overflowOrDiv0 ? Attribute() : result; 391 } 392 393 //===----------------------------------------------------------------------===// 394 // FloorDivSIOp 395 //===----------------------------------------------------------------------===// 396 397 OpFoldResult arith::FloorDivSIOp::fold(ArrayRef<Attribute> operands) { 398 // floordivsi (x, 1) -> x. 399 if (matchPattern(getRhs(), m_One())) 400 return getLhs(); 401 402 // Don't fold if it would overflow or if it requires a division by zero. 403 bool overflowOrDiv0 = false; 404 auto result = 405 constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) { 406 if (overflowOrDiv0 || !b) { 407 overflowOrDiv0 = true; 408 return a; 409 } 410 if (!a) 411 return a; 412 // After this point we know that neither a or b are zero. 413 unsigned bits = a.getBitWidth(); 414 APInt zero = APInt::getZero(bits); 415 bool aGtZero = a.sgt(zero); 416 bool bGtZero = b.sgt(zero); 417 if (aGtZero && bGtZero) { 418 // Both positive, return a / b. 419 return a.sdiv_ov(b, overflowOrDiv0); 420 } 421 if (!aGtZero && !bGtZero) { 422 // Both negative, return -a / -b. 423 APInt posA = zero.ssub_ov(a, overflowOrDiv0); 424 APInt posB = zero.ssub_ov(b, overflowOrDiv0); 425 return posA.sdiv_ov(posB, overflowOrDiv0); 426 } 427 if (!aGtZero && bGtZero) { 428 // A is negative, b is positive, return - ceil(-a, b). 429 APInt posA = zero.ssub_ov(a, overflowOrDiv0); 430 APInt ceil = signedCeilNonnegInputs(posA, b, overflowOrDiv0); 431 return zero.ssub_ov(ceil, overflowOrDiv0); 432 } 433 // A is positive, b is negative, return - ceil(a, -b). 434 APInt posB = zero.ssub_ov(b, overflowOrDiv0); 435 APInt ceil = signedCeilNonnegInputs(a, posB, overflowOrDiv0); 436 return zero.ssub_ov(ceil, overflowOrDiv0); 437 }); 438 439 return overflowOrDiv0 ? Attribute() : result; 440 } 441 442 //===----------------------------------------------------------------------===// 443 // RemUIOp 444 //===----------------------------------------------------------------------===// 445 446 OpFoldResult arith::RemUIOp::fold(ArrayRef<Attribute> operands) { 447 // remui (x, 1) -> 0. 448 if (matchPattern(getRhs(), m_One())) 449 return Builder(getContext()).getZeroAttr(getType()); 450 451 // Don't fold if it would require a division by zero. 452 bool div0 = false; 453 auto result = 454 constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) { 455 if (div0 || b.isNullValue()) { 456 div0 = true; 457 return a; 458 } 459 return a.urem(b); 460 }); 461 462 return div0 ? Attribute() : result; 463 } 464 465 //===----------------------------------------------------------------------===// 466 // RemSIOp 467 //===----------------------------------------------------------------------===// 468 469 OpFoldResult arith::RemSIOp::fold(ArrayRef<Attribute> operands) { 470 // remsi (x, 1) -> 0. 471 if (matchPattern(getRhs(), m_One())) 472 return Builder(getContext()).getZeroAttr(getType()); 473 474 // Don't fold if it would require a division by zero. 475 bool div0 = false; 476 auto result = 477 constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) { 478 if (div0 || b.isNullValue()) { 479 div0 = true; 480 return a; 481 } 482 return a.srem(b); 483 }); 484 485 return div0 ? Attribute() : result; 486 } 487 488 //===----------------------------------------------------------------------===// 489 // AndIOp 490 //===----------------------------------------------------------------------===// 491 492 OpFoldResult arith::AndIOp::fold(ArrayRef<Attribute> operands) { 493 /// and(x, 0) -> 0 494 if (matchPattern(getRhs(), m_Zero())) 495 return getRhs(); 496 /// and(x, allOnes) -> x 497 APInt intValue; 498 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && intValue.isAllOnes()) 499 return getLhs(); 500 501 return constFoldBinaryOp<IntegerAttr>( 502 operands, [](APInt a, const APInt &b) { return std::move(a) & b; }); 503 } 504 505 //===----------------------------------------------------------------------===// 506 // OrIOp 507 //===----------------------------------------------------------------------===// 508 509 OpFoldResult arith::OrIOp::fold(ArrayRef<Attribute> operands) { 510 /// or(x, 0) -> x 511 if (matchPattern(getRhs(), m_Zero())) 512 return getLhs(); 513 /// or(x, <all ones>) -> <all ones> 514 if (auto rhsAttr = operands[1].dyn_cast_or_null<IntegerAttr>()) 515 if (rhsAttr.getValue().isAllOnes()) 516 return rhsAttr; 517 518 return constFoldBinaryOp<IntegerAttr>( 519 operands, [](APInt a, const APInt &b) { return std::move(a) | b; }); 520 } 521 522 //===----------------------------------------------------------------------===// 523 // XOrIOp 524 //===----------------------------------------------------------------------===// 525 526 OpFoldResult arith::XOrIOp::fold(ArrayRef<Attribute> operands) { 527 /// xor(x, 0) -> x 528 if (matchPattern(getRhs(), m_Zero())) 529 return getLhs(); 530 /// xor(x, x) -> 0 531 if (getLhs() == getRhs()) 532 return Builder(getContext()).getZeroAttr(getType()); 533 /// xor(xor(x, a), a) -> x 534 if (arith::XOrIOp prev = getLhs().getDefiningOp<arith::XOrIOp>()) 535 if (prev.getRhs() == getRhs()) 536 return prev.getLhs(); 537 538 return constFoldBinaryOp<IntegerAttr>( 539 operands, [](APInt a, const APInt &b) { return std::move(a) ^ b; }); 540 } 541 542 void arith::XOrIOp::getCanonicalizationPatterns( 543 RewritePatternSet &patterns, MLIRContext *context) { 544 patterns.add<XOrINotCmpI>(context); 545 } 546 547 //===----------------------------------------------------------------------===// 548 // NegFOp 549 //===----------------------------------------------------------------------===// 550 551 OpFoldResult arith::NegFOp::fold(ArrayRef<Attribute> operands) { 552 /// negf(negf(x)) -> x 553 if (auto op = this->getOperand().getDefiningOp<arith::NegFOp>()) 554 return op.getOperand(); 555 return constFoldUnaryOp<FloatAttr>(operands, 556 [](const APFloat &a) { return -a; }); 557 } 558 559 //===----------------------------------------------------------------------===// 560 // AddFOp 561 //===----------------------------------------------------------------------===// 562 563 OpFoldResult arith::AddFOp::fold(ArrayRef<Attribute> operands) { 564 // addf(x, -0) -> x 565 if (matchPattern(getRhs(), m_NegZeroFloat())) 566 return getLhs(); 567 568 return constFoldBinaryOp<FloatAttr>( 569 operands, [](const APFloat &a, const APFloat &b) { return a + b; }); 570 } 571 572 //===----------------------------------------------------------------------===// 573 // SubFOp 574 //===----------------------------------------------------------------------===// 575 576 OpFoldResult arith::SubFOp::fold(ArrayRef<Attribute> operands) { 577 // subf(x, +0) -> x 578 if (matchPattern(getRhs(), m_PosZeroFloat())) 579 return getLhs(); 580 581 return constFoldBinaryOp<FloatAttr>( 582 operands, [](const APFloat &a, const APFloat &b) { return a - b; }); 583 } 584 585 //===----------------------------------------------------------------------===// 586 // MaxFOp 587 //===----------------------------------------------------------------------===// 588 589 OpFoldResult arith::MaxFOp::fold(ArrayRef<Attribute> operands) { 590 assert(operands.size() == 2 && "maxf takes two operands"); 591 592 // maxf(x,x) -> x 593 if (getLhs() == getRhs()) 594 return getRhs(); 595 596 // maxf(x, -inf) -> x 597 if (matchPattern(getRhs(), m_NegInfFloat())) 598 return getLhs(); 599 600 return constFoldBinaryOp<FloatAttr>( 601 operands, 602 [](const APFloat &a, const APFloat &b) { return llvm::maximum(a, b); }); 603 } 604 605 //===----------------------------------------------------------------------===// 606 // MaxSIOp 607 //===----------------------------------------------------------------------===// 608 609 OpFoldResult MaxSIOp::fold(ArrayRef<Attribute> operands) { 610 assert(operands.size() == 2 && "binary operation takes two operands"); 611 612 // maxsi(x,x) -> x 613 if (getLhs() == getRhs()) 614 return getRhs(); 615 616 APInt intValue; 617 // maxsi(x,MAX_INT) -> MAX_INT 618 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && 619 intValue.isMaxSignedValue()) 620 return getRhs(); 621 622 // maxsi(x, MIN_INT) -> x 623 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && 624 intValue.isMinSignedValue()) 625 return getLhs(); 626 627 return constFoldBinaryOp<IntegerAttr>(operands, 628 [](const APInt &a, const APInt &b) { 629 return llvm::APIntOps::smax(a, b); 630 }); 631 } 632 633 //===----------------------------------------------------------------------===// 634 // MaxUIOp 635 //===----------------------------------------------------------------------===// 636 637 OpFoldResult MaxUIOp::fold(ArrayRef<Attribute> operands) { 638 assert(operands.size() == 2 && "binary operation takes two operands"); 639 640 // maxui(x,x) -> x 641 if (getLhs() == getRhs()) 642 return getRhs(); 643 644 APInt intValue; 645 // maxui(x,MAX_INT) -> MAX_INT 646 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && intValue.isMaxValue()) 647 return getRhs(); 648 649 // maxui(x, MIN_INT) -> x 650 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && intValue.isMinValue()) 651 return getLhs(); 652 653 return constFoldBinaryOp<IntegerAttr>(operands, 654 [](const APInt &a, const APInt &b) { 655 return llvm::APIntOps::umax(a, b); 656 }); 657 } 658 659 //===----------------------------------------------------------------------===// 660 // MinFOp 661 //===----------------------------------------------------------------------===// 662 663 OpFoldResult arith::MinFOp::fold(ArrayRef<Attribute> operands) { 664 assert(operands.size() == 2 && "minf takes two operands"); 665 666 // minf(x,x) -> x 667 if (getLhs() == getRhs()) 668 return getRhs(); 669 670 // minf(x, +inf) -> x 671 if (matchPattern(getRhs(), m_PosInfFloat())) 672 return getLhs(); 673 674 return constFoldBinaryOp<FloatAttr>( 675 operands, 676 [](const APFloat &a, const APFloat &b) { return llvm::minimum(a, b); }); 677 } 678 679 //===----------------------------------------------------------------------===// 680 // MinSIOp 681 //===----------------------------------------------------------------------===// 682 683 OpFoldResult MinSIOp::fold(ArrayRef<Attribute> operands) { 684 assert(operands.size() == 2 && "binary operation takes two operands"); 685 686 // minsi(x,x) -> x 687 if (getLhs() == getRhs()) 688 return getRhs(); 689 690 APInt intValue; 691 // minsi(x,MIN_INT) -> MIN_INT 692 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && 693 intValue.isMinSignedValue()) 694 return getRhs(); 695 696 // minsi(x, MAX_INT) -> x 697 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && 698 intValue.isMaxSignedValue()) 699 return getLhs(); 700 701 return constFoldBinaryOp<IntegerAttr>(operands, 702 [](const APInt &a, const APInt &b) { 703 return llvm::APIntOps::smin(a, b); 704 }); 705 } 706 707 //===----------------------------------------------------------------------===// 708 // MinUIOp 709 //===----------------------------------------------------------------------===// 710 711 OpFoldResult MinUIOp::fold(ArrayRef<Attribute> operands) { 712 assert(operands.size() == 2 && "binary operation takes two operands"); 713 714 // minui(x,x) -> x 715 if (getLhs() == getRhs()) 716 return getRhs(); 717 718 APInt intValue; 719 // minui(x,MIN_INT) -> MIN_INT 720 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && intValue.isMinValue()) 721 return getRhs(); 722 723 // minui(x, MAX_INT) -> x 724 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && intValue.isMaxValue()) 725 return getLhs(); 726 727 return constFoldBinaryOp<IntegerAttr>(operands, 728 [](const APInt &a, const APInt &b) { 729 return llvm::APIntOps::umin(a, b); 730 }); 731 } 732 733 //===----------------------------------------------------------------------===// 734 // MulFOp 735 //===----------------------------------------------------------------------===// 736 737 OpFoldResult arith::MulFOp::fold(ArrayRef<Attribute> operands) { 738 // mulf(x, 1) -> x 739 if (matchPattern(getRhs(), m_OneFloat())) 740 return getLhs(); 741 742 return constFoldBinaryOp<FloatAttr>( 743 operands, [](const APFloat &a, const APFloat &b) { return a * b; }); 744 } 745 746 void arith::MulFOp::getCanonicalizationPatterns(RewritePatternSet &patterns, 747 MLIRContext *context) { 748 patterns.add<MulFOfNegF>(context); 749 } 750 751 //===----------------------------------------------------------------------===// 752 // DivFOp 753 //===----------------------------------------------------------------------===// 754 755 OpFoldResult arith::DivFOp::fold(ArrayRef<Attribute> operands) { 756 // divf(x, 1) -> x 757 if (matchPattern(getRhs(), m_OneFloat())) 758 return getLhs(); 759 760 return constFoldBinaryOp<FloatAttr>( 761 operands, [](const APFloat &a, const APFloat &b) { return a / b; }); 762 } 763 764 void arith::DivFOp::getCanonicalizationPatterns(RewritePatternSet &patterns, 765 MLIRContext *context) { 766 patterns.add<DivFOfNegF>(context); 767 } 768 769 //===----------------------------------------------------------------------===// 770 // RemFOp 771 //===----------------------------------------------------------------------===// 772 773 OpFoldResult arith::RemFOp::fold(ArrayRef<Attribute> operands) { 774 return constFoldBinaryOp<FloatAttr>(operands, 775 [](const APFloat &a, const APFloat &b) { 776 APFloat Result(a); 777 (void)Result.remainder(b); 778 return Result; 779 }); 780 } 781 782 //===----------------------------------------------------------------------===// 783 // Utility functions for verifying cast ops 784 //===----------------------------------------------------------------------===// 785 786 template <typename... Types> 787 using type_list = std::tuple<Types...> *; 788 789 /// Returns a non-null type only if the provided type is one of the allowed 790 /// types or one of the allowed shaped types of the allowed types. Returns the 791 /// element type if a valid shaped type is provided. 792 template <typename... ShapedTypes, typename... ElementTypes> 793 static Type getUnderlyingType(Type type, type_list<ShapedTypes...>, 794 type_list<ElementTypes...>) { 795 if (type.isa<ShapedType>() && !type.isa<ShapedTypes...>()) 796 return {}; 797 798 auto underlyingType = getElementTypeOrSelf(type); 799 if (!underlyingType.isa<ElementTypes...>()) 800 return {}; 801 802 return underlyingType; 803 } 804 805 /// Get allowed underlying types for vectors and tensors. 806 template <typename... ElementTypes> 807 static Type getTypeIfLike(Type type) { 808 return getUnderlyingType(type, type_list<VectorType, TensorType>(), 809 type_list<ElementTypes...>()); 810 } 811 812 /// Get allowed underlying types for vectors, tensors, and memrefs. 813 template <typename... ElementTypes> 814 static Type getTypeIfLikeOrMemRef(Type type) { 815 return getUnderlyingType(type, 816 type_list<VectorType, TensorType, MemRefType>(), 817 type_list<ElementTypes...>()); 818 } 819 820 static bool areValidCastInputsAndOutputs(TypeRange inputs, TypeRange outputs) { 821 return inputs.size() == 1 && outputs.size() == 1 && 822 succeeded(verifyCompatibleShapes(inputs.front(), outputs.front())); 823 } 824 825 //===----------------------------------------------------------------------===// 826 // Verifiers for integer and floating point extension/truncation ops 827 //===----------------------------------------------------------------------===// 828 829 // Extend ops can only extend to a wider type. 830 template <typename ValType, typename Op> 831 static LogicalResult verifyExtOp(Op op) { 832 Type srcType = getElementTypeOrSelf(op.getIn().getType()); 833 Type dstType = getElementTypeOrSelf(op.getType()); 834 835 if (srcType.cast<ValType>().getWidth() >= dstType.cast<ValType>().getWidth()) 836 return op.emitError("result type ") 837 << dstType << " must be wider than operand type " << srcType; 838 839 return success(); 840 } 841 842 // Truncate ops can only truncate to a shorter type. 843 template <typename ValType, typename Op> 844 static LogicalResult verifyTruncateOp(Op op) { 845 Type srcType = getElementTypeOrSelf(op.getIn().getType()); 846 Type dstType = getElementTypeOrSelf(op.getType()); 847 848 if (srcType.cast<ValType>().getWidth() <= dstType.cast<ValType>().getWidth()) 849 return op.emitError("result type ") 850 << dstType << " must be shorter than operand type " << srcType; 851 852 return success(); 853 } 854 855 /// Validate a cast that changes the width of a type. 856 template <template <typename> class WidthComparator, typename... ElementTypes> 857 static bool checkWidthChangeCast(TypeRange inputs, TypeRange outputs) { 858 if (!areValidCastInputsAndOutputs(inputs, outputs)) 859 return false; 860 861 auto srcType = getTypeIfLike<ElementTypes...>(inputs.front()); 862 auto dstType = getTypeIfLike<ElementTypes...>(outputs.front()); 863 if (!srcType || !dstType) 864 return false; 865 866 return WidthComparator<unsigned>()(dstType.getIntOrFloatBitWidth(), 867 srcType.getIntOrFloatBitWidth()); 868 } 869 870 //===----------------------------------------------------------------------===// 871 // ExtUIOp 872 //===----------------------------------------------------------------------===// 873 874 OpFoldResult arith::ExtUIOp::fold(ArrayRef<Attribute> operands) { 875 if (auto lhs = getIn().getDefiningOp<ExtUIOp>()) { 876 getInMutable().assign(lhs.getIn()); 877 return getResult(); 878 } 879 Type resType = getType(); 880 unsigned bitWidth; 881 if (auto shapedType = resType.dyn_cast<ShapedType>()) 882 bitWidth = shapedType.getElementTypeBitWidth(); 883 else 884 bitWidth = resType.getIntOrFloatBitWidth(); 885 return constFoldCastOp<IntegerAttr, IntegerAttr>( 886 operands, getType(), [bitWidth](const APInt &a, bool &castStatus) { 887 return a.zext(bitWidth); 888 }); 889 } 890 891 bool arith::ExtUIOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 892 return checkWidthChangeCast<std::greater, IntegerType>(inputs, outputs); 893 } 894 895 LogicalResult arith::ExtUIOp::verify() { 896 return verifyExtOp<IntegerType>(*this); 897 } 898 899 //===----------------------------------------------------------------------===// 900 // ExtSIOp 901 //===----------------------------------------------------------------------===// 902 903 OpFoldResult arith::ExtSIOp::fold(ArrayRef<Attribute> operands) { 904 if (auto lhs = getIn().getDefiningOp<ExtSIOp>()) { 905 getInMutable().assign(lhs.getIn()); 906 return getResult(); 907 } 908 Type resType = getType(); 909 unsigned bitWidth; 910 if (auto shapedType = resType.dyn_cast<ShapedType>()) 911 bitWidth = shapedType.getElementTypeBitWidth(); 912 else 913 bitWidth = resType.getIntOrFloatBitWidth(); 914 return constFoldCastOp<IntegerAttr, IntegerAttr>( 915 operands, getType(), [bitWidth](const APInt &a, bool &castStatus) { 916 return a.sext(bitWidth); 917 }); 918 } 919 920 bool arith::ExtSIOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 921 return checkWidthChangeCast<std::greater, IntegerType>(inputs, outputs); 922 } 923 924 void arith::ExtSIOp::getCanonicalizationPatterns( 925 RewritePatternSet &patterns, MLIRContext *context) { 926 patterns.add<ExtSIOfExtUI>(context); 927 } 928 929 LogicalResult arith::ExtSIOp::verify() { 930 return verifyExtOp<IntegerType>(*this); 931 } 932 933 //===----------------------------------------------------------------------===// 934 // ExtFOp 935 //===----------------------------------------------------------------------===// 936 937 bool arith::ExtFOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 938 return checkWidthChangeCast<std::greater, FloatType>(inputs, outputs); 939 } 940 941 LogicalResult arith::ExtFOp::verify() { return verifyExtOp<FloatType>(*this); } 942 943 //===----------------------------------------------------------------------===// 944 // TruncIOp 945 //===----------------------------------------------------------------------===// 946 947 OpFoldResult arith::TruncIOp::fold(ArrayRef<Attribute> operands) { 948 assert(operands.size() == 1 && "unary operation takes one operand"); 949 950 // trunci(zexti(a)) -> a 951 // trunci(sexti(a)) -> a 952 if (matchPattern(getOperand(), m_Op<arith::ExtUIOp>()) || 953 matchPattern(getOperand(), m_Op<arith::ExtSIOp>())) 954 return getOperand().getDefiningOp()->getOperand(0); 955 956 // trunci(trunci(a)) -> trunci(a)) 957 if (matchPattern(getOperand(), m_Op<arith::TruncIOp>())) { 958 setOperand(getOperand().getDefiningOp()->getOperand(0)); 959 return getResult(); 960 } 961 962 Type resType = getType(); 963 unsigned bitWidth; 964 if (auto shapedType = resType.dyn_cast<ShapedType>()) 965 bitWidth = shapedType.getElementTypeBitWidth(); 966 else 967 bitWidth = resType.getIntOrFloatBitWidth(); 968 969 return constFoldCastOp<IntegerAttr, IntegerAttr>( 970 operands, getType(), [bitWidth](const APInt &a, bool &castStatus) { 971 return a.trunc(bitWidth); 972 }); 973 } 974 975 bool arith::TruncIOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 976 return checkWidthChangeCast<std::less, IntegerType>(inputs, outputs); 977 } 978 979 LogicalResult arith::TruncIOp::verify() { 980 return verifyTruncateOp<IntegerType>(*this); 981 } 982 983 //===----------------------------------------------------------------------===// 984 // TruncFOp 985 //===----------------------------------------------------------------------===// 986 987 /// Perform safe const propagation for truncf, i.e. only propagate if FP value 988 /// can be represented without precision loss or rounding. 989 OpFoldResult arith::TruncFOp::fold(ArrayRef<Attribute> operands) { 990 assert(operands.size() == 1 && "unary operation takes one operand"); 991 992 auto constOperand = operands.front(); 993 if (!constOperand || !constOperand.isa<FloatAttr>()) 994 return {}; 995 996 // Convert to target type via 'double'. 997 double sourceValue = 998 constOperand.dyn_cast<FloatAttr>().getValue().convertToDouble(); 999 auto targetAttr = FloatAttr::get(getType(), sourceValue); 1000 1001 // Propagate if constant's value does not change after truncation. 1002 if (sourceValue == targetAttr.getValue().convertToDouble()) 1003 return targetAttr; 1004 1005 return {}; 1006 } 1007 1008 bool arith::TruncFOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 1009 return checkWidthChangeCast<std::less, FloatType>(inputs, outputs); 1010 } 1011 1012 LogicalResult arith::TruncFOp::verify() { 1013 return verifyTruncateOp<FloatType>(*this); 1014 } 1015 1016 //===----------------------------------------------------------------------===// 1017 // AndIOp 1018 //===----------------------------------------------------------------------===// 1019 1020 void arith::AndIOp::getCanonicalizationPatterns( 1021 RewritePatternSet &patterns, MLIRContext *context) { 1022 patterns.add<AndOfExtUI, AndOfExtSI>(context); 1023 } 1024 1025 //===----------------------------------------------------------------------===// 1026 // OrIOp 1027 //===----------------------------------------------------------------------===// 1028 1029 void arith::OrIOp::getCanonicalizationPatterns( 1030 RewritePatternSet &patterns, MLIRContext *context) { 1031 patterns.add<OrOfExtUI, OrOfExtSI>(context); 1032 } 1033 1034 //===----------------------------------------------------------------------===// 1035 // Verifiers for casts between integers and floats. 1036 //===----------------------------------------------------------------------===// 1037 1038 template <typename From, typename To> 1039 static bool checkIntFloatCast(TypeRange inputs, TypeRange outputs) { 1040 if (!areValidCastInputsAndOutputs(inputs, outputs)) 1041 return false; 1042 1043 auto srcType = getTypeIfLike<From>(inputs.front()); 1044 auto dstType = getTypeIfLike<To>(outputs.back()); 1045 1046 return srcType && dstType; 1047 } 1048 1049 //===----------------------------------------------------------------------===// 1050 // UIToFPOp 1051 //===----------------------------------------------------------------------===// 1052 1053 bool arith::UIToFPOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 1054 return checkIntFloatCast<IntegerType, FloatType>(inputs, outputs); 1055 } 1056 1057 OpFoldResult arith::UIToFPOp::fold(ArrayRef<Attribute> operands) { 1058 Type resType = getType(); 1059 Type resEleType; 1060 if (auto shapedType = resType.dyn_cast<ShapedType>()) 1061 resEleType = shapedType.getElementType(); 1062 else 1063 resEleType = resType; 1064 return constFoldCastOp<IntegerAttr, FloatAttr>( 1065 operands, getType(), [&resEleType](const APInt &a, bool &castStatus) { 1066 FloatType floatTy = resEleType.cast<FloatType>(); 1067 APFloat apf(floatTy.getFloatSemantics(), 1068 APInt::getZero(floatTy.getWidth())); 1069 apf.convertFromAPInt(a, /*IsSigned=*/false, 1070 APFloat::rmNearestTiesToEven); 1071 return apf; 1072 }); 1073 } 1074 1075 //===----------------------------------------------------------------------===// 1076 // SIToFPOp 1077 //===----------------------------------------------------------------------===// 1078 1079 bool arith::SIToFPOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 1080 return checkIntFloatCast<IntegerType, FloatType>(inputs, outputs); 1081 } 1082 1083 OpFoldResult arith::SIToFPOp::fold(ArrayRef<Attribute> operands) { 1084 Type resType = getType(); 1085 Type resEleType; 1086 if (auto shapedType = resType.dyn_cast<ShapedType>()) 1087 resEleType = shapedType.getElementType(); 1088 else 1089 resEleType = resType; 1090 return constFoldCastOp<IntegerAttr, FloatAttr>( 1091 operands, getType(), [&resEleType](const APInt &a, bool &castStatus) { 1092 FloatType floatTy = resEleType.cast<FloatType>(); 1093 APFloat apf(floatTy.getFloatSemantics(), 1094 APInt::getZero(floatTy.getWidth())); 1095 apf.convertFromAPInt(a, /*IsSigned=*/true, 1096 APFloat::rmNearestTiesToEven); 1097 return apf; 1098 }); 1099 } 1100 //===----------------------------------------------------------------------===// 1101 // FPToUIOp 1102 //===----------------------------------------------------------------------===// 1103 1104 bool arith::FPToUIOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 1105 return checkIntFloatCast<FloatType, IntegerType>(inputs, outputs); 1106 } 1107 1108 OpFoldResult arith::FPToUIOp::fold(ArrayRef<Attribute> operands) { 1109 Type resType = getType(); 1110 Type resEleType; 1111 if (auto shapedType = resType.dyn_cast<ShapedType>()) 1112 resEleType = shapedType.getElementType(); 1113 else 1114 resEleType = resType; 1115 return constFoldCastOp<FloatAttr, IntegerAttr>( 1116 operands, getType(), [&resEleType](const APFloat &a, bool &castStatus) { 1117 IntegerType intTy = resEleType.cast<IntegerType>(); 1118 bool ignored; 1119 APSInt api(intTy.getWidth(), /*isUnsigned=*/true); 1120 castStatus = APFloat::opInvalidOp != 1121 a.convertToInteger(api, APFloat::rmTowardZero, &ignored); 1122 return api; 1123 }); 1124 } 1125 1126 //===----------------------------------------------------------------------===// 1127 // FPToSIOp 1128 //===----------------------------------------------------------------------===// 1129 1130 bool arith::FPToSIOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 1131 return checkIntFloatCast<FloatType, IntegerType>(inputs, outputs); 1132 } 1133 1134 OpFoldResult arith::FPToSIOp::fold(ArrayRef<Attribute> operands) { 1135 Type resType = getType(); 1136 Type resEleType; 1137 if (auto shapedType = resType.dyn_cast<ShapedType>()) 1138 resEleType = shapedType.getElementType(); 1139 else 1140 resEleType = resType; 1141 return constFoldCastOp<FloatAttr, IntegerAttr>( 1142 operands, getType(), [&resEleType](const APFloat &a, bool &castStatus) { 1143 IntegerType intTy = resEleType.cast<IntegerType>(); 1144 bool ignored; 1145 APSInt api(intTy.getWidth(), /*isUnsigned=*/false); 1146 castStatus = APFloat::opInvalidOp != 1147 a.convertToInteger(api, APFloat::rmTowardZero, &ignored); 1148 return api; 1149 }); 1150 } 1151 1152 //===----------------------------------------------------------------------===// 1153 // IndexCastOp 1154 //===----------------------------------------------------------------------===// 1155 1156 bool arith::IndexCastOp::areCastCompatible(TypeRange inputs, 1157 TypeRange outputs) { 1158 if (!areValidCastInputsAndOutputs(inputs, outputs)) 1159 return false; 1160 1161 auto srcType = getTypeIfLikeOrMemRef<IntegerType, IndexType>(inputs.front()); 1162 auto dstType = getTypeIfLikeOrMemRef<IntegerType, IndexType>(outputs.front()); 1163 if (!srcType || !dstType) 1164 return false; 1165 1166 return (srcType.isIndex() && dstType.isSignlessInteger()) || 1167 (srcType.isSignlessInteger() && dstType.isIndex()); 1168 } 1169 1170 OpFoldResult arith::IndexCastOp::fold(ArrayRef<Attribute> operands) { 1171 // index_cast(constant) -> constant 1172 // A little hack because we go through int. Otherwise, the size of the 1173 // constant might need to change. 1174 if (auto value = operands[0].dyn_cast_or_null<IntegerAttr>()) 1175 return IntegerAttr::get(getType(), value.getInt()); 1176 1177 return {}; 1178 } 1179 1180 void arith::IndexCastOp::getCanonicalizationPatterns( 1181 RewritePatternSet &patterns, MLIRContext *context) { 1182 patterns.add<IndexCastOfIndexCast, IndexCastOfExtSI>(context); 1183 } 1184 1185 //===----------------------------------------------------------------------===// 1186 // BitcastOp 1187 //===----------------------------------------------------------------------===// 1188 1189 bool arith::BitcastOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 1190 if (!areValidCastInputsAndOutputs(inputs, outputs)) 1191 return false; 1192 1193 auto srcType = 1194 getTypeIfLikeOrMemRef<IntegerType, IndexType, FloatType>(inputs.front()); 1195 auto dstType = 1196 getTypeIfLikeOrMemRef<IntegerType, IndexType, FloatType>(outputs.front()); 1197 if (!srcType || !dstType) 1198 return false; 1199 1200 return srcType.getIntOrFloatBitWidth() == dstType.getIntOrFloatBitWidth(); 1201 } 1202 1203 OpFoldResult arith::BitcastOp::fold(ArrayRef<Attribute> operands) { 1204 assert(operands.size() == 1 && "bitcast op expects 1 operand"); 1205 1206 auto resType = getType(); 1207 auto operand = operands[0]; 1208 if (!operand) 1209 return {}; 1210 1211 /// Bitcast dense elements. 1212 if (auto denseAttr = operand.dyn_cast_or_null<DenseElementsAttr>()) 1213 return denseAttr.bitcast(resType.cast<ShapedType>().getElementType()); 1214 /// Other shaped types unhandled. 1215 if (resType.isa<ShapedType>()) 1216 return {}; 1217 1218 /// Bitcast integer or float to integer or float. 1219 APInt bits = operand.isa<FloatAttr>() 1220 ? operand.cast<FloatAttr>().getValue().bitcastToAPInt() 1221 : operand.cast<IntegerAttr>().getValue(); 1222 1223 if (auto resFloatType = resType.dyn_cast<FloatType>()) 1224 return FloatAttr::get(resType, 1225 APFloat(resFloatType.getFloatSemantics(), bits)); 1226 return IntegerAttr::get(resType, bits); 1227 } 1228 1229 void arith::BitcastOp::getCanonicalizationPatterns( 1230 RewritePatternSet &patterns, MLIRContext *context) { 1231 patterns.add<BitcastOfBitcast>(context); 1232 } 1233 1234 //===----------------------------------------------------------------------===// 1235 // Helpers for compare ops 1236 //===----------------------------------------------------------------------===// 1237 1238 /// Return the type of the same shape (scalar, vector or tensor) containing i1. 1239 static Type getI1SameShape(Type type) { 1240 auto i1Type = IntegerType::get(type.getContext(), 1); 1241 if (auto tensorType = type.dyn_cast<RankedTensorType>()) 1242 return RankedTensorType::get(tensorType.getShape(), i1Type); 1243 if (type.isa<UnrankedTensorType>()) 1244 return UnrankedTensorType::get(i1Type); 1245 if (auto vectorType = type.dyn_cast<VectorType>()) 1246 return VectorType::get(vectorType.getShape(), i1Type, 1247 vectorType.getNumScalableDims()); 1248 return i1Type; 1249 } 1250 1251 //===----------------------------------------------------------------------===// 1252 // CmpIOp 1253 //===----------------------------------------------------------------------===// 1254 1255 /// Compute `lhs` `pred` `rhs`, where `pred` is one of the known integer 1256 /// comparison predicates. 1257 bool mlir::arith::applyCmpPredicate(arith::CmpIPredicate predicate, 1258 const APInt &lhs, const APInt &rhs) { 1259 switch (predicate) { 1260 case arith::CmpIPredicate::eq: 1261 return lhs.eq(rhs); 1262 case arith::CmpIPredicate::ne: 1263 return lhs.ne(rhs); 1264 case arith::CmpIPredicate::slt: 1265 return lhs.slt(rhs); 1266 case arith::CmpIPredicate::sle: 1267 return lhs.sle(rhs); 1268 case arith::CmpIPredicate::sgt: 1269 return lhs.sgt(rhs); 1270 case arith::CmpIPredicate::sge: 1271 return lhs.sge(rhs); 1272 case arith::CmpIPredicate::ult: 1273 return lhs.ult(rhs); 1274 case arith::CmpIPredicate::ule: 1275 return lhs.ule(rhs); 1276 case arith::CmpIPredicate::ugt: 1277 return lhs.ugt(rhs); 1278 case arith::CmpIPredicate::uge: 1279 return lhs.uge(rhs); 1280 } 1281 llvm_unreachable("unknown cmpi predicate kind"); 1282 } 1283 1284 /// Returns true if the predicate is true for two equal operands. 1285 static bool applyCmpPredicateToEqualOperands(arith::CmpIPredicate predicate) { 1286 switch (predicate) { 1287 case arith::CmpIPredicate::eq: 1288 case arith::CmpIPredicate::sle: 1289 case arith::CmpIPredicate::sge: 1290 case arith::CmpIPredicate::ule: 1291 case arith::CmpIPredicate::uge: 1292 return true; 1293 case arith::CmpIPredicate::ne: 1294 case arith::CmpIPredicate::slt: 1295 case arith::CmpIPredicate::sgt: 1296 case arith::CmpIPredicate::ult: 1297 case arith::CmpIPredicate::ugt: 1298 return false; 1299 } 1300 llvm_unreachable("unknown cmpi predicate kind"); 1301 } 1302 1303 static Attribute getBoolAttribute(Type type, MLIRContext *ctx, bool value) { 1304 auto boolAttr = BoolAttr::get(ctx, value); 1305 ShapedType shapedType = type.dyn_cast_or_null<ShapedType>(); 1306 if (!shapedType) 1307 return boolAttr; 1308 return DenseElementsAttr::get(shapedType, boolAttr); 1309 } 1310 1311 OpFoldResult arith::CmpIOp::fold(ArrayRef<Attribute> operands) { 1312 assert(operands.size() == 2 && "cmpi takes two operands"); 1313 1314 // cmpi(pred, x, x) 1315 if (getLhs() == getRhs()) { 1316 auto val = applyCmpPredicateToEqualOperands(getPredicate()); 1317 return getBoolAttribute(getType(), getContext(), val); 1318 } 1319 1320 if (matchPattern(getRhs(), m_Zero())) { 1321 if (auto extOp = getLhs().getDefiningOp<ExtSIOp>()) { 1322 // extsi(%x : i1 -> iN) != 0 -> %x 1323 if (extOp.getOperand().getType().cast<IntegerType>().getWidth() == 1 && 1324 getPredicate() == arith::CmpIPredicate::ne) 1325 return extOp.getOperand(); 1326 } 1327 if (auto extOp = getLhs().getDefiningOp<ExtUIOp>()) { 1328 // extui(%x : i1 -> iN) != 0 -> %x 1329 if (extOp.getOperand().getType().cast<IntegerType>().getWidth() == 1 && 1330 getPredicate() == arith::CmpIPredicate::ne) 1331 return extOp.getOperand(); 1332 } 1333 } 1334 1335 auto lhs = operands.front().dyn_cast_or_null<IntegerAttr>(); 1336 auto rhs = operands.back().dyn_cast_or_null<IntegerAttr>(); 1337 if (!lhs || !rhs) 1338 return {}; 1339 1340 auto val = applyCmpPredicate(getPredicate(), lhs.getValue(), rhs.getValue()); 1341 return BoolAttr::get(getContext(), val); 1342 } 1343 1344 void arith::CmpIOp::getCanonicalizationPatterns(RewritePatternSet &patterns, 1345 MLIRContext *context) { 1346 patterns.insert<CmpIExtSI, CmpIExtUI>(context); 1347 } 1348 1349 //===----------------------------------------------------------------------===// 1350 // CmpFOp 1351 //===----------------------------------------------------------------------===// 1352 1353 /// Compute `lhs` `pred` `rhs`, where `pred` is one of the known floating point 1354 /// comparison predicates. 1355 bool mlir::arith::applyCmpPredicate(arith::CmpFPredicate predicate, 1356 const APFloat &lhs, const APFloat &rhs) { 1357 auto cmpResult = lhs.compare(rhs); 1358 switch (predicate) { 1359 case arith::CmpFPredicate::AlwaysFalse: 1360 return false; 1361 case arith::CmpFPredicate::OEQ: 1362 return cmpResult == APFloat::cmpEqual; 1363 case arith::CmpFPredicate::OGT: 1364 return cmpResult == APFloat::cmpGreaterThan; 1365 case arith::CmpFPredicate::OGE: 1366 return cmpResult == APFloat::cmpGreaterThan || 1367 cmpResult == APFloat::cmpEqual; 1368 case arith::CmpFPredicate::OLT: 1369 return cmpResult == APFloat::cmpLessThan; 1370 case arith::CmpFPredicate::OLE: 1371 return cmpResult == APFloat::cmpLessThan || cmpResult == APFloat::cmpEqual; 1372 case arith::CmpFPredicate::ONE: 1373 return cmpResult != APFloat::cmpUnordered && cmpResult != APFloat::cmpEqual; 1374 case arith::CmpFPredicate::ORD: 1375 return cmpResult != APFloat::cmpUnordered; 1376 case arith::CmpFPredicate::UEQ: 1377 return cmpResult == APFloat::cmpUnordered || cmpResult == APFloat::cmpEqual; 1378 case arith::CmpFPredicate::UGT: 1379 return cmpResult == APFloat::cmpUnordered || 1380 cmpResult == APFloat::cmpGreaterThan; 1381 case arith::CmpFPredicate::UGE: 1382 return cmpResult == APFloat::cmpUnordered || 1383 cmpResult == APFloat::cmpGreaterThan || 1384 cmpResult == APFloat::cmpEqual; 1385 case arith::CmpFPredicate::ULT: 1386 return cmpResult == APFloat::cmpUnordered || 1387 cmpResult == APFloat::cmpLessThan; 1388 case arith::CmpFPredicate::ULE: 1389 return cmpResult == APFloat::cmpUnordered || 1390 cmpResult == APFloat::cmpLessThan || cmpResult == APFloat::cmpEqual; 1391 case arith::CmpFPredicate::UNE: 1392 return cmpResult != APFloat::cmpEqual; 1393 case arith::CmpFPredicate::UNO: 1394 return cmpResult == APFloat::cmpUnordered; 1395 case arith::CmpFPredicate::AlwaysTrue: 1396 return true; 1397 } 1398 llvm_unreachable("unknown cmpf predicate kind"); 1399 } 1400 1401 OpFoldResult arith::CmpFOp::fold(ArrayRef<Attribute> operands) { 1402 assert(operands.size() == 2 && "cmpf takes two operands"); 1403 1404 auto lhs = operands.front().dyn_cast_or_null<FloatAttr>(); 1405 auto rhs = operands.back().dyn_cast_or_null<FloatAttr>(); 1406 1407 // If one operand is NaN, making them both NaN does not change the result. 1408 if (lhs && lhs.getValue().isNaN()) 1409 rhs = lhs; 1410 if (rhs && rhs.getValue().isNaN()) 1411 lhs = rhs; 1412 1413 if (!lhs || !rhs) 1414 return {}; 1415 1416 auto val = applyCmpPredicate(getPredicate(), lhs.getValue(), rhs.getValue()); 1417 return BoolAttr::get(getContext(), val); 1418 } 1419 1420 class CmpFIntToFPConst final : public OpRewritePattern<CmpFOp> { 1421 public: 1422 using OpRewritePattern<CmpFOp>::OpRewritePattern; 1423 1424 static CmpIPredicate convertToIntegerPredicate(CmpFPredicate pred, 1425 bool isUnsigned) { 1426 using namespace arith; 1427 switch (pred) { 1428 case CmpFPredicate::UEQ: 1429 case CmpFPredicate::OEQ: 1430 return CmpIPredicate::eq; 1431 case CmpFPredicate::UGT: 1432 case CmpFPredicate::OGT: 1433 return isUnsigned ? CmpIPredicate::ugt : CmpIPredicate::sgt; 1434 case CmpFPredicate::UGE: 1435 case CmpFPredicate::OGE: 1436 return isUnsigned ? CmpIPredicate::uge : CmpIPredicate::sge; 1437 case CmpFPredicate::ULT: 1438 case CmpFPredicate::OLT: 1439 return isUnsigned ? CmpIPredicate::ult : CmpIPredicate::slt; 1440 case CmpFPredicate::ULE: 1441 case CmpFPredicate::OLE: 1442 return isUnsigned ? CmpIPredicate::ule : CmpIPredicate::sle; 1443 case CmpFPredicate::UNE: 1444 case CmpFPredicate::ONE: 1445 return CmpIPredicate::ne; 1446 default: 1447 llvm_unreachable("Unexpected predicate!"); 1448 } 1449 } 1450 1451 LogicalResult matchAndRewrite(CmpFOp op, 1452 PatternRewriter &rewriter) const override { 1453 FloatAttr flt; 1454 if (!matchPattern(op.getRhs(), m_Constant(&flt))) 1455 return failure(); 1456 1457 const APFloat &rhs = flt.getValue(); 1458 1459 // Don't attempt to fold a nan. 1460 if (rhs.isNaN()) 1461 return failure(); 1462 1463 // Get the width of the mantissa. We don't want to hack on conversions that 1464 // might lose information from the integer, e.g. "i64 -> float" 1465 FloatType floatTy = op.getRhs().getType().cast<FloatType>(); 1466 int mantissaWidth = floatTy.getFPMantissaWidth(); 1467 if (mantissaWidth <= 0) 1468 return failure(); 1469 1470 bool isUnsigned; 1471 Value intVal; 1472 1473 if (auto si = op.getLhs().getDefiningOp<SIToFPOp>()) { 1474 isUnsigned = false; 1475 intVal = si.getIn(); 1476 } else if (auto ui = op.getLhs().getDefiningOp<UIToFPOp>()) { 1477 isUnsigned = true; 1478 intVal = ui.getIn(); 1479 } else { 1480 return failure(); 1481 } 1482 1483 // Check to see that the input is converted from an integer type that is 1484 // small enough that preserves all bits. 1485 auto intTy = intVal.getType().cast<IntegerType>(); 1486 auto intWidth = intTy.getWidth(); 1487 1488 // Number of bits representing values, as opposed to the sign 1489 auto valueBits = isUnsigned ? intWidth : (intWidth - 1); 1490 1491 // Following test does NOT adjust intWidth downwards for signed inputs, 1492 // because the most negative value still requires all the mantissa bits 1493 // to distinguish it from one less than that value. 1494 if ((int)intWidth > mantissaWidth) { 1495 // Conversion would lose accuracy. Check if loss can impact comparison. 1496 int exponent = ilogb(rhs); 1497 if (exponent == APFloat::IEK_Inf) { 1498 int maxExponent = ilogb(APFloat::getLargest(rhs.getSemantics())); 1499 if (maxExponent < (int)valueBits) { 1500 // Conversion could create infinity. 1501 return failure(); 1502 } 1503 } else { 1504 // Note that if rhs is zero or NaN, then Exp is negative 1505 // and first condition is trivially false. 1506 if (mantissaWidth <= exponent && exponent <= (int)valueBits) { 1507 // Conversion could affect comparison. 1508 return failure(); 1509 } 1510 } 1511 } 1512 1513 // Convert to equivalent cmpi predicate 1514 CmpIPredicate pred; 1515 switch (op.getPredicate()) { 1516 case CmpFPredicate::ORD: 1517 // Int to fp conversion doesn't create a nan (ord checks neither is a nan) 1518 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1519 /*width=*/1); 1520 return success(); 1521 case CmpFPredicate::UNO: 1522 // Int to fp conversion doesn't create a nan (uno checks either is a nan) 1523 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1524 /*width=*/1); 1525 return success(); 1526 default: 1527 pred = convertToIntegerPredicate(op.getPredicate(), isUnsigned); 1528 break; 1529 } 1530 1531 if (!isUnsigned) { 1532 // If the rhs value is > SignedMax, fold the comparison. This handles 1533 // +INF and large values. 1534 APFloat signedMax(rhs.getSemantics()); 1535 signedMax.convertFromAPInt(APInt::getSignedMaxValue(intWidth), true, 1536 APFloat::rmNearestTiesToEven); 1537 if (signedMax < rhs) { // smax < 13123.0 1538 if (pred == CmpIPredicate::ne || pred == CmpIPredicate::slt || 1539 pred == CmpIPredicate::sle) 1540 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1541 /*width=*/1); 1542 else 1543 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1544 /*width=*/1); 1545 return success(); 1546 } 1547 } else { 1548 // If the rhs value is > UnsignedMax, fold the comparison. This handles 1549 // +INF and large values. 1550 APFloat unsignedMax(rhs.getSemantics()); 1551 unsignedMax.convertFromAPInt(APInt::getMaxValue(intWidth), false, 1552 APFloat::rmNearestTiesToEven); 1553 if (unsignedMax < rhs) { // umax < 13123.0 1554 if (pred == CmpIPredicate::ne || pred == CmpIPredicate::ult || 1555 pred == CmpIPredicate::ule) 1556 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1557 /*width=*/1); 1558 else 1559 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1560 /*width=*/1); 1561 return success(); 1562 } 1563 } 1564 1565 if (!isUnsigned) { 1566 // See if the rhs value is < SignedMin. 1567 APFloat signedMin(rhs.getSemantics()); 1568 signedMin.convertFromAPInt(APInt::getSignedMinValue(intWidth), true, 1569 APFloat::rmNearestTiesToEven); 1570 if (signedMin > rhs) { // smin > 12312.0 1571 if (pred == CmpIPredicate::ne || pred == CmpIPredicate::sgt || 1572 pred == CmpIPredicate::sge) 1573 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1574 /*width=*/1); 1575 else 1576 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1577 /*width=*/1); 1578 return success(); 1579 } 1580 } else { 1581 // See if the rhs value is < UnsignedMin. 1582 APFloat unsignedMin(rhs.getSemantics()); 1583 unsignedMin.convertFromAPInt(APInt::getMinValue(intWidth), false, 1584 APFloat::rmNearestTiesToEven); 1585 if (unsignedMin > rhs) { // umin > 12312.0 1586 if (pred == CmpIPredicate::ne || pred == CmpIPredicate::ugt || 1587 pred == CmpIPredicate::uge) 1588 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1589 /*width=*/1); 1590 else 1591 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1592 /*width=*/1); 1593 return success(); 1594 } 1595 } 1596 1597 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 1598 // [0, UMAX], but it may still be fractional. See if it is fractional by 1599 // casting the FP value to the integer value and back, checking for 1600 // equality. Don't do this for zero, because -0.0 is not fractional. 1601 bool ignored; 1602 APSInt rhsInt(intWidth, isUnsigned); 1603 if (APFloat::opInvalidOp == 1604 rhs.convertToInteger(rhsInt, APFloat::rmTowardZero, &ignored)) { 1605 // Undefined behavior invoked - the destination type can't represent 1606 // the input constant. 1607 return failure(); 1608 } 1609 1610 if (!rhs.isZero()) { 1611 APFloat apf(floatTy.getFloatSemantics(), 1612 APInt::getZero(floatTy.getWidth())); 1613 apf.convertFromAPInt(rhsInt, !isUnsigned, APFloat::rmNearestTiesToEven); 1614 1615 bool equal = apf == rhs; 1616 if (!equal) { 1617 // If we had a comparison against a fractional value, we have to adjust 1618 // the compare predicate and sometimes the value. rhsInt is rounded 1619 // towards zero at this point. 1620 switch (pred) { 1621 case CmpIPredicate::ne: // (float)int != 4.4 --> true 1622 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1623 /*width=*/1); 1624 return success(); 1625 case CmpIPredicate::eq: // (float)int == 4.4 --> false 1626 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1627 /*width=*/1); 1628 return success(); 1629 case CmpIPredicate::ule: 1630 // (float)int <= 4.4 --> int <= 4 1631 // (float)int <= -4.4 --> false 1632 if (rhs.isNegative()) { 1633 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1634 /*width=*/1); 1635 return success(); 1636 } 1637 break; 1638 case CmpIPredicate::sle: 1639 // (float)int <= 4.4 --> int <= 4 1640 // (float)int <= -4.4 --> int < -4 1641 if (rhs.isNegative()) 1642 pred = CmpIPredicate::slt; 1643 break; 1644 case CmpIPredicate::ult: 1645 // (float)int < -4.4 --> false 1646 // (float)int < 4.4 --> int <= 4 1647 if (rhs.isNegative()) { 1648 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1649 /*width=*/1); 1650 return success(); 1651 } 1652 pred = CmpIPredicate::ule; 1653 break; 1654 case CmpIPredicate::slt: 1655 // (float)int < -4.4 --> int < -4 1656 // (float)int < 4.4 --> int <= 4 1657 if (!rhs.isNegative()) 1658 pred = CmpIPredicate::sle; 1659 break; 1660 case CmpIPredicate::ugt: 1661 // (float)int > 4.4 --> int > 4 1662 // (float)int > -4.4 --> true 1663 if (rhs.isNegative()) { 1664 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1665 /*width=*/1); 1666 return success(); 1667 } 1668 break; 1669 case CmpIPredicate::sgt: 1670 // (float)int > 4.4 --> int > 4 1671 // (float)int > -4.4 --> int >= -4 1672 if (rhs.isNegative()) 1673 pred = CmpIPredicate::sge; 1674 break; 1675 case CmpIPredicate::uge: 1676 // (float)int >= -4.4 --> true 1677 // (float)int >= 4.4 --> int > 4 1678 if (rhs.isNegative()) { 1679 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1680 /*width=*/1); 1681 return success(); 1682 } 1683 pred = CmpIPredicate::ugt; 1684 break; 1685 case CmpIPredicate::sge: 1686 // (float)int >= -4.4 --> int >= -4 1687 // (float)int >= 4.4 --> int > 4 1688 if (!rhs.isNegative()) 1689 pred = CmpIPredicate::sgt; 1690 break; 1691 } 1692 } 1693 } 1694 1695 // Lower this FP comparison into an appropriate integer version of the 1696 // comparison. 1697 rewriter.replaceOpWithNewOp<CmpIOp>( 1698 op, pred, intVal, 1699 rewriter.create<ConstantOp>( 1700 op.getLoc(), intVal.getType(), 1701 rewriter.getIntegerAttr(intVal.getType(), rhsInt))); 1702 return success(); 1703 } 1704 }; 1705 1706 void arith::CmpFOp::getCanonicalizationPatterns(RewritePatternSet &patterns, 1707 MLIRContext *context) { 1708 patterns.insert<CmpFIntToFPConst>(context); 1709 } 1710 1711 //===----------------------------------------------------------------------===// 1712 // SelectOp 1713 //===----------------------------------------------------------------------===// 1714 1715 // Transforms a select of a boolean to arithmetic operations 1716 // 1717 // arith.select %arg, %x, %y : i1 1718 // 1719 // becomes 1720 // 1721 // and(%arg, %x) or and(!%arg, %y) 1722 struct SelectI1Simplify : public OpRewritePattern<arith::SelectOp> { 1723 using OpRewritePattern<arith::SelectOp>::OpRewritePattern; 1724 1725 LogicalResult matchAndRewrite(arith::SelectOp op, 1726 PatternRewriter &rewriter) const override { 1727 if (!op.getType().isInteger(1)) 1728 return failure(); 1729 1730 Value falseConstant = 1731 rewriter.create<arith::ConstantIntOp>(op.getLoc(), true, 1); 1732 Value notCondition = rewriter.create<arith::XOrIOp>( 1733 op.getLoc(), op.getCondition(), falseConstant); 1734 1735 Value trueVal = rewriter.create<arith::AndIOp>( 1736 op.getLoc(), op.getCondition(), op.getTrueValue()); 1737 Value falseVal = rewriter.create<arith::AndIOp>(op.getLoc(), notCondition, 1738 op.getFalseValue()); 1739 rewriter.replaceOpWithNewOp<arith::OrIOp>(op, trueVal, falseVal); 1740 return success(); 1741 } 1742 }; 1743 1744 // select %arg, %c1, %c0 => extui %arg 1745 struct SelectToExtUI : public OpRewritePattern<arith::SelectOp> { 1746 using OpRewritePattern<arith::SelectOp>::OpRewritePattern; 1747 1748 LogicalResult matchAndRewrite(arith::SelectOp op, 1749 PatternRewriter &rewriter) const override { 1750 // Cannot extui i1 to i1, or i1 to f32 1751 if (!op.getType().isa<IntegerType>() || op.getType().isInteger(1)) 1752 return failure(); 1753 1754 // select %x, c1, %c0 => extui %arg 1755 if (matchPattern(op.getTrueValue(), m_One()) && 1756 matchPattern(op.getFalseValue(), m_Zero())) { 1757 rewriter.replaceOpWithNewOp<arith::ExtUIOp>(op, op.getType(), 1758 op.getCondition()); 1759 return success(); 1760 } 1761 1762 // select %x, c0, %c1 => extui (xor %arg, true) 1763 if (matchPattern(op.getTrueValue(), m_Zero()) && 1764 matchPattern(op.getFalseValue(), m_One())) { 1765 rewriter.replaceOpWithNewOp<arith::ExtUIOp>( 1766 op, op.getType(), 1767 rewriter.create<arith::XOrIOp>( 1768 op.getLoc(), op.getCondition(), 1769 rewriter.create<arith::ConstantIntOp>( 1770 op.getLoc(), 1, op.getCondition().getType()))); 1771 return success(); 1772 } 1773 1774 return failure(); 1775 } 1776 }; 1777 1778 void arith::SelectOp::getCanonicalizationPatterns(RewritePatternSet &results, 1779 MLIRContext *context) { 1780 results.add<SelectI1Simplify, SelectToExtUI>(context); 1781 } 1782 1783 OpFoldResult arith::SelectOp::fold(ArrayRef<Attribute> operands) { 1784 Value trueVal = getTrueValue(); 1785 Value falseVal = getFalseValue(); 1786 if (trueVal == falseVal) 1787 return trueVal; 1788 1789 Value condition = getCondition(); 1790 1791 // select true, %0, %1 => %0 1792 if (matchPattern(condition, m_One())) 1793 return trueVal; 1794 1795 // select false, %0, %1 => %1 1796 if (matchPattern(condition, m_Zero())) 1797 return falseVal; 1798 1799 // select %x, true, false => %x 1800 if (getType().isInteger(1) && matchPattern(getTrueValue(), m_One()) && 1801 matchPattern(getFalseValue(), m_Zero())) 1802 return condition; 1803 1804 if (auto cmp = dyn_cast_or_null<arith::CmpIOp>(condition.getDefiningOp())) { 1805 auto pred = cmp.getPredicate(); 1806 if (pred == arith::CmpIPredicate::eq || pred == arith::CmpIPredicate::ne) { 1807 auto cmpLhs = cmp.getLhs(); 1808 auto cmpRhs = cmp.getRhs(); 1809 1810 // %0 = arith.cmpi eq, %arg0, %arg1 1811 // %1 = arith.select %0, %arg0, %arg1 => %arg1 1812 1813 // %0 = arith.cmpi ne, %arg0, %arg1 1814 // %1 = arith.select %0, %arg0, %arg1 => %arg0 1815 1816 if ((cmpLhs == trueVal && cmpRhs == falseVal) || 1817 (cmpRhs == trueVal && cmpLhs == falseVal)) 1818 return pred == arith::CmpIPredicate::ne ? trueVal : falseVal; 1819 } 1820 } 1821 return nullptr; 1822 } 1823 1824 ParseResult SelectOp::parse(OpAsmParser &parser, OperationState &result) { 1825 Type conditionType, resultType; 1826 SmallVector<OpAsmParser::UnresolvedOperand, 3> operands; 1827 if (parser.parseOperandList(operands, /*requiredOperandCount=*/3) || 1828 parser.parseOptionalAttrDict(result.attributes) || 1829 parser.parseColonType(resultType)) 1830 return failure(); 1831 1832 // Check for the explicit condition type if this is a masked tensor or vector. 1833 if (succeeded(parser.parseOptionalComma())) { 1834 conditionType = resultType; 1835 if (parser.parseType(resultType)) 1836 return failure(); 1837 } else { 1838 conditionType = parser.getBuilder().getI1Type(); 1839 } 1840 1841 result.addTypes(resultType); 1842 return parser.resolveOperands(operands, 1843 {conditionType, resultType, resultType}, 1844 parser.getNameLoc(), result.operands); 1845 } 1846 1847 void arith::SelectOp::print(OpAsmPrinter &p) { 1848 p << " " << getOperands(); 1849 p.printOptionalAttrDict((*this)->getAttrs()); 1850 p << " : "; 1851 if (ShapedType condType = getCondition().getType().dyn_cast<ShapedType>()) 1852 p << condType << ", "; 1853 p << getType(); 1854 } 1855 1856 LogicalResult arith::SelectOp::verify() { 1857 Type conditionType = getCondition().getType(); 1858 if (conditionType.isSignlessInteger(1)) 1859 return success(); 1860 1861 // If the result type is a vector or tensor, the type can be a mask with the 1862 // same elements. 1863 Type resultType = getType(); 1864 if (!resultType.isa<TensorType, VectorType>()) 1865 return emitOpError() << "expected condition to be a signless i1, but got " 1866 << conditionType; 1867 Type shapedConditionType = getI1SameShape(resultType); 1868 if (conditionType != shapedConditionType) { 1869 return emitOpError() << "expected condition type to have the same shape " 1870 "as the result type, expected " 1871 << shapedConditionType << ", but got " 1872 << conditionType; 1873 } 1874 return success(); 1875 } 1876 //===----------------------------------------------------------------------===// 1877 // ShLIOp 1878 //===----------------------------------------------------------------------===// 1879 1880 OpFoldResult arith::ShLIOp::fold(ArrayRef<Attribute> operands) { 1881 // Don't fold if shifting more than the bit width. 1882 bool bounded = false; 1883 auto result = constFoldBinaryOp<IntegerAttr>( 1884 operands, [&](const APInt &a, const APInt &b) { 1885 bounded = b.ule(b.getBitWidth()); 1886 return a.shl(b); 1887 }); 1888 return bounded ? result : Attribute(); 1889 } 1890 1891 //===----------------------------------------------------------------------===// 1892 // ShRUIOp 1893 //===----------------------------------------------------------------------===// 1894 1895 OpFoldResult arith::ShRUIOp::fold(ArrayRef<Attribute> operands) { 1896 // Don't fold if shifting more than the bit width. 1897 bool bounded = false; 1898 auto result = constFoldBinaryOp<IntegerAttr>( 1899 operands, [&](const APInt &a, const APInt &b) { 1900 bounded = b.ule(b.getBitWidth()); 1901 return a.lshr(b); 1902 }); 1903 return bounded ? result : Attribute(); 1904 } 1905 1906 //===----------------------------------------------------------------------===// 1907 // ShRSIOp 1908 //===----------------------------------------------------------------------===// 1909 1910 OpFoldResult arith::ShRSIOp::fold(ArrayRef<Attribute> operands) { 1911 // Don't fold if shifting more than the bit width. 1912 bool bounded = false; 1913 auto result = constFoldBinaryOp<IntegerAttr>( 1914 operands, [&](const APInt &a, const APInt &b) { 1915 bounded = b.ule(b.getBitWidth()); 1916 return a.ashr(b); 1917 }); 1918 return bounded ? result : Attribute(); 1919 } 1920 1921 //===----------------------------------------------------------------------===// 1922 // Atomic Enum 1923 //===----------------------------------------------------------------------===// 1924 1925 /// Returns the identity value attribute associated with an AtomicRMWKind op. 1926 Attribute mlir::arith::getIdentityValueAttr(AtomicRMWKind kind, Type resultType, 1927 OpBuilder &builder, Location loc) { 1928 switch (kind) { 1929 case AtomicRMWKind::maxf: 1930 return builder.getFloatAttr( 1931 resultType, 1932 APFloat::getInf(resultType.cast<FloatType>().getFloatSemantics(), 1933 /*Negative=*/true)); 1934 case AtomicRMWKind::addf: 1935 case AtomicRMWKind::addi: 1936 case AtomicRMWKind::maxu: 1937 case AtomicRMWKind::ori: 1938 return builder.getZeroAttr(resultType); 1939 case AtomicRMWKind::andi: 1940 return builder.getIntegerAttr( 1941 resultType, 1942 APInt::getAllOnes(resultType.cast<IntegerType>().getWidth())); 1943 case AtomicRMWKind::maxs: 1944 return builder.getIntegerAttr( 1945 resultType, 1946 APInt::getSignedMinValue(resultType.cast<IntegerType>().getWidth())); 1947 case AtomicRMWKind::minf: 1948 return builder.getFloatAttr( 1949 resultType, 1950 APFloat::getInf(resultType.cast<FloatType>().getFloatSemantics(), 1951 /*Negative=*/false)); 1952 case AtomicRMWKind::mins: 1953 return builder.getIntegerAttr( 1954 resultType, 1955 APInt::getSignedMaxValue(resultType.cast<IntegerType>().getWidth())); 1956 case AtomicRMWKind::minu: 1957 return builder.getIntegerAttr( 1958 resultType, 1959 APInt::getMaxValue(resultType.cast<IntegerType>().getWidth())); 1960 case AtomicRMWKind::muli: 1961 return builder.getIntegerAttr(resultType, 1); 1962 case AtomicRMWKind::mulf: 1963 return builder.getFloatAttr(resultType, 1); 1964 // TODO: Add remaining reduction operations. 1965 default: 1966 (void)emitOptionalError(loc, "Reduction operation type not supported"); 1967 break; 1968 } 1969 return nullptr; 1970 } 1971 1972 /// Returns the identity value associated with an AtomicRMWKind op. 1973 Value mlir::arith::getIdentityValue(AtomicRMWKind op, Type resultType, 1974 OpBuilder &builder, Location loc) { 1975 Attribute attr = getIdentityValueAttr(op, resultType, builder, loc); 1976 return builder.create<arith::ConstantOp>(loc, attr); 1977 } 1978 1979 /// Return the value obtained by applying the reduction operation kind 1980 /// associated with a binary AtomicRMWKind op to `lhs` and `rhs`. 1981 Value mlir::arith::getReductionOp(AtomicRMWKind op, OpBuilder &builder, 1982 Location loc, Value lhs, Value rhs) { 1983 switch (op) { 1984 case AtomicRMWKind::addf: 1985 return builder.create<arith::AddFOp>(loc, lhs, rhs); 1986 case AtomicRMWKind::addi: 1987 return builder.create<arith::AddIOp>(loc, lhs, rhs); 1988 case AtomicRMWKind::mulf: 1989 return builder.create<arith::MulFOp>(loc, lhs, rhs); 1990 case AtomicRMWKind::muli: 1991 return builder.create<arith::MulIOp>(loc, lhs, rhs); 1992 case AtomicRMWKind::maxf: 1993 return builder.create<arith::MaxFOp>(loc, lhs, rhs); 1994 case AtomicRMWKind::minf: 1995 return builder.create<arith::MinFOp>(loc, lhs, rhs); 1996 case AtomicRMWKind::maxs: 1997 return builder.create<arith::MaxSIOp>(loc, lhs, rhs); 1998 case AtomicRMWKind::mins: 1999 return builder.create<arith::MinSIOp>(loc, lhs, rhs); 2000 case AtomicRMWKind::maxu: 2001 return builder.create<arith::MaxUIOp>(loc, lhs, rhs); 2002 case AtomicRMWKind::minu: 2003 return builder.create<arith::MinUIOp>(loc, lhs, rhs); 2004 case AtomicRMWKind::ori: 2005 return builder.create<arith::OrIOp>(loc, lhs, rhs); 2006 case AtomicRMWKind::andi: 2007 return builder.create<arith::AndIOp>(loc, lhs, rhs); 2008 // TODO: Add remaining reduction operations. 2009 default: 2010 (void)emitOptionalError(loc, "Reduction operation type not supported"); 2011 break; 2012 } 2013 return nullptr; 2014 } 2015 2016 //===----------------------------------------------------------------------===// 2017 // TableGen'd op method definitions 2018 //===----------------------------------------------------------------------===// 2019 2020 #define GET_OP_CLASSES 2021 #include "mlir/Dialect/Arithmetic/IR/ArithmeticOps.cpp.inc" 2022 2023 //===----------------------------------------------------------------------===// 2024 // TableGen'd enum attribute definitions 2025 //===----------------------------------------------------------------------===// 2026 2027 #include "mlir/Dialect/Arithmetic/IR/ArithmeticOpsEnums.cpp.inc" 2028