1 //===- ArithmeticOps.cpp - MLIR Arithmetic dialect ops implementation -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <utility> 10 11 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 12 #include "mlir/Dialect/CommonFolders.h" 13 #include "mlir/IR/Builders.h" 14 #include "mlir/IR/Matchers.h" 15 #include "mlir/IR/OpImplementation.h" 16 #include "mlir/IR/PatternMatch.h" 17 #include "mlir/IR/TypeUtilities.h" 18 #include "llvm/ADT/SmallString.h" 19 20 #include "llvm/ADT/APSInt.h" 21 22 using namespace mlir; 23 using namespace mlir::arith; 24 25 //===----------------------------------------------------------------------===// 26 // Pattern helpers 27 //===----------------------------------------------------------------------===// 28 29 static IntegerAttr addIntegerAttrs(PatternRewriter &builder, Value res, 30 Attribute lhs, Attribute rhs) { 31 return builder.getIntegerAttr(res.getType(), 32 lhs.cast<IntegerAttr>().getInt() + 33 rhs.cast<IntegerAttr>().getInt()); 34 } 35 36 static IntegerAttr subIntegerAttrs(PatternRewriter &builder, Value res, 37 Attribute lhs, Attribute rhs) { 38 return builder.getIntegerAttr(res.getType(), 39 lhs.cast<IntegerAttr>().getInt() - 40 rhs.cast<IntegerAttr>().getInt()); 41 } 42 43 /// Invert an integer comparison predicate. 44 arith::CmpIPredicate arith::invertPredicate(arith::CmpIPredicate pred) { 45 switch (pred) { 46 case arith::CmpIPredicate::eq: 47 return arith::CmpIPredicate::ne; 48 case arith::CmpIPredicate::ne: 49 return arith::CmpIPredicate::eq; 50 case arith::CmpIPredicate::slt: 51 return arith::CmpIPredicate::sge; 52 case arith::CmpIPredicate::sle: 53 return arith::CmpIPredicate::sgt; 54 case arith::CmpIPredicate::sgt: 55 return arith::CmpIPredicate::sle; 56 case arith::CmpIPredicate::sge: 57 return arith::CmpIPredicate::slt; 58 case arith::CmpIPredicate::ult: 59 return arith::CmpIPredicate::uge; 60 case arith::CmpIPredicate::ule: 61 return arith::CmpIPredicate::ugt; 62 case arith::CmpIPredicate::ugt: 63 return arith::CmpIPredicate::ule; 64 case arith::CmpIPredicate::uge: 65 return arith::CmpIPredicate::ult; 66 } 67 llvm_unreachable("unknown cmpi predicate kind"); 68 } 69 70 static arith::CmpIPredicateAttr invertPredicate(arith::CmpIPredicateAttr pred) { 71 return arith::CmpIPredicateAttr::get(pred.getContext(), 72 invertPredicate(pred.getValue())); 73 } 74 75 //===----------------------------------------------------------------------===// 76 // TableGen'd canonicalization patterns 77 //===----------------------------------------------------------------------===// 78 79 namespace { 80 #include "ArithmeticCanonicalization.inc" 81 } // namespace 82 83 //===----------------------------------------------------------------------===// 84 // ConstantOp 85 //===----------------------------------------------------------------------===// 86 87 void arith::ConstantOp::getAsmResultNames( 88 function_ref<void(Value, StringRef)> setNameFn) { 89 auto type = getType(); 90 if (auto intCst = getValue().dyn_cast<IntegerAttr>()) { 91 auto intType = type.dyn_cast<IntegerType>(); 92 93 // Sugar i1 constants with 'true' and 'false'. 94 if (intType && intType.getWidth() == 1) 95 return setNameFn(getResult(), (intCst.getInt() ? "true" : "false")); 96 97 // Otherwise, build a compex name with the value and type. 98 SmallString<32> specialNameBuffer; 99 llvm::raw_svector_ostream specialName(specialNameBuffer); 100 specialName << 'c' << intCst.getInt(); 101 if (intType) 102 specialName << '_' << type; 103 setNameFn(getResult(), specialName.str()); 104 } else { 105 setNameFn(getResult(), "cst"); 106 } 107 } 108 109 /// TODO: disallow arith.constant to return anything other than signless integer 110 /// or float like. 111 LogicalResult arith::ConstantOp::verify() { 112 auto type = getType(); 113 // The value's type must match the return type. 114 if (getValue().getType() != type) { 115 return emitOpError() << "value type " << getValue().getType() 116 << " must match return type: " << type; 117 } 118 // Integer values must be signless. 119 if (type.isa<IntegerType>() && !type.cast<IntegerType>().isSignless()) 120 return emitOpError("integer return type must be signless"); 121 // Any float or elements attribute are acceptable. 122 if (!getValue().isa<IntegerAttr, FloatAttr, ElementsAttr>()) { 123 return emitOpError( 124 "value must be an integer, float, or elements attribute"); 125 } 126 return success(); 127 } 128 129 bool arith::ConstantOp::isBuildableWith(Attribute value, Type type) { 130 // The value's type must be the same as the provided type. 131 if (value.getType() != type) 132 return false; 133 // Integer values must be signless. 134 if (type.isa<IntegerType>() && !type.cast<IntegerType>().isSignless()) 135 return false; 136 // Integer, float, and element attributes are buildable. 137 return value.isa<IntegerAttr, FloatAttr, ElementsAttr>(); 138 } 139 140 OpFoldResult arith::ConstantOp::fold(ArrayRef<Attribute> operands) { 141 return getValue(); 142 } 143 144 void arith::ConstantIntOp::build(OpBuilder &builder, OperationState &result, 145 int64_t value, unsigned width) { 146 auto type = builder.getIntegerType(width); 147 arith::ConstantOp::build(builder, result, type, 148 builder.getIntegerAttr(type, value)); 149 } 150 151 void arith::ConstantIntOp::build(OpBuilder &builder, OperationState &result, 152 int64_t value, Type type) { 153 assert(type.isSignlessInteger() && 154 "ConstantIntOp can only have signless integer type values"); 155 arith::ConstantOp::build(builder, result, type, 156 builder.getIntegerAttr(type, value)); 157 } 158 159 bool arith::ConstantIntOp::classof(Operation *op) { 160 if (auto constOp = dyn_cast_or_null<arith::ConstantOp>(op)) 161 return constOp.getType().isSignlessInteger(); 162 return false; 163 } 164 165 void arith::ConstantFloatOp::build(OpBuilder &builder, OperationState &result, 166 const APFloat &value, FloatType type) { 167 arith::ConstantOp::build(builder, result, type, 168 builder.getFloatAttr(type, value)); 169 } 170 171 bool arith::ConstantFloatOp::classof(Operation *op) { 172 if (auto constOp = dyn_cast_or_null<arith::ConstantOp>(op)) 173 return constOp.getType().isa<FloatType>(); 174 return false; 175 } 176 177 void arith::ConstantIndexOp::build(OpBuilder &builder, OperationState &result, 178 int64_t value) { 179 arith::ConstantOp::build(builder, result, builder.getIndexType(), 180 builder.getIndexAttr(value)); 181 } 182 183 bool arith::ConstantIndexOp::classof(Operation *op) { 184 if (auto constOp = dyn_cast_or_null<arith::ConstantOp>(op)) 185 return constOp.getType().isIndex(); 186 return false; 187 } 188 189 //===----------------------------------------------------------------------===// 190 // AddIOp 191 //===----------------------------------------------------------------------===// 192 193 OpFoldResult arith::AddIOp::fold(ArrayRef<Attribute> operands) { 194 // addi(x, 0) -> x 195 if (matchPattern(getRhs(), m_Zero())) 196 return getLhs(); 197 198 // addi(subi(a, b), b) -> a 199 if (auto sub = getLhs().getDefiningOp<SubIOp>()) 200 if (getRhs() == sub.getRhs()) 201 return sub.getLhs(); 202 203 // addi(b, subi(a, b)) -> a 204 if (auto sub = getRhs().getDefiningOp<SubIOp>()) 205 if (getLhs() == sub.getRhs()) 206 return sub.getLhs(); 207 208 return constFoldBinaryOp<IntegerAttr>( 209 operands, [](APInt a, const APInt &b) { return std::move(a) + b; }); 210 } 211 212 void arith::AddIOp::getCanonicalizationPatterns( 213 RewritePatternSet &patterns, MLIRContext *context) { 214 patterns.add<AddIAddConstant, AddISubConstantRHS, AddISubConstantLHS>( 215 context); 216 } 217 218 //===----------------------------------------------------------------------===// 219 // SubIOp 220 //===----------------------------------------------------------------------===// 221 222 OpFoldResult arith::SubIOp::fold(ArrayRef<Attribute> operands) { 223 // subi(x,x) -> 0 224 if (getOperand(0) == getOperand(1)) 225 return Builder(getContext()).getZeroAttr(getType()); 226 // subi(x,0) -> x 227 if (matchPattern(getRhs(), m_Zero())) 228 return getLhs(); 229 230 return constFoldBinaryOp<IntegerAttr>( 231 operands, [](APInt a, const APInt &b) { return std::move(a) - b; }); 232 } 233 234 void arith::SubIOp::getCanonicalizationPatterns( 235 RewritePatternSet &patterns, MLIRContext *context) { 236 patterns 237 .add<SubIRHSAddConstant, SubILHSAddConstant, SubIRHSSubConstantRHS, 238 SubIRHSSubConstantLHS, SubILHSSubConstantRHS, SubILHSSubConstantLHS>( 239 context); 240 } 241 242 //===----------------------------------------------------------------------===// 243 // MulIOp 244 //===----------------------------------------------------------------------===// 245 246 OpFoldResult arith::MulIOp::fold(ArrayRef<Attribute> operands) { 247 // muli(x, 0) -> 0 248 if (matchPattern(getRhs(), m_Zero())) 249 return getRhs(); 250 // muli(x, 1) -> x 251 if (matchPattern(getRhs(), m_One())) 252 return getOperand(0); 253 // TODO: Handle the overflow case. 254 255 // default folder 256 return constFoldBinaryOp<IntegerAttr>( 257 operands, [](const APInt &a, const APInt &b) { return a * b; }); 258 } 259 260 //===----------------------------------------------------------------------===// 261 // DivUIOp 262 //===----------------------------------------------------------------------===// 263 264 OpFoldResult arith::DivUIOp::fold(ArrayRef<Attribute> operands) { 265 // divui (x, 1) -> x. 266 if (matchPattern(getRhs(), m_One())) 267 return getLhs(); 268 269 // Don't fold if it would require a division by zero. 270 bool div0 = false; 271 auto result = 272 constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) { 273 if (div0 || !b) { 274 div0 = true; 275 return a; 276 } 277 return a.udiv(b); 278 }); 279 280 return div0 ? Attribute() : result; 281 } 282 283 //===----------------------------------------------------------------------===// 284 // DivSIOp 285 //===----------------------------------------------------------------------===// 286 287 OpFoldResult arith::DivSIOp::fold(ArrayRef<Attribute> operands) { 288 // divsi (x, 1) -> x. 289 if (matchPattern(getRhs(), m_One())) 290 return getLhs(); 291 292 // Don't fold if it would overflow or if it requires a division by zero. 293 bool overflowOrDiv0 = false; 294 auto result = 295 constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) { 296 if (overflowOrDiv0 || !b) { 297 overflowOrDiv0 = true; 298 return a; 299 } 300 return a.sdiv_ov(b, overflowOrDiv0); 301 }); 302 303 return overflowOrDiv0 ? Attribute() : result; 304 } 305 306 //===----------------------------------------------------------------------===// 307 // Ceil and floor division folding helpers 308 //===----------------------------------------------------------------------===// 309 310 static APInt signedCeilNonnegInputs(const APInt &a, const APInt &b, 311 bool &overflow) { 312 // Returns (a-1)/b + 1 313 APInt one(a.getBitWidth(), 1, true); // Signed value 1. 314 APInt val = a.ssub_ov(one, overflow).sdiv_ov(b, overflow); 315 return val.sadd_ov(one, overflow); 316 } 317 318 //===----------------------------------------------------------------------===// 319 // CeilDivUIOp 320 //===----------------------------------------------------------------------===// 321 322 OpFoldResult arith::CeilDivUIOp::fold(ArrayRef<Attribute> operands) { 323 // ceildivui (x, 1) -> x. 324 if (matchPattern(getRhs(), m_One())) 325 return getLhs(); 326 327 bool overflowOrDiv0 = false; 328 auto result = 329 constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) { 330 if (overflowOrDiv0 || !b) { 331 overflowOrDiv0 = true; 332 return a; 333 } 334 APInt quotient = a.udiv(b); 335 if (!a.urem(b)) 336 return quotient; 337 APInt one(a.getBitWidth(), 1, true); 338 return quotient.uadd_ov(one, overflowOrDiv0); 339 }); 340 341 return overflowOrDiv0 ? Attribute() : result; 342 } 343 344 //===----------------------------------------------------------------------===// 345 // CeilDivSIOp 346 //===----------------------------------------------------------------------===// 347 348 OpFoldResult arith::CeilDivSIOp::fold(ArrayRef<Attribute> operands) { 349 // ceildivsi (x, 1) -> x. 350 if (matchPattern(getRhs(), m_One())) 351 return getLhs(); 352 353 // Don't fold if it would overflow or if it requires a division by zero. 354 bool overflowOrDiv0 = false; 355 auto result = 356 constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) { 357 if (overflowOrDiv0 || !b) { 358 overflowOrDiv0 = true; 359 return a; 360 } 361 if (!a) 362 return a; 363 // After this point we know that neither a or b are zero. 364 unsigned bits = a.getBitWidth(); 365 APInt zero = APInt::getZero(bits); 366 bool aGtZero = a.sgt(zero); 367 bool bGtZero = b.sgt(zero); 368 if (aGtZero && bGtZero) { 369 // Both positive, return ceil(a, b). 370 return signedCeilNonnegInputs(a, b, overflowOrDiv0); 371 } 372 if (!aGtZero && !bGtZero) { 373 // Both negative, return ceil(-a, -b). 374 APInt posA = zero.ssub_ov(a, overflowOrDiv0); 375 APInt posB = zero.ssub_ov(b, overflowOrDiv0); 376 return signedCeilNonnegInputs(posA, posB, overflowOrDiv0); 377 } 378 if (!aGtZero && bGtZero) { 379 // A is negative, b is positive, return - ( -a / b). 380 APInt posA = zero.ssub_ov(a, overflowOrDiv0); 381 APInt div = posA.sdiv_ov(b, overflowOrDiv0); 382 return zero.ssub_ov(div, overflowOrDiv0); 383 } 384 // A is positive, b is negative, return - (a / -b). 385 APInt posB = zero.ssub_ov(b, overflowOrDiv0); 386 APInt div = a.sdiv_ov(posB, overflowOrDiv0); 387 return zero.ssub_ov(div, overflowOrDiv0); 388 }); 389 390 return overflowOrDiv0 ? Attribute() : result; 391 } 392 393 //===----------------------------------------------------------------------===// 394 // FloorDivSIOp 395 //===----------------------------------------------------------------------===// 396 397 OpFoldResult arith::FloorDivSIOp::fold(ArrayRef<Attribute> operands) { 398 // floordivsi (x, 1) -> x. 399 if (matchPattern(getRhs(), m_One())) 400 return getLhs(); 401 402 // Don't fold if it would overflow or if it requires a division by zero. 403 bool overflowOrDiv0 = false; 404 auto result = 405 constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) { 406 if (overflowOrDiv0 || !b) { 407 overflowOrDiv0 = true; 408 return a; 409 } 410 if (!a) 411 return a; 412 // After this point we know that neither a or b are zero. 413 unsigned bits = a.getBitWidth(); 414 APInt zero = APInt::getZero(bits); 415 bool aGtZero = a.sgt(zero); 416 bool bGtZero = b.sgt(zero); 417 if (aGtZero && bGtZero) { 418 // Both positive, return a / b. 419 return a.sdiv_ov(b, overflowOrDiv0); 420 } 421 if (!aGtZero && !bGtZero) { 422 // Both negative, return -a / -b. 423 APInt posA = zero.ssub_ov(a, overflowOrDiv0); 424 APInt posB = zero.ssub_ov(b, overflowOrDiv0); 425 return posA.sdiv_ov(posB, overflowOrDiv0); 426 } 427 if (!aGtZero && bGtZero) { 428 // A is negative, b is positive, return - ceil(-a, b). 429 APInt posA = zero.ssub_ov(a, overflowOrDiv0); 430 APInt ceil = signedCeilNonnegInputs(posA, b, overflowOrDiv0); 431 return zero.ssub_ov(ceil, overflowOrDiv0); 432 } 433 // A is positive, b is negative, return - ceil(a, -b). 434 APInt posB = zero.ssub_ov(b, overflowOrDiv0); 435 APInt ceil = signedCeilNonnegInputs(a, posB, overflowOrDiv0); 436 return zero.ssub_ov(ceil, overflowOrDiv0); 437 }); 438 439 return overflowOrDiv0 ? Attribute() : result; 440 } 441 442 //===----------------------------------------------------------------------===// 443 // RemUIOp 444 //===----------------------------------------------------------------------===// 445 446 OpFoldResult arith::RemUIOp::fold(ArrayRef<Attribute> operands) { 447 // remui (x, 1) -> 0. 448 if (matchPattern(getRhs(), m_One())) 449 return Builder(getContext()).getZeroAttr(getType()); 450 451 // Don't fold if it would require a division by zero. 452 bool div0 = false; 453 auto result = 454 constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) { 455 if (div0 || b.isNullValue()) { 456 div0 = true; 457 return a; 458 } 459 return a.urem(b); 460 }); 461 462 return div0 ? Attribute() : result; 463 } 464 465 //===----------------------------------------------------------------------===// 466 // RemSIOp 467 //===----------------------------------------------------------------------===// 468 469 OpFoldResult arith::RemSIOp::fold(ArrayRef<Attribute> operands) { 470 // remsi (x, 1) -> 0. 471 if (matchPattern(getRhs(), m_One())) 472 return Builder(getContext()).getZeroAttr(getType()); 473 474 // Don't fold if it would require a division by zero. 475 bool div0 = false; 476 auto result = 477 constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) { 478 if (div0 || b.isNullValue()) { 479 div0 = true; 480 return a; 481 } 482 return a.srem(b); 483 }); 484 485 return div0 ? Attribute() : result; 486 } 487 488 //===----------------------------------------------------------------------===// 489 // AndIOp 490 //===----------------------------------------------------------------------===// 491 492 OpFoldResult arith::AndIOp::fold(ArrayRef<Attribute> operands) { 493 /// and(x, 0) -> 0 494 if (matchPattern(getRhs(), m_Zero())) 495 return getRhs(); 496 /// and(x, allOnes) -> x 497 APInt intValue; 498 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && intValue.isAllOnes()) 499 return getLhs(); 500 501 return constFoldBinaryOp<IntegerAttr>( 502 operands, [](APInt a, const APInt &b) { return std::move(a) & b; }); 503 } 504 505 //===----------------------------------------------------------------------===// 506 // OrIOp 507 //===----------------------------------------------------------------------===// 508 509 OpFoldResult arith::OrIOp::fold(ArrayRef<Attribute> operands) { 510 /// or(x, 0) -> x 511 if (matchPattern(getRhs(), m_Zero())) 512 return getLhs(); 513 /// or(x, <all ones>) -> <all ones> 514 if (auto rhsAttr = operands[1].dyn_cast_or_null<IntegerAttr>()) 515 if (rhsAttr.getValue().isAllOnes()) 516 return rhsAttr; 517 518 return constFoldBinaryOp<IntegerAttr>( 519 operands, [](APInt a, const APInt &b) { return std::move(a) | b; }); 520 } 521 522 //===----------------------------------------------------------------------===// 523 // XOrIOp 524 //===----------------------------------------------------------------------===// 525 526 OpFoldResult arith::XOrIOp::fold(ArrayRef<Attribute> operands) { 527 /// xor(x, 0) -> x 528 if (matchPattern(getRhs(), m_Zero())) 529 return getLhs(); 530 /// xor(x, x) -> 0 531 if (getLhs() == getRhs()) 532 return Builder(getContext()).getZeroAttr(getType()); 533 /// xor(xor(x, a), a) -> x 534 if (arith::XOrIOp prev = getLhs().getDefiningOp<arith::XOrIOp>()) 535 if (prev.getRhs() == getRhs()) 536 return prev.getLhs(); 537 538 return constFoldBinaryOp<IntegerAttr>( 539 operands, [](APInt a, const APInt &b) { return std::move(a) ^ b; }); 540 } 541 542 void arith::XOrIOp::getCanonicalizationPatterns( 543 RewritePatternSet &patterns, MLIRContext *context) { 544 patterns.add<XOrINotCmpI>(context); 545 } 546 547 //===----------------------------------------------------------------------===// 548 // NegFOp 549 //===----------------------------------------------------------------------===// 550 551 OpFoldResult arith::NegFOp::fold(ArrayRef<Attribute> operands) { 552 /// negf(negf(x)) -> x 553 if (auto op = this->getOperand().getDefiningOp<arith::NegFOp>()) 554 return op.getOperand(); 555 return constFoldUnaryOp<FloatAttr>(operands, 556 [](const APFloat &a) { return -a; }); 557 } 558 559 //===----------------------------------------------------------------------===// 560 // AddFOp 561 //===----------------------------------------------------------------------===// 562 563 OpFoldResult arith::AddFOp::fold(ArrayRef<Attribute> operands) { 564 // addf(x, -0) -> x 565 if (matchPattern(getRhs(), m_NegZeroFloat())) 566 return getLhs(); 567 568 return constFoldBinaryOp<FloatAttr>( 569 operands, [](const APFloat &a, const APFloat &b) { return a + b; }); 570 } 571 572 //===----------------------------------------------------------------------===// 573 // SubFOp 574 //===----------------------------------------------------------------------===// 575 576 OpFoldResult arith::SubFOp::fold(ArrayRef<Attribute> operands) { 577 // subf(x, +0) -> x 578 if (matchPattern(getRhs(), m_PosZeroFloat())) 579 return getLhs(); 580 581 return constFoldBinaryOp<FloatAttr>( 582 operands, [](const APFloat &a, const APFloat &b) { return a - b; }); 583 } 584 585 //===----------------------------------------------------------------------===// 586 // MaxFOp 587 //===----------------------------------------------------------------------===// 588 589 OpFoldResult arith::MaxFOp::fold(ArrayRef<Attribute> operands) { 590 assert(operands.size() == 2 && "maxf takes two operands"); 591 592 // maxf(x,x) -> x 593 if (getLhs() == getRhs()) 594 return getRhs(); 595 596 // maxf(x, -inf) -> x 597 if (matchPattern(getRhs(), m_NegInfFloat())) 598 return getLhs(); 599 600 return constFoldBinaryOp<FloatAttr>( 601 operands, 602 [](const APFloat &a, const APFloat &b) { return llvm::maximum(a, b); }); 603 } 604 605 //===----------------------------------------------------------------------===// 606 // MaxSIOp 607 //===----------------------------------------------------------------------===// 608 609 OpFoldResult MaxSIOp::fold(ArrayRef<Attribute> operands) { 610 assert(operands.size() == 2 && "binary operation takes two operands"); 611 612 // maxsi(x,x) -> x 613 if (getLhs() == getRhs()) 614 return getRhs(); 615 616 APInt intValue; 617 // maxsi(x,MAX_INT) -> MAX_INT 618 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && 619 intValue.isMaxSignedValue()) 620 return getRhs(); 621 622 // maxsi(x, MIN_INT) -> x 623 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && 624 intValue.isMinSignedValue()) 625 return getLhs(); 626 627 return constFoldBinaryOp<IntegerAttr>(operands, 628 [](const APInt &a, const APInt &b) { 629 return llvm::APIntOps::smax(a, b); 630 }); 631 } 632 633 //===----------------------------------------------------------------------===// 634 // MaxUIOp 635 //===----------------------------------------------------------------------===// 636 637 OpFoldResult MaxUIOp::fold(ArrayRef<Attribute> operands) { 638 assert(operands.size() == 2 && "binary operation takes two operands"); 639 640 // maxui(x,x) -> x 641 if (getLhs() == getRhs()) 642 return getRhs(); 643 644 APInt intValue; 645 // maxui(x,MAX_INT) -> MAX_INT 646 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && intValue.isMaxValue()) 647 return getRhs(); 648 649 // maxui(x, MIN_INT) -> x 650 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && intValue.isMinValue()) 651 return getLhs(); 652 653 return constFoldBinaryOp<IntegerAttr>(operands, 654 [](const APInt &a, const APInt &b) { 655 return llvm::APIntOps::umax(a, b); 656 }); 657 } 658 659 //===----------------------------------------------------------------------===// 660 // MinFOp 661 //===----------------------------------------------------------------------===// 662 663 OpFoldResult arith::MinFOp::fold(ArrayRef<Attribute> operands) { 664 assert(operands.size() == 2 && "minf takes two operands"); 665 666 // minf(x,x) -> x 667 if (getLhs() == getRhs()) 668 return getRhs(); 669 670 // minf(x, +inf) -> x 671 if (matchPattern(getRhs(), m_PosInfFloat())) 672 return getLhs(); 673 674 return constFoldBinaryOp<FloatAttr>( 675 operands, 676 [](const APFloat &a, const APFloat &b) { return llvm::minimum(a, b); }); 677 } 678 679 //===----------------------------------------------------------------------===// 680 // MinSIOp 681 //===----------------------------------------------------------------------===// 682 683 OpFoldResult MinSIOp::fold(ArrayRef<Attribute> operands) { 684 assert(operands.size() == 2 && "binary operation takes two operands"); 685 686 // minsi(x,x) -> x 687 if (getLhs() == getRhs()) 688 return getRhs(); 689 690 APInt intValue; 691 // minsi(x,MIN_INT) -> MIN_INT 692 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && 693 intValue.isMinSignedValue()) 694 return getRhs(); 695 696 // minsi(x, MAX_INT) -> x 697 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && 698 intValue.isMaxSignedValue()) 699 return getLhs(); 700 701 return constFoldBinaryOp<IntegerAttr>(operands, 702 [](const APInt &a, const APInt &b) { 703 return llvm::APIntOps::smin(a, b); 704 }); 705 } 706 707 //===----------------------------------------------------------------------===// 708 // MinUIOp 709 //===----------------------------------------------------------------------===// 710 711 OpFoldResult MinUIOp::fold(ArrayRef<Attribute> operands) { 712 assert(operands.size() == 2 && "binary operation takes two operands"); 713 714 // minui(x,x) -> x 715 if (getLhs() == getRhs()) 716 return getRhs(); 717 718 APInt intValue; 719 // minui(x,MIN_INT) -> MIN_INT 720 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && intValue.isMinValue()) 721 return getRhs(); 722 723 // minui(x, MAX_INT) -> x 724 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && intValue.isMaxValue()) 725 return getLhs(); 726 727 return constFoldBinaryOp<IntegerAttr>(operands, 728 [](const APInt &a, const APInt &b) { 729 return llvm::APIntOps::umin(a, b); 730 }); 731 } 732 733 //===----------------------------------------------------------------------===// 734 // MulFOp 735 //===----------------------------------------------------------------------===// 736 737 OpFoldResult arith::MulFOp::fold(ArrayRef<Attribute> operands) { 738 // mulf(x, 1) -> x 739 if (matchPattern(getRhs(), m_OneFloat())) 740 return getLhs(); 741 742 return constFoldBinaryOp<FloatAttr>( 743 operands, [](const APFloat &a, const APFloat &b) { return a * b; }); 744 } 745 746 //===----------------------------------------------------------------------===// 747 // DivFOp 748 //===----------------------------------------------------------------------===// 749 750 OpFoldResult arith::DivFOp::fold(ArrayRef<Attribute> operands) { 751 // divf(x, 1) -> x 752 if (matchPattern(getRhs(), m_OneFloat())) 753 return getLhs(); 754 755 return constFoldBinaryOp<FloatAttr>( 756 operands, [](const APFloat &a, const APFloat &b) { return a / b; }); 757 } 758 759 //===----------------------------------------------------------------------===// 760 // RemFOp 761 //===----------------------------------------------------------------------===// 762 763 OpFoldResult arith::RemFOp::fold(ArrayRef<Attribute> operands) { 764 return constFoldBinaryOp<FloatAttr>(operands, 765 [](const APFloat &a, const APFloat &b) { 766 APFloat Result(a); 767 (void)Result.remainder(b); 768 return Result; 769 }); 770 } 771 772 //===----------------------------------------------------------------------===// 773 // Utility functions for verifying cast ops 774 //===----------------------------------------------------------------------===// 775 776 template <typename... Types> 777 using type_list = std::tuple<Types...> *; 778 779 /// Returns a non-null type only if the provided type is one of the allowed 780 /// types or one of the allowed shaped types of the allowed types. Returns the 781 /// element type if a valid shaped type is provided. 782 template <typename... ShapedTypes, typename... ElementTypes> 783 static Type getUnderlyingType(Type type, type_list<ShapedTypes...>, 784 type_list<ElementTypes...>) { 785 if (type.isa<ShapedType>() && !type.isa<ShapedTypes...>()) 786 return {}; 787 788 auto underlyingType = getElementTypeOrSelf(type); 789 if (!underlyingType.isa<ElementTypes...>()) 790 return {}; 791 792 return underlyingType; 793 } 794 795 /// Get allowed underlying types for vectors and tensors. 796 template <typename... ElementTypes> 797 static Type getTypeIfLike(Type type) { 798 return getUnderlyingType(type, type_list<VectorType, TensorType>(), 799 type_list<ElementTypes...>()); 800 } 801 802 /// Get allowed underlying types for vectors, tensors, and memrefs. 803 template <typename... ElementTypes> 804 static Type getTypeIfLikeOrMemRef(Type type) { 805 return getUnderlyingType(type, 806 type_list<VectorType, TensorType, MemRefType>(), 807 type_list<ElementTypes...>()); 808 } 809 810 static bool areValidCastInputsAndOutputs(TypeRange inputs, TypeRange outputs) { 811 return inputs.size() == 1 && outputs.size() == 1 && 812 succeeded(verifyCompatibleShapes(inputs.front(), outputs.front())); 813 } 814 815 //===----------------------------------------------------------------------===// 816 // Verifiers for integer and floating point extension/truncation ops 817 //===----------------------------------------------------------------------===// 818 819 // Extend ops can only extend to a wider type. 820 template <typename ValType, typename Op> 821 static LogicalResult verifyExtOp(Op op) { 822 Type srcType = getElementTypeOrSelf(op.getIn().getType()); 823 Type dstType = getElementTypeOrSelf(op.getType()); 824 825 if (srcType.cast<ValType>().getWidth() >= dstType.cast<ValType>().getWidth()) 826 return op.emitError("result type ") 827 << dstType << " must be wider than operand type " << srcType; 828 829 return success(); 830 } 831 832 // Truncate ops can only truncate to a shorter type. 833 template <typename ValType, typename Op> 834 static LogicalResult verifyTruncateOp(Op op) { 835 Type srcType = getElementTypeOrSelf(op.getIn().getType()); 836 Type dstType = getElementTypeOrSelf(op.getType()); 837 838 if (srcType.cast<ValType>().getWidth() <= dstType.cast<ValType>().getWidth()) 839 return op.emitError("result type ") 840 << dstType << " must be shorter than operand type " << srcType; 841 842 return success(); 843 } 844 845 /// Validate a cast that changes the width of a type. 846 template <template <typename> class WidthComparator, typename... ElementTypes> 847 static bool checkWidthChangeCast(TypeRange inputs, TypeRange outputs) { 848 if (!areValidCastInputsAndOutputs(inputs, outputs)) 849 return false; 850 851 auto srcType = getTypeIfLike<ElementTypes...>(inputs.front()); 852 auto dstType = getTypeIfLike<ElementTypes...>(outputs.front()); 853 if (!srcType || !dstType) 854 return false; 855 856 return WidthComparator<unsigned>()(dstType.getIntOrFloatBitWidth(), 857 srcType.getIntOrFloatBitWidth()); 858 } 859 860 //===----------------------------------------------------------------------===// 861 // ExtUIOp 862 //===----------------------------------------------------------------------===// 863 864 OpFoldResult arith::ExtUIOp::fold(ArrayRef<Attribute> operands) { 865 if (auto lhs = getIn().getDefiningOp<ExtUIOp>()) { 866 getInMutable().assign(lhs.getIn()); 867 return getResult(); 868 } 869 Type resType = getType(); 870 unsigned bitWidth; 871 if (auto shapedType = resType.dyn_cast<ShapedType>()) 872 bitWidth = shapedType.getElementTypeBitWidth(); 873 else 874 bitWidth = resType.getIntOrFloatBitWidth(); 875 return constFoldCastOp<IntegerAttr, IntegerAttr>( 876 operands, getType(), [bitWidth](const APInt &a, bool &castStatus) { 877 return a.zext(bitWidth); 878 }); 879 } 880 881 bool arith::ExtUIOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 882 return checkWidthChangeCast<std::greater, IntegerType>(inputs, outputs); 883 } 884 885 LogicalResult arith::ExtUIOp::verify() { 886 return verifyExtOp<IntegerType>(*this); 887 } 888 889 //===----------------------------------------------------------------------===// 890 // ExtSIOp 891 //===----------------------------------------------------------------------===// 892 893 OpFoldResult arith::ExtSIOp::fold(ArrayRef<Attribute> operands) { 894 if (auto lhs = getIn().getDefiningOp<ExtSIOp>()) { 895 getInMutable().assign(lhs.getIn()); 896 return getResult(); 897 } 898 Type resType = getType(); 899 unsigned bitWidth; 900 if (auto shapedType = resType.dyn_cast<ShapedType>()) 901 bitWidth = shapedType.getElementTypeBitWidth(); 902 else 903 bitWidth = resType.getIntOrFloatBitWidth(); 904 return constFoldCastOp<IntegerAttr, IntegerAttr>( 905 operands, getType(), [bitWidth](const APInt &a, bool &castStatus) { 906 return a.sext(bitWidth); 907 }); 908 } 909 910 bool arith::ExtSIOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 911 return checkWidthChangeCast<std::greater, IntegerType>(inputs, outputs); 912 } 913 914 void arith::ExtSIOp::getCanonicalizationPatterns( 915 RewritePatternSet &patterns, MLIRContext *context) { 916 patterns.add<ExtSIOfExtUI>(context); 917 } 918 919 LogicalResult arith::ExtSIOp::verify() { 920 return verifyExtOp<IntegerType>(*this); 921 } 922 923 //===----------------------------------------------------------------------===// 924 // ExtFOp 925 //===----------------------------------------------------------------------===// 926 927 bool arith::ExtFOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 928 return checkWidthChangeCast<std::greater, FloatType>(inputs, outputs); 929 } 930 931 LogicalResult arith::ExtFOp::verify() { return verifyExtOp<FloatType>(*this); } 932 933 //===----------------------------------------------------------------------===// 934 // TruncIOp 935 //===----------------------------------------------------------------------===// 936 937 OpFoldResult arith::TruncIOp::fold(ArrayRef<Attribute> operands) { 938 assert(operands.size() == 1 && "unary operation takes one operand"); 939 940 // trunci(zexti(a)) -> a 941 // trunci(sexti(a)) -> a 942 if (matchPattern(getOperand(), m_Op<arith::ExtUIOp>()) || 943 matchPattern(getOperand(), m_Op<arith::ExtSIOp>())) 944 return getOperand().getDefiningOp()->getOperand(0); 945 946 // trunci(trunci(a)) -> trunci(a)) 947 if (matchPattern(getOperand(), m_Op<arith::TruncIOp>())) { 948 setOperand(getOperand().getDefiningOp()->getOperand(0)); 949 return getResult(); 950 } 951 952 Type resType = getType(); 953 unsigned bitWidth; 954 if (auto shapedType = resType.dyn_cast<ShapedType>()) 955 bitWidth = shapedType.getElementTypeBitWidth(); 956 else 957 bitWidth = resType.getIntOrFloatBitWidth(); 958 959 return constFoldCastOp<IntegerAttr, IntegerAttr>( 960 operands, getType(), [bitWidth](const APInt &a, bool &castStatus) { 961 return a.trunc(bitWidth); 962 }); 963 } 964 965 bool arith::TruncIOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 966 return checkWidthChangeCast<std::less, IntegerType>(inputs, outputs); 967 } 968 969 LogicalResult arith::TruncIOp::verify() { 970 return verifyTruncateOp<IntegerType>(*this); 971 } 972 973 //===----------------------------------------------------------------------===// 974 // TruncFOp 975 //===----------------------------------------------------------------------===// 976 977 /// Perform safe const propagation for truncf, i.e. only propagate if FP value 978 /// can be represented without precision loss or rounding. 979 OpFoldResult arith::TruncFOp::fold(ArrayRef<Attribute> operands) { 980 assert(operands.size() == 1 && "unary operation takes one operand"); 981 982 auto constOperand = operands.front(); 983 if (!constOperand || !constOperand.isa<FloatAttr>()) 984 return {}; 985 986 // Convert to target type via 'double'. 987 double sourceValue = 988 constOperand.dyn_cast<FloatAttr>().getValue().convertToDouble(); 989 auto targetAttr = FloatAttr::get(getType(), sourceValue); 990 991 // Propagate if constant's value does not change after truncation. 992 if (sourceValue == targetAttr.getValue().convertToDouble()) 993 return targetAttr; 994 995 return {}; 996 } 997 998 bool arith::TruncFOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 999 return checkWidthChangeCast<std::less, FloatType>(inputs, outputs); 1000 } 1001 1002 LogicalResult arith::TruncFOp::verify() { 1003 return verifyTruncateOp<FloatType>(*this); 1004 } 1005 1006 //===----------------------------------------------------------------------===// 1007 // AndIOp 1008 //===----------------------------------------------------------------------===// 1009 1010 void arith::AndIOp::getCanonicalizationPatterns( 1011 RewritePatternSet &patterns, MLIRContext *context) { 1012 patterns.add<AndOfExtUI, AndOfExtSI>(context); 1013 } 1014 1015 //===----------------------------------------------------------------------===// 1016 // OrIOp 1017 //===----------------------------------------------------------------------===// 1018 1019 void arith::OrIOp::getCanonicalizationPatterns( 1020 RewritePatternSet &patterns, MLIRContext *context) { 1021 patterns.add<OrOfExtUI, OrOfExtSI>(context); 1022 } 1023 1024 //===----------------------------------------------------------------------===// 1025 // Verifiers for casts between integers and floats. 1026 //===----------------------------------------------------------------------===// 1027 1028 template <typename From, typename To> 1029 static bool checkIntFloatCast(TypeRange inputs, TypeRange outputs) { 1030 if (!areValidCastInputsAndOutputs(inputs, outputs)) 1031 return false; 1032 1033 auto srcType = getTypeIfLike<From>(inputs.front()); 1034 auto dstType = getTypeIfLike<To>(outputs.back()); 1035 1036 return srcType && dstType; 1037 } 1038 1039 //===----------------------------------------------------------------------===// 1040 // UIToFPOp 1041 //===----------------------------------------------------------------------===// 1042 1043 bool arith::UIToFPOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 1044 return checkIntFloatCast<IntegerType, FloatType>(inputs, outputs); 1045 } 1046 1047 OpFoldResult arith::UIToFPOp::fold(ArrayRef<Attribute> operands) { 1048 Type resType = getType(); 1049 Type resEleType; 1050 if (auto shapedType = resType.dyn_cast<ShapedType>()) 1051 resEleType = shapedType.getElementType(); 1052 else 1053 resEleType = resType; 1054 return constFoldCastOp<IntegerAttr, FloatAttr>( 1055 operands, getType(), [&resEleType](const APInt &a, bool &castStatus) { 1056 FloatType floatTy = resEleType.cast<FloatType>(); 1057 APFloat apf(floatTy.getFloatSemantics(), 1058 APInt::getZero(floatTy.getWidth())); 1059 apf.convertFromAPInt(a, /*IsSigned=*/false, 1060 APFloat::rmNearestTiesToEven); 1061 return apf; 1062 }); 1063 } 1064 1065 //===----------------------------------------------------------------------===// 1066 // SIToFPOp 1067 //===----------------------------------------------------------------------===// 1068 1069 bool arith::SIToFPOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 1070 return checkIntFloatCast<IntegerType, FloatType>(inputs, outputs); 1071 } 1072 1073 OpFoldResult arith::SIToFPOp::fold(ArrayRef<Attribute> operands) { 1074 Type resType = getType(); 1075 Type resEleType; 1076 if (auto shapedType = resType.dyn_cast<ShapedType>()) 1077 resEleType = shapedType.getElementType(); 1078 else 1079 resEleType = resType; 1080 return constFoldCastOp<IntegerAttr, FloatAttr>( 1081 operands, getType(), [&resEleType](const APInt &a, bool &castStatus) { 1082 FloatType floatTy = resEleType.cast<FloatType>(); 1083 APFloat apf(floatTy.getFloatSemantics(), 1084 APInt::getZero(floatTy.getWidth())); 1085 apf.convertFromAPInt(a, /*IsSigned=*/true, 1086 APFloat::rmNearestTiesToEven); 1087 return apf; 1088 }); 1089 } 1090 //===----------------------------------------------------------------------===// 1091 // FPToUIOp 1092 //===----------------------------------------------------------------------===// 1093 1094 bool arith::FPToUIOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 1095 return checkIntFloatCast<FloatType, IntegerType>(inputs, outputs); 1096 } 1097 1098 OpFoldResult arith::FPToUIOp::fold(ArrayRef<Attribute> operands) { 1099 Type resType = getType(); 1100 Type resEleType; 1101 if (auto shapedType = resType.dyn_cast<ShapedType>()) 1102 resEleType = shapedType.getElementType(); 1103 else 1104 resEleType = resType; 1105 return constFoldCastOp<FloatAttr, IntegerAttr>( 1106 operands, getType(), [&resEleType](const APFloat &a, bool &castStatus) { 1107 IntegerType intTy = resEleType.cast<IntegerType>(); 1108 bool ignored; 1109 APSInt api(intTy.getWidth(), /*isUnsigned=*/true); 1110 castStatus = APFloat::opInvalidOp != 1111 a.convertToInteger(api, APFloat::rmTowardZero, &ignored); 1112 return api; 1113 }); 1114 } 1115 1116 //===----------------------------------------------------------------------===// 1117 // FPToSIOp 1118 //===----------------------------------------------------------------------===// 1119 1120 bool arith::FPToSIOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 1121 return checkIntFloatCast<FloatType, IntegerType>(inputs, outputs); 1122 } 1123 1124 OpFoldResult arith::FPToSIOp::fold(ArrayRef<Attribute> operands) { 1125 Type resType = getType(); 1126 Type resEleType; 1127 if (auto shapedType = resType.dyn_cast<ShapedType>()) 1128 resEleType = shapedType.getElementType(); 1129 else 1130 resEleType = resType; 1131 return constFoldCastOp<FloatAttr, IntegerAttr>( 1132 operands, getType(), [&resEleType](const APFloat &a, bool &castStatus) { 1133 IntegerType intTy = resEleType.cast<IntegerType>(); 1134 bool ignored; 1135 APSInt api(intTy.getWidth(), /*isUnsigned=*/false); 1136 castStatus = APFloat::opInvalidOp != 1137 a.convertToInteger(api, APFloat::rmTowardZero, &ignored); 1138 return api; 1139 }); 1140 } 1141 1142 //===----------------------------------------------------------------------===// 1143 // IndexCastOp 1144 //===----------------------------------------------------------------------===// 1145 1146 bool arith::IndexCastOp::areCastCompatible(TypeRange inputs, 1147 TypeRange outputs) { 1148 if (!areValidCastInputsAndOutputs(inputs, outputs)) 1149 return false; 1150 1151 auto srcType = getTypeIfLikeOrMemRef<IntegerType, IndexType>(inputs.front()); 1152 auto dstType = getTypeIfLikeOrMemRef<IntegerType, IndexType>(outputs.front()); 1153 if (!srcType || !dstType) 1154 return false; 1155 1156 return (srcType.isIndex() && dstType.isSignlessInteger()) || 1157 (srcType.isSignlessInteger() && dstType.isIndex()); 1158 } 1159 1160 OpFoldResult arith::IndexCastOp::fold(ArrayRef<Attribute> operands) { 1161 // index_cast(constant) -> constant 1162 // A little hack because we go through int. Otherwise, the size of the 1163 // constant might need to change. 1164 if (auto value = operands[0].dyn_cast_or_null<IntegerAttr>()) 1165 return IntegerAttr::get(getType(), value.getInt()); 1166 1167 return {}; 1168 } 1169 1170 void arith::IndexCastOp::getCanonicalizationPatterns( 1171 RewritePatternSet &patterns, MLIRContext *context) { 1172 patterns.add<IndexCastOfIndexCast, IndexCastOfExtSI>(context); 1173 } 1174 1175 //===----------------------------------------------------------------------===// 1176 // BitcastOp 1177 //===----------------------------------------------------------------------===// 1178 1179 bool arith::BitcastOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 1180 if (!areValidCastInputsAndOutputs(inputs, outputs)) 1181 return false; 1182 1183 auto srcType = 1184 getTypeIfLikeOrMemRef<IntegerType, IndexType, FloatType>(inputs.front()); 1185 auto dstType = 1186 getTypeIfLikeOrMemRef<IntegerType, IndexType, FloatType>(outputs.front()); 1187 if (!srcType || !dstType) 1188 return false; 1189 1190 return srcType.getIntOrFloatBitWidth() == dstType.getIntOrFloatBitWidth(); 1191 } 1192 1193 OpFoldResult arith::BitcastOp::fold(ArrayRef<Attribute> operands) { 1194 assert(operands.size() == 1 && "bitcast op expects 1 operand"); 1195 1196 auto resType = getType(); 1197 auto operand = operands[0]; 1198 if (!operand) 1199 return {}; 1200 1201 /// Bitcast dense elements. 1202 if (auto denseAttr = operand.dyn_cast_or_null<DenseElementsAttr>()) 1203 return denseAttr.bitcast(resType.cast<ShapedType>().getElementType()); 1204 /// Other shaped types unhandled. 1205 if (resType.isa<ShapedType>()) 1206 return {}; 1207 1208 /// Bitcast integer or float to integer or float. 1209 APInt bits = operand.isa<FloatAttr>() 1210 ? operand.cast<FloatAttr>().getValue().bitcastToAPInt() 1211 : operand.cast<IntegerAttr>().getValue(); 1212 1213 if (auto resFloatType = resType.dyn_cast<FloatType>()) 1214 return FloatAttr::get(resType, 1215 APFloat(resFloatType.getFloatSemantics(), bits)); 1216 return IntegerAttr::get(resType, bits); 1217 } 1218 1219 void arith::BitcastOp::getCanonicalizationPatterns( 1220 RewritePatternSet &patterns, MLIRContext *context) { 1221 patterns.add<BitcastOfBitcast>(context); 1222 } 1223 1224 //===----------------------------------------------------------------------===// 1225 // Helpers for compare ops 1226 //===----------------------------------------------------------------------===// 1227 1228 /// Return the type of the same shape (scalar, vector or tensor) containing i1. 1229 static Type getI1SameShape(Type type) { 1230 auto i1Type = IntegerType::get(type.getContext(), 1); 1231 if (auto tensorType = type.dyn_cast<RankedTensorType>()) 1232 return RankedTensorType::get(tensorType.getShape(), i1Type); 1233 if (type.isa<UnrankedTensorType>()) 1234 return UnrankedTensorType::get(i1Type); 1235 if (auto vectorType = type.dyn_cast<VectorType>()) 1236 return VectorType::get(vectorType.getShape(), i1Type, 1237 vectorType.getNumScalableDims()); 1238 return i1Type; 1239 } 1240 1241 //===----------------------------------------------------------------------===// 1242 // CmpIOp 1243 //===----------------------------------------------------------------------===// 1244 1245 /// Compute `lhs` `pred` `rhs`, where `pred` is one of the known integer 1246 /// comparison predicates. 1247 bool mlir::arith::applyCmpPredicate(arith::CmpIPredicate predicate, 1248 const APInt &lhs, const APInt &rhs) { 1249 switch (predicate) { 1250 case arith::CmpIPredicate::eq: 1251 return lhs.eq(rhs); 1252 case arith::CmpIPredicate::ne: 1253 return lhs.ne(rhs); 1254 case arith::CmpIPredicate::slt: 1255 return lhs.slt(rhs); 1256 case arith::CmpIPredicate::sle: 1257 return lhs.sle(rhs); 1258 case arith::CmpIPredicate::sgt: 1259 return lhs.sgt(rhs); 1260 case arith::CmpIPredicate::sge: 1261 return lhs.sge(rhs); 1262 case arith::CmpIPredicate::ult: 1263 return lhs.ult(rhs); 1264 case arith::CmpIPredicate::ule: 1265 return lhs.ule(rhs); 1266 case arith::CmpIPredicate::ugt: 1267 return lhs.ugt(rhs); 1268 case arith::CmpIPredicate::uge: 1269 return lhs.uge(rhs); 1270 } 1271 llvm_unreachable("unknown cmpi predicate kind"); 1272 } 1273 1274 /// Returns true if the predicate is true for two equal operands. 1275 static bool applyCmpPredicateToEqualOperands(arith::CmpIPredicate predicate) { 1276 switch (predicate) { 1277 case arith::CmpIPredicate::eq: 1278 case arith::CmpIPredicate::sle: 1279 case arith::CmpIPredicate::sge: 1280 case arith::CmpIPredicate::ule: 1281 case arith::CmpIPredicate::uge: 1282 return true; 1283 case arith::CmpIPredicate::ne: 1284 case arith::CmpIPredicate::slt: 1285 case arith::CmpIPredicate::sgt: 1286 case arith::CmpIPredicate::ult: 1287 case arith::CmpIPredicate::ugt: 1288 return false; 1289 } 1290 llvm_unreachable("unknown cmpi predicate kind"); 1291 } 1292 1293 static Attribute getBoolAttribute(Type type, MLIRContext *ctx, bool value) { 1294 auto boolAttr = BoolAttr::get(ctx, value); 1295 ShapedType shapedType = type.dyn_cast_or_null<ShapedType>(); 1296 if (!shapedType) 1297 return boolAttr; 1298 return DenseElementsAttr::get(shapedType, boolAttr); 1299 } 1300 1301 OpFoldResult arith::CmpIOp::fold(ArrayRef<Attribute> operands) { 1302 assert(operands.size() == 2 && "cmpi takes two operands"); 1303 1304 // cmpi(pred, x, x) 1305 if (getLhs() == getRhs()) { 1306 auto val = applyCmpPredicateToEqualOperands(getPredicate()); 1307 return getBoolAttribute(getType(), getContext(), val); 1308 } 1309 1310 if (matchPattern(getRhs(), m_Zero())) { 1311 if (auto extOp = getLhs().getDefiningOp<ExtSIOp>()) { 1312 // extsi(%x : i1 -> iN) != 0 -> %x 1313 if (extOp.getOperand().getType().cast<IntegerType>().getWidth() == 1 && 1314 getPredicate() == arith::CmpIPredicate::ne) 1315 return extOp.getOperand(); 1316 } 1317 if (auto extOp = getLhs().getDefiningOp<ExtUIOp>()) { 1318 // extui(%x : i1 -> iN) != 0 -> %x 1319 if (extOp.getOperand().getType().cast<IntegerType>().getWidth() == 1 && 1320 getPredicate() == arith::CmpIPredicate::ne) 1321 return extOp.getOperand(); 1322 } 1323 } 1324 1325 auto lhs = operands.front().dyn_cast_or_null<IntegerAttr>(); 1326 auto rhs = operands.back().dyn_cast_or_null<IntegerAttr>(); 1327 if (!lhs || !rhs) 1328 return {}; 1329 1330 auto val = applyCmpPredicate(getPredicate(), lhs.getValue(), rhs.getValue()); 1331 return BoolAttr::get(getContext(), val); 1332 } 1333 1334 void arith::CmpIOp::getCanonicalizationPatterns(RewritePatternSet &patterns, 1335 MLIRContext *context) { 1336 patterns.insert<CmpIExtSI, CmpIExtUI>(context); 1337 } 1338 1339 //===----------------------------------------------------------------------===// 1340 // CmpFOp 1341 //===----------------------------------------------------------------------===// 1342 1343 /// Compute `lhs` `pred` `rhs`, where `pred` is one of the known floating point 1344 /// comparison predicates. 1345 bool mlir::arith::applyCmpPredicate(arith::CmpFPredicate predicate, 1346 const APFloat &lhs, const APFloat &rhs) { 1347 auto cmpResult = lhs.compare(rhs); 1348 switch (predicate) { 1349 case arith::CmpFPredicate::AlwaysFalse: 1350 return false; 1351 case arith::CmpFPredicate::OEQ: 1352 return cmpResult == APFloat::cmpEqual; 1353 case arith::CmpFPredicate::OGT: 1354 return cmpResult == APFloat::cmpGreaterThan; 1355 case arith::CmpFPredicate::OGE: 1356 return cmpResult == APFloat::cmpGreaterThan || 1357 cmpResult == APFloat::cmpEqual; 1358 case arith::CmpFPredicate::OLT: 1359 return cmpResult == APFloat::cmpLessThan; 1360 case arith::CmpFPredicate::OLE: 1361 return cmpResult == APFloat::cmpLessThan || cmpResult == APFloat::cmpEqual; 1362 case arith::CmpFPredicate::ONE: 1363 return cmpResult != APFloat::cmpUnordered && cmpResult != APFloat::cmpEqual; 1364 case arith::CmpFPredicate::ORD: 1365 return cmpResult != APFloat::cmpUnordered; 1366 case arith::CmpFPredicate::UEQ: 1367 return cmpResult == APFloat::cmpUnordered || cmpResult == APFloat::cmpEqual; 1368 case arith::CmpFPredicate::UGT: 1369 return cmpResult == APFloat::cmpUnordered || 1370 cmpResult == APFloat::cmpGreaterThan; 1371 case arith::CmpFPredicate::UGE: 1372 return cmpResult == APFloat::cmpUnordered || 1373 cmpResult == APFloat::cmpGreaterThan || 1374 cmpResult == APFloat::cmpEqual; 1375 case arith::CmpFPredicate::ULT: 1376 return cmpResult == APFloat::cmpUnordered || 1377 cmpResult == APFloat::cmpLessThan; 1378 case arith::CmpFPredicate::ULE: 1379 return cmpResult == APFloat::cmpUnordered || 1380 cmpResult == APFloat::cmpLessThan || cmpResult == APFloat::cmpEqual; 1381 case arith::CmpFPredicate::UNE: 1382 return cmpResult != APFloat::cmpEqual; 1383 case arith::CmpFPredicate::UNO: 1384 return cmpResult == APFloat::cmpUnordered; 1385 case arith::CmpFPredicate::AlwaysTrue: 1386 return true; 1387 } 1388 llvm_unreachable("unknown cmpf predicate kind"); 1389 } 1390 1391 OpFoldResult arith::CmpFOp::fold(ArrayRef<Attribute> operands) { 1392 assert(operands.size() == 2 && "cmpf takes two operands"); 1393 1394 auto lhs = operands.front().dyn_cast_or_null<FloatAttr>(); 1395 auto rhs = operands.back().dyn_cast_or_null<FloatAttr>(); 1396 1397 // If one operand is NaN, making them both NaN does not change the result. 1398 if (lhs && lhs.getValue().isNaN()) 1399 rhs = lhs; 1400 if (rhs && rhs.getValue().isNaN()) 1401 lhs = rhs; 1402 1403 if (!lhs || !rhs) 1404 return {}; 1405 1406 auto val = applyCmpPredicate(getPredicate(), lhs.getValue(), rhs.getValue()); 1407 return BoolAttr::get(getContext(), val); 1408 } 1409 1410 class CmpFIntToFPConst final : public OpRewritePattern<CmpFOp> { 1411 public: 1412 using OpRewritePattern<CmpFOp>::OpRewritePattern; 1413 1414 static CmpIPredicate convertToIntegerPredicate(CmpFPredicate pred, 1415 bool isUnsigned) { 1416 using namespace arith; 1417 switch (pred) { 1418 case CmpFPredicate::UEQ: 1419 case CmpFPredicate::OEQ: 1420 return CmpIPredicate::eq; 1421 case CmpFPredicate::UGT: 1422 case CmpFPredicate::OGT: 1423 return isUnsigned ? CmpIPredicate::ugt : CmpIPredicate::sgt; 1424 case CmpFPredicate::UGE: 1425 case CmpFPredicate::OGE: 1426 return isUnsigned ? CmpIPredicate::uge : CmpIPredicate::sge; 1427 case CmpFPredicate::ULT: 1428 case CmpFPredicate::OLT: 1429 return isUnsigned ? CmpIPredicate::ult : CmpIPredicate::slt; 1430 case CmpFPredicate::ULE: 1431 case CmpFPredicate::OLE: 1432 return isUnsigned ? CmpIPredicate::ule : CmpIPredicate::sle; 1433 case CmpFPredicate::UNE: 1434 case CmpFPredicate::ONE: 1435 return CmpIPredicate::ne; 1436 default: 1437 llvm_unreachable("Unexpected predicate!"); 1438 } 1439 } 1440 1441 LogicalResult matchAndRewrite(CmpFOp op, 1442 PatternRewriter &rewriter) const override { 1443 FloatAttr flt; 1444 if (!matchPattern(op.getRhs(), m_Constant(&flt))) 1445 return failure(); 1446 1447 const APFloat &rhs = flt.getValue(); 1448 1449 // Don't attempt to fold a nan. 1450 if (rhs.isNaN()) 1451 return failure(); 1452 1453 // Get the width of the mantissa. We don't want to hack on conversions that 1454 // might lose information from the integer, e.g. "i64 -> float" 1455 FloatType floatTy = op.getRhs().getType().cast<FloatType>(); 1456 int mantissaWidth = floatTy.getFPMantissaWidth(); 1457 if (mantissaWidth <= 0) 1458 return failure(); 1459 1460 bool isUnsigned; 1461 Value intVal; 1462 1463 if (auto si = op.getLhs().getDefiningOp<SIToFPOp>()) { 1464 isUnsigned = false; 1465 intVal = si.getIn(); 1466 } else if (auto ui = op.getLhs().getDefiningOp<UIToFPOp>()) { 1467 isUnsigned = true; 1468 intVal = ui.getIn(); 1469 } else { 1470 return failure(); 1471 } 1472 1473 // Check to see that the input is converted from an integer type that is 1474 // small enough that preserves all bits. 1475 auto intTy = intVal.getType().cast<IntegerType>(); 1476 auto intWidth = intTy.getWidth(); 1477 1478 // Number of bits representing values, as opposed to the sign 1479 auto valueBits = isUnsigned ? intWidth : (intWidth - 1); 1480 1481 // Following test does NOT adjust intWidth downwards for signed inputs, 1482 // because the most negative value still requires all the mantissa bits 1483 // to distinguish it from one less than that value. 1484 if ((int)intWidth > mantissaWidth) { 1485 // Conversion would lose accuracy. Check if loss can impact comparison. 1486 int exponent = ilogb(rhs); 1487 if (exponent == APFloat::IEK_Inf) { 1488 int maxExponent = ilogb(APFloat::getLargest(rhs.getSemantics())); 1489 if (maxExponent < (int)valueBits) { 1490 // Conversion could create infinity. 1491 return failure(); 1492 } 1493 } else { 1494 // Note that if rhs is zero or NaN, then Exp is negative 1495 // and first condition is trivially false. 1496 if (mantissaWidth <= exponent && exponent <= (int)valueBits) { 1497 // Conversion could affect comparison. 1498 return failure(); 1499 } 1500 } 1501 } 1502 1503 // Convert to equivalent cmpi predicate 1504 CmpIPredicate pred; 1505 switch (op.getPredicate()) { 1506 case CmpFPredicate::ORD: 1507 // Int to fp conversion doesn't create a nan (ord checks neither is a nan) 1508 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1509 /*width=*/1); 1510 return success(); 1511 case CmpFPredicate::UNO: 1512 // Int to fp conversion doesn't create a nan (uno checks either is a nan) 1513 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1514 /*width=*/1); 1515 return success(); 1516 default: 1517 pred = convertToIntegerPredicate(op.getPredicate(), isUnsigned); 1518 break; 1519 } 1520 1521 if (!isUnsigned) { 1522 // If the rhs value is > SignedMax, fold the comparison. This handles 1523 // +INF and large values. 1524 APFloat signedMax(rhs.getSemantics()); 1525 signedMax.convertFromAPInt(APInt::getSignedMaxValue(intWidth), true, 1526 APFloat::rmNearestTiesToEven); 1527 if (signedMax < rhs) { // smax < 13123.0 1528 if (pred == CmpIPredicate::ne || pred == CmpIPredicate::slt || 1529 pred == CmpIPredicate::sle) 1530 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1531 /*width=*/1); 1532 else 1533 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1534 /*width=*/1); 1535 return success(); 1536 } 1537 } else { 1538 // If the rhs value is > UnsignedMax, fold the comparison. This handles 1539 // +INF and large values. 1540 APFloat unsignedMax(rhs.getSemantics()); 1541 unsignedMax.convertFromAPInt(APInt::getMaxValue(intWidth), false, 1542 APFloat::rmNearestTiesToEven); 1543 if (unsignedMax < rhs) { // umax < 13123.0 1544 if (pred == CmpIPredicate::ne || pred == CmpIPredicate::ult || 1545 pred == CmpIPredicate::ule) 1546 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1547 /*width=*/1); 1548 else 1549 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1550 /*width=*/1); 1551 return success(); 1552 } 1553 } 1554 1555 if (!isUnsigned) { 1556 // See if the rhs value is < SignedMin. 1557 APFloat signedMin(rhs.getSemantics()); 1558 signedMin.convertFromAPInt(APInt::getSignedMinValue(intWidth), true, 1559 APFloat::rmNearestTiesToEven); 1560 if (signedMin > rhs) { // smin > 12312.0 1561 if (pred == CmpIPredicate::ne || pred == CmpIPredicate::sgt || 1562 pred == CmpIPredicate::sge) 1563 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1564 /*width=*/1); 1565 else 1566 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1567 /*width=*/1); 1568 return success(); 1569 } 1570 } else { 1571 // See if the rhs value is < UnsignedMin. 1572 APFloat unsignedMin(rhs.getSemantics()); 1573 unsignedMin.convertFromAPInt(APInt::getMinValue(intWidth), false, 1574 APFloat::rmNearestTiesToEven); 1575 if (unsignedMin > rhs) { // umin > 12312.0 1576 if (pred == CmpIPredicate::ne || pred == CmpIPredicate::ugt || 1577 pred == CmpIPredicate::uge) 1578 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1579 /*width=*/1); 1580 else 1581 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1582 /*width=*/1); 1583 return success(); 1584 } 1585 } 1586 1587 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 1588 // [0, UMAX], but it may still be fractional. See if it is fractional by 1589 // casting the FP value to the integer value and back, checking for 1590 // equality. Don't do this for zero, because -0.0 is not fractional. 1591 bool ignored; 1592 APSInt rhsInt(intWidth, isUnsigned); 1593 if (APFloat::opInvalidOp == 1594 rhs.convertToInteger(rhsInt, APFloat::rmTowardZero, &ignored)) { 1595 // Undefined behavior invoked - the destination type can't represent 1596 // the input constant. 1597 return failure(); 1598 } 1599 1600 if (!rhs.isZero()) { 1601 APFloat apf(floatTy.getFloatSemantics(), 1602 APInt::getZero(floatTy.getWidth())); 1603 apf.convertFromAPInt(rhsInt, !isUnsigned, APFloat::rmNearestTiesToEven); 1604 1605 bool equal = apf == rhs; 1606 if (!equal) { 1607 // If we had a comparison against a fractional value, we have to adjust 1608 // the compare predicate and sometimes the value. rhsInt is rounded 1609 // towards zero at this point. 1610 switch (pred) { 1611 case CmpIPredicate::ne: // (float)int != 4.4 --> true 1612 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1613 /*width=*/1); 1614 return success(); 1615 case CmpIPredicate::eq: // (float)int == 4.4 --> false 1616 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1617 /*width=*/1); 1618 return success(); 1619 case CmpIPredicate::ule: 1620 // (float)int <= 4.4 --> int <= 4 1621 // (float)int <= -4.4 --> false 1622 if (rhs.isNegative()) { 1623 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1624 /*width=*/1); 1625 return success(); 1626 } 1627 break; 1628 case CmpIPredicate::sle: 1629 // (float)int <= 4.4 --> int <= 4 1630 // (float)int <= -4.4 --> int < -4 1631 if (rhs.isNegative()) 1632 pred = CmpIPredicate::slt; 1633 break; 1634 case CmpIPredicate::ult: 1635 // (float)int < -4.4 --> false 1636 // (float)int < 4.4 --> int <= 4 1637 if (rhs.isNegative()) { 1638 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1639 /*width=*/1); 1640 return success(); 1641 } 1642 pred = CmpIPredicate::ule; 1643 break; 1644 case CmpIPredicate::slt: 1645 // (float)int < -4.4 --> int < -4 1646 // (float)int < 4.4 --> int <= 4 1647 if (!rhs.isNegative()) 1648 pred = CmpIPredicate::sle; 1649 break; 1650 case CmpIPredicate::ugt: 1651 // (float)int > 4.4 --> int > 4 1652 // (float)int > -4.4 --> true 1653 if (rhs.isNegative()) { 1654 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1655 /*width=*/1); 1656 return success(); 1657 } 1658 break; 1659 case CmpIPredicate::sgt: 1660 // (float)int > 4.4 --> int > 4 1661 // (float)int > -4.4 --> int >= -4 1662 if (rhs.isNegative()) 1663 pred = CmpIPredicate::sge; 1664 break; 1665 case CmpIPredicate::uge: 1666 // (float)int >= -4.4 --> true 1667 // (float)int >= 4.4 --> int > 4 1668 if (rhs.isNegative()) { 1669 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1670 /*width=*/1); 1671 return success(); 1672 } 1673 pred = CmpIPredicate::ugt; 1674 break; 1675 case CmpIPredicate::sge: 1676 // (float)int >= -4.4 --> int >= -4 1677 // (float)int >= 4.4 --> int > 4 1678 if (!rhs.isNegative()) 1679 pred = CmpIPredicate::sgt; 1680 break; 1681 } 1682 } 1683 } 1684 1685 // Lower this FP comparison into an appropriate integer version of the 1686 // comparison. 1687 rewriter.replaceOpWithNewOp<CmpIOp>( 1688 op, pred, intVal, 1689 rewriter.create<ConstantOp>( 1690 op.getLoc(), intVal.getType(), 1691 rewriter.getIntegerAttr(intVal.getType(), rhsInt))); 1692 return success(); 1693 } 1694 }; 1695 1696 void arith::CmpFOp::getCanonicalizationPatterns(RewritePatternSet &patterns, 1697 MLIRContext *context) { 1698 patterns.insert<CmpFIntToFPConst>(context); 1699 } 1700 1701 //===----------------------------------------------------------------------===// 1702 // SelectOp 1703 //===----------------------------------------------------------------------===// 1704 1705 // Transforms a select of a boolean to arithmetic operations 1706 // 1707 // arith.select %arg, %x, %y : i1 1708 // 1709 // becomes 1710 // 1711 // and(%arg, %x) or and(!%arg, %y) 1712 struct SelectI1Simplify : public OpRewritePattern<arith::SelectOp> { 1713 using OpRewritePattern<arith::SelectOp>::OpRewritePattern; 1714 1715 LogicalResult matchAndRewrite(arith::SelectOp op, 1716 PatternRewriter &rewriter) const override { 1717 if (!op.getType().isInteger(1)) 1718 return failure(); 1719 1720 Value falseConstant = 1721 rewriter.create<arith::ConstantIntOp>(op.getLoc(), true, 1); 1722 Value notCondition = rewriter.create<arith::XOrIOp>( 1723 op.getLoc(), op.getCondition(), falseConstant); 1724 1725 Value trueVal = rewriter.create<arith::AndIOp>( 1726 op.getLoc(), op.getCondition(), op.getTrueValue()); 1727 Value falseVal = rewriter.create<arith::AndIOp>(op.getLoc(), notCondition, 1728 op.getFalseValue()); 1729 rewriter.replaceOpWithNewOp<arith::OrIOp>(op, trueVal, falseVal); 1730 return success(); 1731 } 1732 }; 1733 1734 // select %arg, %c1, %c0 => extui %arg 1735 struct SelectToExtUI : public OpRewritePattern<arith::SelectOp> { 1736 using OpRewritePattern<arith::SelectOp>::OpRewritePattern; 1737 1738 LogicalResult matchAndRewrite(arith::SelectOp op, 1739 PatternRewriter &rewriter) const override { 1740 // Cannot extui i1 to i1, or i1 to f32 1741 if (!op.getType().isa<IntegerType>() || op.getType().isInteger(1)) 1742 return failure(); 1743 1744 // select %x, c1, %c0 => extui %arg 1745 if (matchPattern(op.getTrueValue(), m_One()) && 1746 matchPattern(op.getFalseValue(), m_Zero())) { 1747 rewriter.replaceOpWithNewOp<arith::ExtUIOp>(op, op.getType(), 1748 op.getCondition()); 1749 return success(); 1750 } 1751 1752 // select %x, c0, %c1 => extui (xor %arg, true) 1753 if (matchPattern(op.getTrueValue(), m_Zero()) && 1754 matchPattern(op.getFalseValue(), m_One())) { 1755 rewriter.replaceOpWithNewOp<arith::ExtUIOp>( 1756 op, op.getType(), 1757 rewriter.create<arith::XOrIOp>( 1758 op.getLoc(), op.getCondition(), 1759 rewriter.create<arith::ConstantIntOp>( 1760 op.getLoc(), 1, op.getCondition().getType()))); 1761 return success(); 1762 } 1763 1764 return failure(); 1765 } 1766 }; 1767 1768 void arith::SelectOp::getCanonicalizationPatterns(RewritePatternSet &results, 1769 MLIRContext *context) { 1770 results.add<SelectI1Simplify, SelectToExtUI>(context); 1771 } 1772 1773 OpFoldResult arith::SelectOp::fold(ArrayRef<Attribute> operands) { 1774 Value trueVal = getTrueValue(); 1775 Value falseVal = getFalseValue(); 1776 if (trueVal == falseVal) 1777 return trueVal; 1778 1779 Value condition = getCondition(); 1780 1781 // select true, %0, %1 => %0 1782 if (matchPattern(condition, m_One())) 1783 return trueVal; 1784 1785 // select false, %0, %1 => %1 1786 if (matchPattern(condition, m_Zero())) 1787 return falseVal; 1788 1789 // select %x, true, false => %x 1790 if (getType().isInteger(1) && matchPattern(getTrueValue(), m_One()) && 1791 matchPattern(getFalseValue(), m_Zero())) 1792 return condition; 1793 1794 if (auto cmp = dyn_cast_or_null<arith::CmpIOp>(condition.getDefiningOp())) { 1795 auto pred = cmp.getPredicate(); 1796 if (pred == arith::CmpIPredicate::eq || pred == arith::CmpIPredicate::ne) { 1797 auto cmpLhs = cmp.getLhs(); 1798 auto cmpRhs = cmp.getRhs(); 1799 1800 // %0 = arith.cmpi eq, %arg0, %arg1 1801 // %1 = arith.select %0, %arg0, %arg1 => %arg1 1802 1803 // %0 = arith.cmpi ne, %arg0, %arg1 1804 // %1 = arith.select %0, %arg0, %arg1 => %arg0 1805 1806 if ((cmpLhs == trueVal && cmpRhs == falseVal) || 1807 (cmpRhs == trueVal && cmpLhs == falseVal)) 1808 return pred == arith::CmpIPredicate::ne ? trueVal : falseVal; 1809 } 1810 } 1811 return nullptr; 1812 } 1813 1814 ParseResult SelectOp::parse(OpAsmParser &parser, OperationState &result) { 1815 Type conditionType, resultType; 1816 SmallVector<OpAsmParser::UnresolvedOperand, 3> operands; 1817 if (parser.parseOperandList(operands, /*requiredOperandCount=*/3) || 1818 parser.parseOptionalAttrDict(result.attributes) || 1819 parser.parseColonType(resultType)) 1820 return failure(); 1821 1822 // Check for the explicit condition type if this is a masked tensor or vector. 1823 if (succeeded(parser.parseOptionalComma())) { 1824 conditionType = resultType; 1825 if (parser.parseType(resultType)) 1826 return failure(); 1827 } else { 1828 conditionType = parser.getBuilder().getI1Type(); 1829 } 1830 1831 result.addTypes(resultType); 1832 return parser.resolveOperands(operands, 1833 {conditionType, resultType, resultType}, 1834 parser.getNameLoc(), result.operands); 1835 } 1836 1837 void arith::SelectOp::print(OpAsmPrinter &p) { 1838 p << " " << getOperands(); 1839 p.printOptionalAttrDict((*this)->getAttrs()); 1840 p << " : "; 1841 if (ShapedType condType = getCondition().getType().dyn_cast<ShapedType>()) 1842 p << condType << ", "; 1843 p << getType(); 1844 } 1845 1846 LogicalResult arith::SelectOp::verify() { 1847 Type conditionType = getCondition().getType(); 1848 if (conditionType.isSignlessInteger(1)) 1849 return success(); 1850 1851 // If the result type is a vector or tensor, the type can be a mask with the 1852 // same elements. 1853 Type resultType = getType(); 1854 if (!resultType.isa<TensorType, VectorType>()) 1855 return emitOpError() << "expected condition to be a signless i1, but got " 1856 << conditionType; 1857 Type shapedConditionType = getI1SameShape(resultType); 1858 if (conditionType != shapedConditionType) { 1859 return emitOpError() << "expected condition type to have the same shape " 1860 "as the result type, expected " 1861 << shapedConditionType << ", but got " 1862 << conditionType; 1863 } 1864 return success(); 1865 } 1866 //===----------------------------------------------------------------------===// 1867 // ShLIOp 1868 //===----------------------------------------------------------------------===// 1869 1870 OpFoldResult arith::ShLIOp::fold(ArrayRef<Attribute> operands) { 1871 // Don't fold if shifting more than the bit width. 1872 bool bounded = false; 1873 auto result = constFoldBinaryOp<IntegerAttr>( 1874 operands, [&](const APInt &a, const APInt &b) { 1875 bounded = b.ule(b.getBitWidth()); 1876 return a.shl(b); 1877 }); 1878 return bounded ? result : Attribute(); 1879 } 1880 1881 //===----------------------------------------------------------------------===// 1882 // ShRUIOp 1883 //===----------------------------------------------------------------------===// 1884 1885 OpFoldResult arith::ShRUIOp::fold(ArrayRef<Attribute> operands) { 1886 // Don't fold if shifting more than the bit width. 1887 bool bounded = false; 1888 auto result = constFoldBinaryOp<IntegerAttr>( 1889 operands, [&](const APInt &a, const APInt &b) { 1890 bounded = b.ule(b.getBitWidth()); 1891 return a.lshr(b); 1892 }); 1893 return bounded ? result : Attribute(); 1894 } 1895 1896 //===----------------------------------------------------------------------===// 1897 // ShRSIOp 1898 //===----------------------------------------------------------------------===// 1899 1900 OpFoldResult arith::ShRSIOp::fold(ArrayRef<Attribute> operands) { 1901 // Don't fold if shifting more than the bit width. 1902 bool bounded = false; 1903 auto result = constFoldBinaryOp<IntegerAttr>( 1904 operands, [&](const APInt &a, const APInt &b) { 1905 bounded = b.ule(b.getBitWidth()); 1906 return a.ashr(b); 1907 }); 1908 return bounded ? result : Attribute(); 1909 } 1910 1911 //===----------------------------------------------------------------------===// 1912 // Atomic Enum 1913 //===----------------------------------------------------------------------===// 1914 1915 /// Returns the identity value attribute associated with an AtomicRMWKind op. 1916 Attribute mlir::arith::getIdentityValueAttr(AtomicRMWKind kind, Type resultType, 1917 OpBuilder &builder, Location loc) { 1918 switch (kind) { 1919 case AtomicRMWKind::maxf: 1920 return builder.getFloatAttr( 1921 resultType, 1922 APFloat::getInf(resultType.cast<FloatType>().getFloatSemantics(), 1923 /*Negative=*/true)); 1924 case AtomicRMWKind::addf: 1925 case AtomicRMWKind::addi: 1926 case AtomicRMWKind::maxu: 1927 case AtomicRMWKind::ori: 1928 return builder.getZeroAttr(resultType); 1929 case AtomicRMWKind::andi: 1930 return builder.getIntegerAttr( 1931 resultType, 1932 APInt::getAllOnes(resultType.cast<IntegerType>().getWidth())); 1933 case AtomicRMWKind::maxs: 1934 return builder.getIntegerAttr( 1935 resultType, 1936 APInt::getSignedMinValue(resultType.cast<IntegerType>().getWidth())); 1937 case AtomicRMWKind::minf: 1938 return builder.getFloatAttr( 1939 resultType, 1940 APFloat::getInf(resultType.cast<FloatType>().getFloatSemantics(), 1941 /*Negative=*/false)); 1942 case AtomicRMWKind::mins: 1943 return builder.getIntegerAttr( 1944 resultType, 1945 APInt::getSignedMaxValue(resultType.cast<IntegerType>().getWidth())); 1946 case AtomicRMWKind::minu: 1947 return builder.getIntegerAttr( 1948 resultType, 1949 APInt::getMaxValue(resultType.cast<IntegerType>().getWidth())); 1950 case AtomicRMWKind::muli: 1951 return builder.getIntegerAttr(resultType, 1); 1952 case AtomicRMWKind::mulf: 1953 return builder.getFloatAttr(resultType, 1); 1954 // TODO: Add remaining reduction operations. 1955 default: 1956 (void)emitOptionalError(loc, "Reduction operation type not supported"); 1957 break; 1958 } 1959 return nullptr; 1960 } 1961 1962 /// Returns the identity value associated with an AtomicRMWKind op. 1963 Value mlir::arith::getIdentityValue(AtomicRMWKind op, Type resultType, 1964 OpBuilder &builder, Location loc) { 1965 Attribute attr = getIdentityValueAttr(op, resultType, builder, loc); 1966 return builder.create<arith::ConstantOp>(loc, attr); 1967 } 1968 1969 /// Return the value obtained by applying the reduction operation kind 1970 /// associated with a binary AtomicRMWKind op to `lhs` and `rhs`. 1971 Value mlir::arith::getReductionOp(AtomicRMWKind op, OpBuilder &builder, 1972 Location loc, Value lhs, Value rhs) { 1973 switch (op) { 1974 case AtomicRMWKind::addf: 1975 return builder.create<arith::AddFOp>(loc, lhs, rhs); 1976 case AtomicRMWKind::addi: 1977 return builder.create<arith::AddIOp>(loc, lhs, rhs); 1978 case AtomicRMWKind::mulf: 1979 return builder.create<arith::MulFOp>(loc, lhs, rhs); 1980 case AtomicRMWKind::muli: 1981 return builder.create<arith::MulIOp>(loc, lhs, rhs); 1982 case AtomicRMWKind::maxf: 1983 return builder.create<arith::MaxFOp>(loc, lhs, rhs); 1984 case AtomicRMWKind::minf: 1985 return builder.create<arith::MinFOp>(loc, lhs, rhs); 1986 case AtomicRMWKind::maxs: 1987 return builder.create<arith::MaxSIOp>(loc, lhs, rhs); 1988 case AtomicRMWKind::mins: 1989 return builder.create<arith::MinSIOp>(loc, lhs, rhs); 1990 case AtomicRMWKind::maxu: 1991 return builder.create<arith::MaxUIOp>(loc, lhs, rhs); 1992 case AtomicRMWKind::minu: 1993 return builder.create<arith::MinUIOp>(loc, lhs, rhs); 1994 case AtomicRMWKind::ori: 1995 return builder.create<arith::OrIOp>(loc, lhs, rhs); 1996 case AtomicRMWKind::andi: 1997 return builder.create<arith::AndIOp>(loc, lhs, rhs); 1998 // TODO: Add remaining reduction operations. 1999 default: 2000 (void)emitOptionalError(loc, "Reduction operation type not supported"); 2001 break; 2002 } 2003 return nullptr; 2004 } 2005 2006 //===----------------------------------------------------------------------===// 2007 // TableGen'd op method definitions 2008 //===----------------------------------------------------------------------===// 2009 2010 #define GET_OP_CLASSES 2011 #include "mlir/Dialect/Arithmetic/IR/ArithmeticOps.cpp.inc" 2012 2013 //===----------------------------------------------------------------------===// 2014 // TableGen'd enum attribute definitions 2015 //===----------------------------------------------------------------------===// 2016 2017 #include "mlir/Dialect/Arithmetic/IR/ArithmeticOpsEnums.cpp.inc" 2018