1 //===- ArithmeticOps.cpp - MLIR Arithmetic dialect ops implementation -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <utility> 10 11 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 12 #include "mlir/Dialect/CommonFolders.h" 13 #include "mlir/IR/Builders.h" 14 #include "mlir/IR/Matchers.h" 15 #include "mlir/IR/OpImplementation.h" 16 #include "mlir/IR/PatternMatch.h" 17 #include "mlir/IR/TypeUtilities.h" 18 #include "llvm/ADT/SmallString.h" 19 20 #include "llvm/ADT/APSInt.h" 21 22 using namespace mlir; 23 using namespace mlir::arith; 24 25 //===----------------------------------------------------------------------===// 26 // Pattern helpers 27 //===----------------------------------------------------------------------===// 28 29 static IntegerAttr addIntegerAttrs(PatternRewriter &builder, Value res, 30 Attribute lhs, Attribute rhs) { 31 return builder.getIntegerAttr(res.getType(), 32 lhs.cast<IntegerAttr>().getInt() + 33 rhs.cast<IntegerAttr>().getInt()); 34 } 35 36 static IntegerAttr subIntegerAttrs(PatternRewriter &builder, Value res, 37 Attribute lhs, Attribute rhs) { 38 return builder.getIntegerAttr(res.getType(), 39 lhs.cast<IntegerAttr>().getInt() - 40 rhs.cast<IntegerAttr>().getInt()); 41 } 42 43 /// Invert an integer comparison predicate. 44 arith::CmpIPredicate arith::invertPredicate(arith::CmpIPredicate pred) { 45 switch (pred) { 46 case arith::CmpIPredicate::eq: 47 return arith::CmpIPredicate::ne; 48 case arith::CmpIPredicate::ne: 49 return arith::CmpIPredicate::eq; 50 case arith::CmpIPredicate::slt: 51 return arith::CmpIPredicate::sge; 52 case arith::CmpIPredicate::sle: 53 return arith::CmpIPredicate::sgt; 54 case arith::CmpIPredicate::sgt: 55 return arith::CmpIPredicate::sle; 56 case arith::CmpIPredicate::sge: 57 return arith::CmpIPredicate::slt; 58 case arith::CmpIPredicate::ult: 59 return arith::CmpIPredicate::uge; 60 case arith::CmpIPredicate::ule: 61 return arith::CmpIPredicate::ugt; 62 case arith::CmpIPredicate::ugt: 63 return arith::CmpIPredicate::ule; 64 case arith::CmpIPredicate::uge: 65 return arith::CmpIPredicate::ult; 66 } 67 llvm_unreachable("unknown cmpi predicate kind"); 68 } 69 70 static arith::CmpIPredicateAttr invertPredicate(arith::CmpIPredicateAttr pred) { 71 return arith::CmpIPredicateAttr::get(pred.getContext(), 72 invertPredicate(pred.getValue())); 73 } 74 75 //===----------------------------------------------------------------------===// 76 // TableGen'd canonicalization patterns 77 //===----------------------------------------------------------------------===// 78 79 namespace { 80 #include "ArithmeticCanonicalization.inc" 81 } // namespace 82 83 //===----------------------------------------------------------------------===// 84 // ConstantOp 85 //===----------------------------------------------------------------------===// 86 87 void arith::ConstantOp::getAsmResultNames( 88 function_ref<void(Value, StringRef)> setNameFn) { 89 auto type = getType(); 90 if (auto intCst = getValue().dyn_cast<IntegerAttr>()) { 91 auto intType = type.dyn_cast<IntegerType>(); 92 93 // Sugar i1 constants with 'true' and 'false'. 94 if (intType && intType.getWidth() == 1) 95 return setNameFn(getResult(), (intCst.getInt() ? "true" : "false")); 96 97 // Otherwise, build a compex name with the value and type. 98 SmallString<32> specialNameBuffer; 99 llvm::raw_svector_ostream specialName(specialNameBuffer); 100 specialName << 'c' << intCst.getInt(); 101 if (intType) 102 specialName << '_' << type; 103 setNameFn(getResult(), specialName.str()); 104 } else { 105 setNameFn(getResult(), "cst"); 106 } 107 } 108 109 /// TODO: disallow arith.constant to return anything other than signless integer 110 /// or float like. 111 LogicalResult arith::ConstantOp::verify() { 112 auto type = getType(); 113 // The value's type must match the return type. 114 if (getValue().getType() != type) { 115 return emitOpError() << "value type " << getValue().getType() 116 << " must match return type: " << type; 117 } 118 // Integer values must be signless. 119 if (type.isa<IntegerType>() && !type.cast<IntegerType>().isSignless()) 120 return emitOpError("integer return type must be signless"); 121 // Any float or elements attribute are acceptable. 122 if (!getValue().isa<IntegerAttr, FloatAttr, ElementsAttr>()) { 123 return emitOpError( 124 "value must be an integer, float, or elements attribute"); 125 } 126 return success(); 127 } 128 129 bool arith::ConstantOp::isBuildableWith(Attribute value, Type type) { 130 // The value's type must be the same as the provided type. 131 if (value.getType() != type) 132 return false; 133 // Integer values must be signless. 134 if (type.isa<IntegerType>() && !type.cast<IntegerType>().isSignless()) 135 return false; 136 // Integer, float, and element attributes are buildable. 137 return value.isa<IntegerAttr, FloatAttr, ElementsAttr>(); 138 } 139 140 OpFoldResult arith::ConstantOp::fold(ArrayRef<Attribute> operands) { 141 return getValue(); 142 } 143 144 void arith::ConstantIntOp::build(OpBuilder &builder, OperationState &result, 145 int64_t value, unsigned width) { 146 auto type = builder.getIntegerType(width); 147 arith::ConstantOp::build(builder, result, type, 148 builder.getIntegerAttr(type, value)); 149 } 150 151 void arith::ConstantIntOp::build(OpBuilder &builder, OperationState &result, 152 int64_t value, Type type) { 153 assert(type.isSignlessInteger() && 154 "ConstantIntOp can only have signless integer type values"); 155 arith::ConstantOp::build(builder, result, type, 156 builder.getIntegerAttr(type, value)); 157 } 158 159 bool arith::ConstantIntOp::classof(Operation *op) { 160 if (auto constOp = dyn_cast_or_null<arith::ConstantOp>(op)) 161 return constOp.getType().isSignlessInteger(); 162 return false; 163 } 164 165 void arith::ConstantFloatOp::build(OpBuilder &builder, OperationState &result, 166 const APFloat &value, FloatType type) { 167 arith::ConstantOp::build(builder, result, type, 168 builder.getFloatAttr(type, value)); 169 } 170 171 bool arith::ConstantFloatOp::classof(Operation *op) { 172 if (auto constOp = dyn_cast_or_null<arith::ConstantOp>(op)) 173 return constOp.getType().isa<FloatType>(); 174 return false; 175 } 176 177 void arith::ConstantIndexOp::build(OpBuilder &builder, OperationState &result, 178 int64_t value) { 179 arith::ConstantOp::build(builder, result, builder.getIndexType(), 180 builder.getIndexAttr(value)); 181 } 182 183 bool arith::ConstantIndexOp::classof(Operation *op) { 184 if (auto constOp = dyn_cast_or_null<arith::ConstantOp>(op)) 185 return constOp.getType().isIndex(); 186 return false; 187 } 188 189 //===----------------------------------------------------------------------===// 190 // AddIOp 191 //===----------------------------------------------------------------------===// 192 193 OpFoldResult arith::AddIOp::fold(ArrayRef<Attribute> operands) { 194 // addi(x, 0) -> x 195 if (matchPattern(getRhs(), m_Zero())) 196 return getLhs(); 197 198 // addi(subi(a, b), b) -> a 199 if (auto sub = getLhs().getDefiningOp<SubIOp>()) 200 if (getRhs() == sub.getRhs()) 201 return sub.getLhs(); 202 203 // addi(b, subi(a, b)) -> a 204 if (auto sub = getRhs().getDefiningOp<SubIOp>()) 205 if (getLhs() == sub.getRhs()) 206 return sub.getLhs(); 207 208 return constFoldBinaryOp<IntegerAttr>( 209 operands, [](APInt a, const APInt &b) { return std::move(a) + b; }); 210 } 211 212 void arith::AddIOp::getCanonicalizationPatterns( 213 RewritePatternSet &patterns, MLIRContext *context) { 214 patterns.add<AddIAddConstant, AddISubConstantRHS, AddISubConstantLHS>( 215 context); 216 } 217 218 //===----------------------------------------------------------------------===// 219 // SubIOp 220 //===----------------------------------------------------------------------===// 221 222 OpFoldResult arith::SubIOp::fold(ArrayRef<Attribute> operands) { 223 // subi(x,x) -> 0 224 if (getOperand(0) == getOperand(1)) 225 return Builder(getContext()).getZeroAttr(getType()); 226 // subi(x,0) -> x 227 if (matchPattern(getRhs(), m_Zero())) 228 return getLhs(); 229 230 return constFoldBinaryOp<IntegerAttr>( 231 operands, [](APInt a, const APInt &b) { return std::move(a) - b; }); 232 } 233 234 void arith::SubIOp::getCanonicalizationPatterns( 235 RewritePatternSet &patterns, MLIRContext *context) { 236 patterns 237 .add<SubIRHSAddConstant, SubILHSAddConstant, SubIRHSSubConstantRHS, 238 SubIRHSSubConstantLHS, SubILHSSubConstantRHS, SubILHSSubConstantLHS>( 239 context); 240 } 241 242 //===----------------------------------------------------------------------===// 243 // MulIOp 244 //===----------------------------------------------------------------------===// 245 246 OpFoldResult arith::MulIOp::fold(ArrayRef<Attribute> operands) { 247 // muli(x, 0) -> 0 248 if (matchPattern(getRhs(), m_Zero())) 249 return getRhs(); 250 // muli(x, 1) -> x 251 if (matchPattern(getRhs(), m_One())) 252 return getOperand(0); 253 // TODO: Handle the overflow case. 254 255 // default folder 256 return constFoldBinaryOp<IntegerAttr>( 257 operands, [](const APInt &a, const APInt &b) { return a * b; }); 258 } 259 260 //===----------------------------------------------------------------------===// 261 // DivUIOp 262 //===----------------------------------------------------------------------===// 263 264 OpFoldResult arith::DivUIOp::fold(ArrayRef<Attribute> operands) { 265 // divui (x, 1) -> x. 266 if (matchPattern(getRhs(), m_One())) 267 return getLhs(); 268 269 // Don't fold if it would require a division by zero. 270 bool div0 = false; 271 auto result = 272 constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) { 273 if (div0 || !b) { 274 div0 = true; 275 return a; 276 } 277 return a.udiv(b); 278 }); 279 280 return div0 ? Attribute() : result; 281 } 282 283 //===----------------------------------------------------------------------===// 284 // DivSIOp 285 //===----------------------------------------------------------------------===// 286 287 OpFoldResult arith::DivSIOp::fold(ArrayRef<Attribute> operands) { 288 // divsi (x, 1) -> x. 289 if (matchPattern(getRhs(), m_One())) 290 return getLhs(); 291 292 // Don't fold if it would overflow or if it requires a division by zero. 293 bool overflowOrDiv0 = false; 294 auto result = 295 constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) { 296 if (overflowOrDiv0 || !b) { 297 overflowOrDiv0 = true; 298 return a; 299 } 300 return a.sdiv_ov(b, overflowOrDiv0); 301 }); 302 303 return overflowOrDiv0 ? Attribute() : result; 304 } 305 306 //===----------------------------------------------------------------------===// 307 // Ceil and floor division folding helpers 308 //===----------------------------------------------------------------------===// 309 310 static APInt signedCeilNonnegInputs(const APInt &a, const APInt &b, 311 bool &overflow) { 312 // Returns (a-1)/b + 1 313 APInt one(a.getBitWidth(), 1, true); // Signed value 1. 314 APInt val = a.ssub_ov(one, overflow).sdiv_ov(b, overflow); 315 return val.sadd_ov(one, overflow); 316 } 317 318 //===----------------------------------------------------------------------===// 319 // CeilDivUIOp 320 //===----------------------------------------------------------------------===// 321 322 OpFoldResult arith::CeilDivUIOp::fold(ArrayRef<Attribute> operands) { 323 // ceildivui (x, 1) -> x. 324 if (matchPattern(getRhs(), m_One())) 325 return getLhs(); 326 327 bool overflowOrDiv0 = false; 328 auto result = 329 constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) { 330 if (overflowOrDiv0 || !b) { 331 overflowOrDiv0 = true; 332 return a; 333 } 334 APInt quotient = a.udiv(b); 335 if (!a.urem(b)) 336 return quotient; 337 APInt one(a.getBitWidth(), 1, true); 338 return quotient.uadd_ov(one, overflowOrDiv0); 339 }); 340 341 return overflowOrDiv0 ? Attribute() : result; 342 } 343 344 //===----------------------------------------------------------------------===// 345 // CeilDivSIOp 346 //===----------------------------------------------------------------------===// 347 348 OpFoldResult arith::CeilDivSIOp::fold(ArrayRef<Attribute> operands) { 349 // ceildivsi (x, 1) -> x. 350 if (matchPattern(getRhs(), m_One())) 351 return getLhs(); 352 353 // Don't fold if it would overflow or if it requires a division by zero. 354 bool overflowOrDiv0 = false; 355 auto result = 356 constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) { 357 if (overflowOrDiv0 || !b) { 358 overflowOrDiv0 = true; 359 return a; 360 } 361 if (!a) 362 return a; 363 // After this point we know that neither a or b are zero. 364 unsigned bits = a.getBitWidth(); 365 APInt zero = APInt::getZero(bits); 366 bool aGtZero = a.sgt(zero); 367 bool bGtZero = b.sgt(zero); 368 if (aGtZero && bGtZero) { 369 // Both positive, return ceil(a, b). 370 return signedCeilNonnegInputs(a, b, overflowOrDiv0); 371 } 372 if (!aGtZero && !bGtZero) { 373 // Both negative, return ceil(-a, -b). 374 APInt posA = zero.ssub_ov(a, overflowOrDiv0); 375 APInt posB = zero.ssub_ov(b, overflowOrDiv0); 376 return signedCeilNonnegInputs(posA, posB, overflowOrDiv0); 377 } 378 if (!aGtZero && bGtZero) { 379 // A is negative, b is positive, return - ( -a / b). 380 APInt posA = zero.ssub_ov(a, overflowOrDiv0); 381 APInt div = posA.sdiv_ov(b, overflowOrDiv0); 382 return zero.ssub_ov(div, overflowOrDiv0); 383 } 384 // A is positive, b is negative, return - (a / -b). 385 APInt posB = zero.ssub_ov(b, overflowOrDiv0); 386 APInt div = a.sdiv_ov(posB, overflowOrDiv0); 387 return zero.ssub_ov(div, overflowOrDiv0); 388 }); 389 390 return overflowOrDiv0 ? Attribute() : result; 391 } 392 393 //===----------------------------------------------------------------------===// 394 // FloorDivSIOp 395 //===----------------------------------------------------------------------===// 396 397 OpFoldResult arith::FloorDivSIOp::fold(ArrayRef<Attribute> operands) { 398 // floordivsi (x, 1) -> x. 399 if (matchPattern(getRhs(), m_One())) 400 return getLhs(); 401 402 // Don't fold if it would overflow or if it requires a division by zero. 403 bool overflowOrDiv0 = false; 404 auto result = 405 constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) { 406 if (overflowOrDiv0 || !b) { 407 overflowOrDiv0 = true; 408 return a; 409 } 410 if (!a) 411 return a; 412 // After this point we know that neither a or b are zero. 413 unsigned bits = a.getBitWidth(); 414 APInt zero = APInt::getZero(bits); 415 bool aGtZero = a.sgt(zero); 416 bool bGtZero = b.sgt(zero); 417 if (aGtZero && bGtZero) { 418 // Both positive, return a / b. 419 return a.sdiv_ov(b, overflowOrDiv0); 420 } 421 if (!aGtZero && !bGtZero) { 422 // Both negative, return -a / -b. 423 APInt posA = zero.ssub_ov(a, overflowOrDiv0); 424 APInt posB = zero.ssub_ov(b, overflowOrDiv0); 425 return posA.sdiv_ov(posB, overflowOrDiv0); 426 } 427 if (!aGtZero && bGtZero) { 428 // A is negative, b is positive, return - ceil(-a, b). 429 APInt posA = zero.ssub_ov(a, overflowOrDiv0); 430 APInt ceil = signedCeilNonnegInputs(posA, b, overflowOrDiv0); 431 return zero.ssub_ov(ceil, overflowOrDiv0); 432 } 433 // A is positive, b is negative, return - ceil(a, -b). 434 APInt posB = zero.ssub_ov(b, overflowOrDiv0); 435 APInt ceil = signedCeilNonnegInputs(a, posB, overflowOrDiv0); 436 return zero.ssub_ov(ceil, overflowOrDiv0); 437 }); 438 439 return overflowOrDiv0 ? Attribute() : result; 440 } 441 442 //===----------------------------------------------------------------------===// 443 // RemUIOp 444 //===----------------------------------------------------------------------===// 445 446 OpFoldResult arith::RemUIOp::fold(ArrayRef<Attribute> operands) { 447 // remui (x, 1) -> 0. 448 if (matchPattern(getRhs(), m_One())) 449 return Builder(getContext()).getZeroAttr(getType()); 450 451 // Don't fold if it would require a division by zero. 452 bool div0 = false; 453 auto result = 454 constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) { 455 if (div0 || b.isNullValue()) { 456 div0 = true; 457 return a; 458 } 459 return a.urem(b); 460 }); 461 462 return div0 ? Attribute() : result; 463 } 464 465 //===----------------------------------------------------------------------===// 466 // RemSIOp 467 //===----------------------------------------------------------------------===// 468 469 OpFoldResult arith::RemSIOp::fold(ArrayRef<Attribute> operands) { 470 // remsi (x, 1) -> 0. 471 if (matchPattern(getRhs(), m_One())) 472 return Builder(getContext()).getZeroAttr(getType()); 473 474 // Don't fold if it would require a division by zero. 475 bool div0 = false; 476 auto result = 477 constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, const APInt &b) { 478 if (div0 || b.isNullValue()) { 479 div0 = true; 480 return a; 481 } 482 return a.srem(b); 483 }); 484 485 return div0 ? Attribute() : result; 486 } 487 488 //===----------------------------------------------------------------------===// 489 // AndIOp 490 //===----------------------------------------------------------------------===// 491 492 OpFoldResult arith::AndIOp::fold(ArrayRef<Attribute> operands) { 493 /// and(x, 0) -> 0 494 if (matchPattern(getRhs(), m_Zero())) 495 return getRhs(); 496 /// and(x, allOnes) -> x 497 APInt intValue; 498 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && intValue.isAllOnes()) 499 return getLhs(); 500 501 return constFoldBinaryOp<IntegerAttr>( 502 operands, [](APInt a, const APInt &b) { return std::move(a) & b; }); 503 } 504 505 //===----------------------------------------------------------------------===// 506 // OrIOp 507 //===----------------------------------------------------------------------===// 508 509 OpFoldResult arith::OrIOp::fold(ArrayRef<Attribute> operands) { 510 /// or(x, 0) -> x 511 if (matchPattern(getRhs(), m_Zero())) 512 return getLhs(); 513 /// or(x, <all ones>) -> <all ones> 514 if (auto rhsAttr = operands[1].dyn_cast_or_null<IntegerAttr>()) 515 if (rhsAttr.getValue().isAllOnes()) 516 return rhsAttr; 517 518 return constFoldBinaryOp<IntegerAttr>( 519 operands, [](APInt a, const APInt &b) { return std::move(a) | b; }); 520 } 521 522 //===----------------------------------------------------------------------===// 523 // XOrIOp 524 //===----------------------------------------------------------------------===// 525 526 OpFoldResult arith::XOrIOp::fold(ArrayRef<Attribute> operands) { 527 /// xor(x, 0) -> x 528 if (matchPattern(getRhs(), m_Zero())) 529 return getLhs(); 530 /// xor(x, x) -> 0 531 if (getLhs() == getRhs()) 532 return Builder(getContext()).getZeroAttr(getType()); 533 /// xor(xor(x, a), a) -> x 534 if (arith::XOrIOp prev = getLhs().getDefiningOp<arith::XOrIOp>()) 535 if (prev.getRhs() == getRhs()) 536 return prev.getLhs(); 537 538 return constFoldBinaryOp<IntegerAttr>( 539 operands, [](APInt a, const APInt &b) { return std::move(a) ^ b; }); 540 } 541 542 void arith::XOrIOp::getCanonicalizationPatterns( 543 RewritePatternSet &patterns, MLIRContext *context) { 544 patterns.add<XOrINotCmpI>(context); 545 } 546 547 //===----------------------------------------------------------------------===// 548 // NegFOp 549 //===----------------------------------------------------------------------===// 550 551 OpFoldResult arith::NegFOp::fold(ArrayRef<Attribute> operands) { 552 /// negf(negf(x)) -> x 553 if (auto op = this->getOperand().getDefiningOp<arith::NegFOp>()) 554 return op.getOperand(); 555 return constFoldUnaryOp<FloatAttr>(operands, 556 [](const APFloat &a) { return -a; }); 557 } 558 559 //===----------------------------------------------------------------------===// 560 // AddFOp 561 //===----------------------------------------------------------------------===// 562 563 OpFoldResult arith::AddFOp::fold(ArrayRef<Attribute> operands) { 564 // addf(x, -0) -> x 565 if (matchPattern(getRhs(), m_NegZeroFloat())) 566 return getLhs(); 567 568 return constFoldBinaryOp<FloatAttr>( 569 operands, [](const APFloat &a, const APFloat &b) { return a + b; }); 570 } 571 572 //===----------------------------------------------------------------------===// 573 // SubFOp 574 //===----------------------------------------------------------------------===// 575 576 OpFoldResult arith::SubFOp::fold(ArrayRef<Attribute> operands) { 577 // subf(x, +0) -> x 578 if (matchPattern(getRhs(), m_PosZeroFloat())) 579 return getLhs(); 580 581 return constFoldBinaryOp<FloatAttr>( 582 operands, [](const APFloat &a, const APFloat &b) { return a - b; }); 583 } 584 585 //===----------------------------------------------------------------------===// 586 // MaxFOp 587 //===----------------------------------------------------------------------===// 588 589 OpFoldResult arith::MaxFOp::fold(ArrayRef<Attribute> operands) { 590 assert(operands.size() == 2 && "maxf takes two operands"); 591 592 // maxf(x,x) -> x 593 if (getLhs() == getRhs()) 594 return getRhs(); 595 596 // maxf(x, -inf) -> x 597 if (matchPattern(getRhs(), m_NegInfFloat())) 598 return getLhs(); 599 600 return constFoldBinaryOp<FloatAttr>( 601 operands, 602 [](const APFloat &a, const APFloat &b) { return llvm::maximum(a, b); }); 603 } 604 605 //===----------------------------------------------------------------------===// 606 // MaxSIOp 607 //===----------------------------------------------------------------------===// 608 609 OpFoldResult MaxSIOp::fold(ArrayRef<Attribute> operands) { 610 assert(operands.size() == 2 && "binary operation takes two operands"); 611 612 // maxsi(x,x) -> x 613 if (getLhs() == getRhs()) 614 return getRhs(); 615 616 APInt intValue; 617 // maxsi(x,MAX_INT) -> MAX_INT 618 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && 619 intValue.isMaxSignedValue()) 620 return getRhs(); 621 622 // maxsi(x, MIN_INT) -> x 623 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && 624 intValue.isMinSignedValue()) 625 return getLhs(); 626 627 return constFoldBinaryOp<IntegerAttr>(operands, 628 [](const APInt &a, const APInt &b) { 629 return llvm::APIntOps::smax(a, b); 630 }); 631 } 632 633 //===----------------------------------------------------------------------===// 634 // MaxUIOp 635 //===----------------------------------------------------------------------===// 636 637 OpFoldResult MaxUIOp::fold(ArrayRef<Attribute> operands) { 638 assert(operands.size() == 2 && "binary operation takes two operands"); 639 640 // maxui(x,x) -> x 641 if (getLhs() == getRhs()) 642 return getRhs(); 643 644 APInt intValue; 645 // maxui(x,MAX_INT) -> MAX_INT 646 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && intValue.isMaxValue()) 647 return getRhs(); 648 649 // maxui(x, MIN_INT) -> x 650 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && intValue.isMinValue()) 651 return getLhs(); 652 653 return constFoldBinaryOp<IntegerAttr>(operands, 654 [](const APInt &a, const APInt &b) { 655 return llvm::APIntOps::umax(a, b); 656 }); 657 } 658 659 //===----------------------------------------------------------------------===// 660 // MinFOp 661 //===----------------------------------------------------------------------===// 662 663 OpFoldResult arith::MinFOp::fold(ArrayRef<Attribute> operands) { 664 assert(operands.size() == 2 && "minf takes two operands"); 665 666 // minf(x,x) -> x 667 if (getLhs() == getRhs()) 668 return getRhs(); 669 670 // minf(x, +inf) -> x 671 if (matchPattern(getRhs(), m_PosInfFloat())) 672 return getLhs(); 673 674 return constFoldBinaryOp<FloatAttr>( 675 operands, 676 [](const APFloat &a, const APFloat &b) { return llvm::minimum(a, b); }); 677 } 678 679 //===----------------------------------------------------------------------===// 680 // MinSIOp 681 //===----------------------------------------------------------------------===// 682 683 OpFoldResult MinSIOp::fold(ArrayRef<Attribute> operands) { 684 assert(operands.size() == 2 && "binary operation takes two operands"); 685 686 // minsi(x,x) -> x 687 if (getLhs() == getRhs()) 688 return getRhs(); 689 690 APInt intValue; 691 // minsi(x,MIN_INT) -> MIN_INT 692 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && 693 intValue.isMinSignedValue()) 694 return getRhs(); 695 696 // minsi(x, MAX_INT) -> x 697 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && 698 intValue.isMaxSignedValue()) 699 return getLhs(); 700 701 return constFoldBinaryOp<IntegerAttr>(operands, 702 [](const APInt &a, const APInt &b) { 703 return llvm::APIntOps::smin(a, b); 704 }); 705 } 706 707 //===----------------------------------------------------------------------===// 708 // MinUIOp 709 //===----------------------------------------------------------------------===// 710 711 OpFoldResult MinUIOp::fold(ArrayRef<Attribute> operands) { 712 assert(operands.size() == 2 && "binary operation takes two operands"); 713 714 // minui(x,x) -> x 715 if (getLhs() == getRhs()) 716 return getRhs(); 717 718 APInt intValue; 719 // minui(x,MIN_INT) -> MIN_INT 720 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && intValue.isMinValue()) 721 return getRhs(); 722 723 // minui(x, MAX_INT) -> x 724 if (matchPattern(getRhs(), m_ConstantInt(&intValue)) && intValue.isMaxValue()) 725 return getLhs(); 726 727 return constFoldBinaryOp<IntegerAttr>(operands, 728 [](const APInt &a, const APInt &b) { 729 return llvm::APIntOps::umin(a, b); 730 }); 731 } 732 733 //===----------------------------------------------------------------------===// 734 // MulFOp 735 //===----------------------------------------------------------------------===// 736 737 OpFoldResult arith::MulFOp::fold(ArrayRef<Attribute> operands) { 738 // mulf(x, 1) -> x 739 if (matchPattern(getRhs(), m_OneFloat())) 740 return getLhs(); 741 742 return constFoldBinaryOp<FloatAttr>( 743 operands, [](const APFloat &a, const APFloat &b) { return a * b; }); 744 } 745 746 //===----------------------------------------------------------------------===// 747 // DivFOp 748 //===----------------------------------------------------------------------===// 749 750 OpFoldResult arith::DivFOp::fold(ArrayRef<Attribute> operands) { 751 // divf(x, 1) -> x 752 if (matchPattern(getRhs(), m_OneFloat())) 753 return getLhs(); 754 755 return constFoldBinaryOp<FloatAttr>( 756 operands, [](const APFloat &a, const APFloat &b) { return a / b; }); 757 } 758 759 //===----------------------------------------------------------------------===// 760 // Utility functions for verifying cast ops 761 //===----------------------------------------------------------------------===// 762 763 template <typename... Types> 764 using type_list = std::tuple<Types...> *; 765 766 /// Returns a non-null type only if the provided type is one of the allowed 767 /// types or one of the allowed shaped types of the allowed types. Returns the 768 /// element type if a valid shaped type is provided. 769 template <typename... ShapedTypes, typename... ElementTypes> 770 static Type getUnderlyingType(Type type, type_list<ShapedTypes...>, 771 type_list<ElementTypes...>) { 772 if (type.isa<ShapedType>() && !type.isa<ShapedTypes...>()) 773 return {}; 774 775 auto underlyingType = getElementTypeOrSelf(type); 776 if (!underlyingType.isa<ElementTypes...>()) 777 return {}; 778 779 return underlyingType; 780 } 781 782 /// Get allowed underlying types for vectors and tensors. 783 template <typename... ElementTypes> 784 static Type getTypeIfLike(Type type) { 785 return getUnderlyingType(type, type_list<VectorType, TensorType>(), 786 type_list<ElementTypes...>()); 787 } 788 789 /// Get allowed underlying types for vectors, tensors, and memrefs. 790 template <typename... ElementTypes> 791 static Type getTypeIfLikeOrMemRef(Type type) { 792 return getUnderlyingType(type, 793 type_list<VectorType, TensorType, MemRefType>(), 794 type_list<ElementTypes...>()); 795 } 796 797 static bool areValidCastInputsAndOutputs(TypeRange inputs, TypeRange outputs) { 798 return inputs.size() == 1 && outputs.size() == 1 && 799 succeeded(verifyCompatibleShapes(inputs.front(), outputs.front())); 800 } 801 802 //===----------------------------------------------------------------------===// 803 // Verifiers for integer and floating point extension/truncation ops 804 //===----------------------------------------------------------------------===// 805 806 // Extend ops can only extend to a wider type. 807 template <typename ValType, typename Op> 808 static LogicalResult verifyExtOp(Op op) { 809 Type srcType = getElementTypeOrSelf(op.getIn().getType()); 810 Type dstType = getElementTypeOrSelf(op.getType()); 811 812 if (srcType.cast<ValType>().getWidth() >= dstType.cast<ValType>().getWidth()) 813 return op.emitError("result type ") 814 << dstType << " must be wider than operand type " << srcType; 815 816 return success(); 817 } 818 819 // Truncate ops can only truncate to a shorter type. 820 template <typename ValType, typename Op> 821 static LogicalResult verifyTruncateOp(Op op) { 822 Type srcType = getElementTypeOrSelf(op.getIn().getType()); 823 Type dstType = getElementTypeOrSelf(op.getType()); 824 825 if (srcType.cast<ValType>().getWidth() <= dstType.cast<ValType>().getWidth()) 826 return op.emitError("result type ") 827 << dstType << " must be shorter than operand type " << srcType; 828 829 return success(); 830 } 831 832 /// Validate a cast that changes the width of a type. 833 template <template <typename> class WidthComparator, typename... ElementTypes> 834 static bool checkWidthChangeCast(TypeRange inputs, TypeRange outputs) { 835 if (!areValidCastInputsAndOutputs(inputs, outputs)) 836 return false; 837 838 auto srcType = getTypeIfLike<ElementTypes...>(inputs.front()); 839 auto dstType = getTypeIfLike<ElementTypes...>(outputs.front()); 840 if (!srcType || !dstType) 841 return false; 842 843 return WidthComparator<unsigned>()(dstType.getIntOrFloatBitWidth(), 844 srcType.getIntOrFloatBitWidth()); 845 } 846 847 //===----------------------------------------------------------------------===// 848 // ExtUIOp 849 //===----------------------------------------------------------------------===// 850 851 OpFoldResult arith::ExtUIOp::fold(ArrayRef<Attribute> operands) { 852 if (auto lhs = getIn().getDefiningOp<ExtUIOp>()) { 853 getInMutable().assign(lhs.getIn()); 854 return getResult(); 855 } 856 Type resType = getType(); 857 unsigned bitWidth; 858 if (auto shapedType = resType.dyn_cast<ShapedType>()) 859 bitWidth = shapedType.getElementTypeBitWidth(); 860 else 861 bitWidth = resType.getIntOrFloatBitWidth(); 862 return constFoldCastOp<IntegerAttr, IntegerAttr>( 863 operands, getType(), [bitWidth](const APInt &a, bool &castStatus) { 864 return a.zext(bitWidth); 865 }); 866 } 867 868 bool arith::ExtUIOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 869 return checkWidthChangeCast<std::greater, IntegerType>(inputs, outputs); 870 } 871 872 LogicalResult arith::ExtUIOp::verify() { 873 return verifyExtOp<IntegerType>(*this); 874 } 875 876 //===----------------------------------------------------------------------===// 877 // ExtSIOp 878 //===----------------------------------------------------------------------===// 879 880 OpFoldResult arith::ExtSIOp::fold(ArrayRef<Attribute> operands) { 881 if (auto lhs = getIn().getDefiningOp<ExtSIOp>()) { 882 getInMutable().assign(lhs.getIn()); 883 return getResult(); 884 } 885 Type resType = getType(); 886 unsigned bitWidth; 887 if (auto shapedType = resType.dyn_cast<ShapedType>()) 888 bitWidth = shapedType.getElementTypeBitWidth(); 889 else 890 bitWidth = resType.getIntOrFloatBitWidth(); 891 return constFoldCastOp<IntegerAttr, IntegerAttr>( 892 operands, getType(), [bitWidth](const APInt &a, bool &castStatus) { 893 return a.sext(bitWidth); 894 }); 895 } 896 897 bool arith::ExtSIOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 898 return checkWidthChangeCast<std::greater, IntegerType>(inputs, outputs); 899 } 900 901 void arith::ExtSIOp::getCanonicalizationPatterns( 902 RewritePatternSet &patterns, MLIRContext *context) { 903 patterns.add<ExtSIOfExtUI>(context); 904 } 905 906 LogicalResult arith::ExtSIOp::verify() { 907 return verifyExtOp<IntegerType>(*this); 908 } 909 910 //===----------------------------------------------------------------------===// 911 // ExtFOp 912 //===----------------------------------------------------------------------===// 913 914 bool arith::ExtFOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 915 return checkWidthChangeCast<std::greater, FloatType>(inputs, outputs); 916 } 917 918 LogicalResult arith::ExtFOp::verify() { return verifyExtOp<FloatType>(*this); } 919 920 //===----------------------------------------------------------------------===// 921 // TruncIOp 922 //===----------------------------------------------------------------------===// 923 924 OpFoldResult arith::TruncIOp::fold(ArrayRef<Attribute> operands) { 925 assert(operands.size() == 1 && "unary operation takes one operand"); 926 927 // trunci(zexti(a)) -> a 928 // trunci(sexti(a)) -> a 929 if (matchPattern(getOperand(), m_Op<arith::ExtUIOp>()) || 930 matchPattern(getOperand(), m_Op<arith::ExtSIOp>())) 931 return getOperand().getDefiningOp()->getOperand(0); 932 933 // trunci(trunci(a)) -> trunci(a)) 934 if (matchPattern(getOperand(), m_Op<arith::TruncIOp>())) { 935 setOperand(getOperand().getDefiningOp()->getOperand(0)); 936 return getResult(); 937 } 938 939 Type resType = getType(); 940 unsigned bitWidth; 941 if (auto shapedType = resType.dyn_cast<ShapedType>()) 942 bitWidth = shapedType.getElementTypeBitWidth(); 943 else 944 bitWidth = resType.getIntOrFloatBitWidth(); 945 946 return constFoldCastOp<IntegerAttr, IntegerAttr>( 947 operands, getType(), [bitWidth](const APInt &a, bool &castStatus) { 948 return a.trunc(bitWidth); 949 }); 950 } 951 952 bool arith::TruncIOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 953 return checkWidthChangeCast<std::less, IntegerType>(inputs, outputs); 954 } 955 956 LogicalResult arith::TruncIOp::verify() { 957 return verifyTruncateOp<IntegerType>(*this); 958 } 959 960 //===----------------------------------------------------------------------===// 961 // TruncFOp 962 //===----------------------------------------------------------------------===// 963 964 /// Perform safe const propagation for truncf, i.e. only propagate if FP value 965 /// can be represented without precision loss or rounding. 966 OpFoldResult arith::TruncFOp::fold(ArrayRef<Attribute> operands) { 967 assert(operands.size() == 1 && "unary operation takes one operand"); 968 969 auto constOperand = operands.front(); 970 if (!constOperand || !constOperand.isa<FloatAttr>()) 971 return {}; 972 973 // Convert to target type via 'double'. 974 double sourceValue = 975 constOperand.dyn_cast<FloatAttr>().getValue().convertToDouble(); 976 auto targetAttr = FloatAttr::get(getType(), sourceValue); 977 978 // Propagate if constant's value does not change after truncation. 979 if (sourceValue == targetAttr.getValue().convertToDouble()) 980 return targetAttr; 981 982 return {}; 983 } 984 985 bool arith::TruncFOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 986 return checkWidthChangeCast<std::less, FloatType>(inputs, outputs); 987 } 988 989 LogicalResult arith::TruncFOp::verify() { 990 return verifyTruncateOp<FloatType>(*this); 991 } 992 993 //===----------------------------------------------------------------------===// 994 // AndIOp 995 //===----------------------------------------------------------------------===// 996 997 void arith::AndIOp::getCanonicalizationPatterns( 998 RewritePatternSet &patterns, MLIRContext *context) { 999 patterns.add<AndOfExtUI, AndOfExtSI>(context); 1000 } 1001 1002 //===----------------------------------------------------------------------===// 1003 // OrIOp 1004 //===----------------------------------------------------------------------===// 1005 1006 void arith::OrIOp::getCanonicalizationPatterns( 1007 RewritePatternSet &patterns, MLIRContext *context) { 1008 patterns.add<OrOfExtUI, OrOfExtSI>(context); 1009 } 1010 1011 //===----------------------------------------------------------------------===// 1012 // Verifiers for casts between integers and floats. 1013 //===----------------------------------------------------------------------===// 1014 1015 template <typename From, typename To> 1016 static bool checkIntFloatCast(TypeRange inputs, TypeRange outputs) { 1017 if (!areValidCastInputsAndOutputs(inputs, outputs)) 1018 return false; 1019 1020 auto srcType = getTypeIfLike<From>(inputs.front()); 1021 auto dstType = getTypeIfLike<To>(outputs.back()); 1022 1023 return srcType && dstType; 1024 } 1025 1026 //===----------------------------------------------------------------------===// 1027 // UIToFPOp 1028 //===----------------------------------------------------------------------===// 1029 1030 bool arith::UIToFPOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 1031 return checkIntFloatCast<IntegerType, FloatType>(inputs, outputs); 1032 } 1033 1034 OpFoldResult arith::UIToFPOp::fold(ArrayRef<Attribute> operands) { 1035 Type resType = getType(); 1036 Type resEleType; 1037 if (auto shapedType = resType.dyn_cast<ShapedType>()) 1038 resEleType = shapedType.getElementType(); 1039 else 1040 resEleType = resType; 1041 return constFoldCastOp<IntegerAttr, FloatAttr>( 1042 operands, getType(), [&resEleType](const APInt &a, bool &castStatus) { 1043 FloatType floatTy = resEleType.cast<FloatType>(); 1044 APFloat apf(floatTy.getFloatSemantics(), 1045 APInt::getZero(floatTy.getWidth())); 1046 apf.convertFromAPInt(a, /*IsSigned=*/false, 1047 APFloat::rmNearestTiesToEven); 1048 return apf; 1049 }); 1050 } 1051 1052 //===----------------------------------------------------------------------===// 1053 // SIToFPOp 1054 //===----------------------------------------------------------------------===// 1055 1056 bool arith::SIToFPOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 1057 return checkIntFloatCast<IntegerType, FloatType>(inputs, outputs); 1058 } 1059 1060 OpFoldResult arith::SIToFPOp::fold(ArrayRef<Attribute> operands) { 1061 Type resType = getType(); 1062 Type resEleType; 1063 if (auto shapedType = resType.dyn_cast<ShapedType>()) 1064 resEleType = shapedType.getElementType(); 1065 else 1066 resEleType = resType; 1067 return constFoldCastOp<IntegerAttr, FloatAttr>( 1068 operands, getType(), [&resEleType](const APInt &a, bool &castStatus) { 1069 FloatType floatTy = resEleType.cast<FloatType>(); 1070 APFloat apf(floatTy.getFloatSemantics(), 1071 APInt::getZero(floatTy.getWidth())); 1072 apf.convertFromAPInt(a, /*IsSigned=*/true, 1073 APFloat::rmNearestTiesToEven); 1074 return apf; 1075 }); 1076 } 1077 //===----------------------------------------------------------------------===// 1078 // FPToUIOp 1079 //===----------------------------------------------------------------------===// 1080 1081 bool arith::FPToUIOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 1082 return checkIntFloatCast<FloatType, IntegerType>(inputs, outputs); 1083 } 1084 1085 OpFoldResult arith::FPToUIOp::fold(ArrayRef<Attribute> operands) { 1086 Type resType = getType(); 1087 Type resEleType; 1088 if (auto shapedType = resType.dyn_cast<ShapedType>()) 1089 resEleType = shapedType.getElementType(); 1090 else 1091 resEleType = resType; 1092 return constFoldCastOp<FloatAttr, IntegerAttr>( 1093 operands, getType(), [&resEleType](const APFloat &a, bool &castStatus) { 1094 IntegerType intTy = resEleType.cast<IntegerType>(); 1095 bool ignored; 1096 APSInt api(intTy.getWidth(), /*isUnsigned=*/true); 1097 castStatus = APFloat::opInvalidOp != 1098 a.convertToInteger(api, APFloat::rmTowardZero, &ignored); 1099 return api; 1100 }); 1101 } 1102 1103 //===----------------------------------------------------------------------===// 1104 // FPToSIOp 1105 //===----------------------------------------------------------------------===// 1106 1107 bool arith::FPToSIOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 1108 return checkIntFloatCast<FloatType, IntegerType>(inputs, outputs); 1109 } 1110 1111 OpFoldResult arith::FPToSIOp::fold(ArrayRef<Attribute> operands) { 1112 Type resType = getType(); 1113 Type resEleType; 1114 if (auto shapedType = resType.dyn_cast<ShapedType>()) 1115 resEleType = shapedType.getElementType(); 1116 else 1117 resEleType = resType; 1118 return constFoldCastOp<FloatAttr, IntegerAttr>( 1119 operands, getType(), [&resEleType](const APFloat &a, bool &castStatus) { 1120 IntegerType intTy = resEleType.cast<IntegerType>(); 1121 bool ignored; 1122 APSInt api(intTy.getWidth(), /*isUnsigned=*/false); 1123 castStatus = APFloat::opInvalidOp != 1124 a.convertToInteger(api, APFloat::rmTowardZero, &ignored); 1125 return api; 1126 }); 1127 } 1128 1129 //===----------------------------------------------------------------------===// 1130 // IndexCastOp 1131 //===----------------------------------------------------------------------===// 1132 1133 bool arith::IndexCastOp::areCastCompatible(TypeRange inputs, 1134 TypeRange outputs) { 1135 if (!areValidCastInputsAndOutputs(inputs, outputs)) 1136 return false; 1137 1138 auto srcType = getTypeIfLikeOrMemRef<IntegerType, IndexType>(inputs.front()); 1139 auto dstType = getTypeIfLikeOrMemRef<IntegerType, IndexType>(outputs.front()); 1140 if (!srcType || !dstType) 1141 return false; 1142 1143 return (srcType.isIndex() && dstType.isSignlessInteger()) || 1144 (srcType.isSignlessInteger() && dstType.isIndex()); 1145 } 1146 1147 OpFoldResult arith::IndexCastOp::fold(ArrayRef<Attribute> operands) { 1148 // index_cast(constant) -> constant 1149 // A little hack because we go through int. Otherwise, the size of the 1150 // constant might need to change. 1151 if (auto value = operands[0].dyn_cast_or_null<IntegerAttr>()) 1152 return IntegerAttr::get(getType(), value.getInt()); 1153 1154 return {}; 1155 } 1156 1157 void arith::IndexCastOp::getCanonicalizationPatterns( 1158 RewritePatternSet &patterns, MLIRContext *context) { 1159 patterns.add<IndexCastOfIndexCast, IndexCastOfExtSI>(context); 1160 } 1161 1162 //===----------------------------------------------------------------------===// 1163 // BitcastOp 1164 //===----------------------------------------------------------------------===// 1165 1166 bool arith::BitcastOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 1167 if (!areValidCastInputsAndOutputs(inputs, outputs)) 1168 return false; 1169 1170 auto srcType = 1171 getTypeIfLikeOrMemRef<IntegerType, IndexType, FloatType>(inputs.front()); 1172 auto dstType = 1173 getTypeIfLikeOrMemRef<IntegerType, IndexType, FloatType>(outputs.front()); 1174 if (!srcType || !dstType) 1175 return false; 1176 1177 return srcType.getIntOrFloatBitWidth() == dstType.getIntOrFloatBitWidth(); 1178 } 1179 1180 OpFoldResult arith::BitcastOp::fold(ArrayRef<Attribute> operands) { 1181 assert(operands.size() == 1 && "bitcast op expects 1 operand"); 1182 1183 auto resType = getType(); 1184 auto operand = operands[0]; 1185 if (!operand) 1186 return {}; 1187 1188 /// Bitcast dense elements. 1189 if (auto denseAttr = operand.dyn_cast_or_null<DenseElementsAttr>()) 1190 return denseAttr.bitcast(resType.cast<ShapedType>().getElementType()); 1191 /// Other shaped types unhandled. 1192 if (resType.isa<ShapedType>()) 1193 return {}; 1194 1195 /// Bitcast integer or float to integer or float. 1196 APInt bits = operand.isa<FloatAttr>() 1197 ? operand.cast<FloatAttr>().getValue().bitcastToAPInt() 1198 : operand.cast<IntegerAttr>().getValue(); 1199 1200 if (auto resFloatType = resType.dyn_cast<FloatType>()) 1201 return FloatAttr::get(resType, 1202 APFloat(resFloatType.getFloatSemantics(), bits)); 1203 return IntegerAttr::get(resType, bits); 1204 } 1205 1206 void arith::BitcastOp::getCanonicalizationPatterns( 1207 RewritePatternSet &patterns, MLIRContext *context) { 1208 patterns.add<BitcastOfBitcast>(context); 1209 } 1210 1211 //===----------------------------------------------------------------------===// 1212 // Helpers for compare ops 1213 //===----------------------------------------------------------------------===// 1214 1215 /// Return the type of the same shape (scalar, vector or tensor) containing i1. 1216 static Type getI1SameShape(Type type) { 1217 auto i1Type = IntegerType::get(type.getContext(), 1); 1218 if (auto tensorType = type.dyn_cast<RankedTensorType>()) 1219 return RankedTensorType::get(tensorType.getShape(), i1Type); 1220 if (type.isa<UnrankedTensorType>()) 1221 return UnrankedTensorType::get(i1Type); 1222 if (auto vectorType = type.dyn_cast<VectorType>()) 1223 return VectorType::get(vectorType.getShape(), i1Type, 1224 vectorType.getNumScalableDims()); 1225 return i1Type; 1226 } 1227 1228 //===----------------------------------------------------------------------===// 1229 // CmpIOp 1230 //===----------------------------------------------------------------------===// 1231 1232 /// Compute `lhs` `pred` `rhs`, where `pred` is one of the known integer 1233 /// comparison predicates. 1234 bool mlir::arith::applyCmpPredicate(arith::CmpIPredicate predicate, 1235 const APInt &lhs, const APInt &rhs) { 1236 switch (predicate) { 1237 case arith::CmpIPredicate::eq: 1238 return lhs.eq(rhs); 1239 case arith::CmpIPredicate::ne: 1240 return lhs.ne(rhs); 1241 case arith::CmpIPredicate::slt: 1242 return lhs.slt(rhs); 1243 case arith::CmpIPredicate::sle: 1244 return lhs.sle(rhs); 1245 case arith::CmpIPredicate::sgt: 1246 return lhs.sgt(rhs); 1247 case arith::CmpIPredicate::sge: 1248 return lhs.sge(rhs); 1249 case arith::CmpIPredicate::ult: 1250 return lhs.ult(rhs); 1251 case arith::CmpIPredicate::ule: 1252 return lhs.ule(rhs); 1253 case arith::CmpIPredicate::ugt: 1254 return lhs.ugt(rhs); 1255 case arith::CmpIPredicate::uge: 1256 return lhs.uge(rhs); 1257 } 1258 llvm_unreachable("unknown cmpi predicate kind"); 1259 } 1260 1261 /// Returns true if the predicate is true for two equal operands. 1262 static bool applyCmpPredicateToEqualOperands(arith::CmpIPredicate predicate) { 1263 switch (predicate) { 1264 case arith::CmpIPredicate::eq: 1265 case arith::CmpIPredicate::sle: 1266 case arith::CmpIPredicate::sge: 1267 case arith::CmpIPredicate::ule: 1268 case arith::CmpIPredicate::uge: 1269 return true; 1270 case arith::CmpIPredicate::ne: 1271 case arith::CmpIPredicate::slt: 1272 case arith::CmpIPredicate::sgt: 1273 case arith::CmpIPredicate::ult: 1274 case arith::CmpIPredicate::ugt: 1275 return false; 1276 } 1277 llvm_unreachable("unknown cmpi predicate kind"); 1278 } 1279 1280 static Attribute getBoolAttribute(Type type, MLIRContext *ctx, bool value) { 1281 auto boolAttr = BoolAttr::get(ctx, value); 1282 ShapedType shapedType = type.dyn_cast_or_null<ShapedType>(); 1283 if (!shapedType) 1284 return boolAttr; 1285 return DenseElementsAttr::get(shapedType, boolAttr); 1286 } 1287 1288 OpFoldResult arith::CmpIOp::fold(ArrayRef<Attribute> operands) { 1289 assert(operands.size() == 2 && "cmpi takes two operands"); 1290 1291 // cmpi(pred, x, x) 1292 if (getLhs() == getRhs()) { 1293 auto val = applyCmpPredicateToEqualOperands(getPredicate()); 1294 return getBoolAttribute(getType(), getContext(), val); 1295 } 1296 1297 if (matchPattern(getRhs(), m_Zero())) { 1298 if (auto extOp = getLhs().getDefiningOp<ExtSIOp>()) { 1299 if (extOp.getOperand().getType().cast<IntegerType>().getWidth() == 1) { 1300 // extsi(%x : i1 -> iN) != 0 -> %x 1301 if (getPredicate() == arith::CmpIPredicate::ne) { 1302 return extOp.getOperand(); 1303 } 1304 } 1305 } 1306 if (auto extOp = getLhs().getDefiningOp<ExtUIOp>()) { 1307 if (extOp.getOperand().getType().cast<IntegerType>().getWidth() == 1) { 1308 // extui(%x : i1 -> iN) != 0 -> %x 1309 if (getPredicate() == arith::CmpIPredicate::ne) { 1310 return extOp.getOperand(); 1311 } 1312 } 1313 } 1314 } 1315 1316 auto lhs = operands.front().dyn_cast_or_null<IntegerAttr>(); 1317 auto rhs = operands.back().dyn_cast_or_null<IntegerAttr>(); 1318 if (!lhs || !rhs) 1319 return {}; 1320 1321 auto val = applyCmpPredicate(getPredicate(), lhs.getValue(), rhs.getValue()); 1322 return BoolAttr::get(getContext(), val); 1323 } 1324 1325 void arith::CmpIOp::getCanonicalizationPatterns(RewritePatternSet &patterns, 1326 MLIRContext *context) { 1327 patterns.insert<CmpIExtSI, CmpIExtUI>(context); 1328 } 1329 1330 //===----------------------------------------------------------------------===// 1331 // CmpFOp 1332 //===----------------------------------------------------------------------===// 1333 1334 /// Compute `lhs` `pred` `rhs`, where `pred` is one of the known floating point 1335 /// comparison predicates. 1336 bool mlir::arith::applyCmpPredicate(arith::CmpFPredicate predicate, 1337 const APFloat &lhs, const APFloat &rhs) { 1338 auto cmpResult = lhs.compare(rhs); 1339 switch (predicate) { 1340 case arith::CmpFPredicate::AlwaysFalse: 1341 return false; 1342 case arith::CmpFPredicate::OEQ: 1343 return cmpResult == APFloat::cmpEqual; 1344 case arith::CmpFPredicate::OGT: 1345 return cmpResult == APFloat::cmpGreaterThan; 1346 case arith::CmpFPredicate::OGE: 1347 return cmpResult == APFloat::cmpGreaterThan || 1348 cmpResult == APFloat::cmpEqual; 1349 case arith::CmpFPredicate::OLT: 1350 return cmpResult == APFloat::cmpLessThan; 1351 case arith::CmpFPredicate::OLE: 1352 return cmpResult == APFloat::cmpLessThan || cmpResult == APFloat::cmpEqual; 1353 case arith::CmpFPredicate::ONE: 1354 return cmpResult != APFloat::cmpUnordered && cmpResult != APFloat::cmpEqual; 1355 case arith::CmpFPredicate::ORD: 1356 return cmpResult != APFloat::cmpUnordered; 1357 case arith::CmpFPredicate::UEQ: 1358 return cmpResult == APFloat::cmpUnordered || cmpResult == APFloat::cmpEqual; 1359 case arith::CmpFPredicate::UGT: 1360 return cmpResult == APFloat::cmpUnordered || 1361 cmpResult == APFloat::cmpGreaterThan; 1362 case arith::CmpFPredicate::UGE: 1363 return cmpResult == APFloat::cmpUnordered || 1364 cmpResult == APFloat::cmpGreaterThan || 1365 cmpResult == APFloat::cmpEqual; 1366 case arith::CmpFPredicate::ULT: 1367 return cmpResult == APFloat::cmpUnordered || 1368 cmpResult == APFloat::cmpLessThan; 1369 case arith::CmpFPredicate::ULE: 1370 return cmpResult == APFloat::cmpUnordered || 1371 cmpResult == APFloat::cmpLessThan || cmpResult == APFloat::cmpEqual; 1372 case arith::CmpFPredicate::UNE: 1373 return cmpResult != APFloat::cmpEqual; 1374 case arith::CmpFPredicate::UNO: 1375 return cmpResult == APFloat::cmpUnordered; 1376 case arith::CmpFPredicate::AlwaysTrue: 1377 return true; 1378 } 1379 llvm_unreachable("unknown cmpf predicate kind"); 1380 } 1381 1382 OpFoldResult arith::CmpFOp::fold(ArrayRef<Attribute> operands) { 1383 assert(operands.size() == 2 && "cmpf takes two operands"); 1384 1385 auto lhs = operands.front().dyn_cast_or_null<FloatAttr>(); 1386 auto rhs = operands.back().dyn_cast_or_null<FloatAttr>(); 1387 1388 // If one operand is NaN, making them both NaN does not change the result. 1389 if (lhs && lhs.getValue().isNaN()) 1390 rhs = lhs; 1391 if (rhs && rhs.getValue().isNaN()) 1392 lhs = rhs; 1393 1394 if (!lhs || !rhs) 1395 return {}; 1396 1397 auto val = applyCmpPredicate(getPredicate(), lhs.getValue(), rhs.getValue()); 1398 return BoolAttr::get(getContext(), val); 1399 } 1400 1401 class CmpFIntToFPConst final : public OpRewritePattern<CmpFOp> { 1402 public: 1403 using OpRewritePattern<CmpFOp>::OpRewritePattern; 1404 1405 static CmpIPredicate convertToIntegerPredicate(CmpFPredicate pred, 1406 bool isUnsigned) { 1407 using namespace arith; 1408 switch (pred) { 1409 case CmpFPredicate::UEQ: 1410 case CmpFPredicate::OEQ: 1411 return CmpIPredicate::eq; 1412 case CmpFPredicate::UGT: 1413 case CmpFPredicate::OGT: 1414 return isUnsigned ? CmpIPredicate::ugt : CmpIPredicate::sgt; 1415 case CmpFPredicate::UGE: 1416 case CmpFPredicate::OGE: 1417 return isUnsigned ? CmpIPredicate::uge : CmpIPredicate::sge; 1418 case CmpFPredicate::ULT: 1419 case CmpFPredicate::OLT: 1420 return isUnsigned ? CmpIPredicate::ult : CmpIPredicate::slt; 1421 case CmpFPredicate::ULE: 1422 case CmpFPredicate::OLE: 1423 return isUnsigned ? CmpIPredicate::ule : CmpIPredicate::sle; 1424 case CmpFPredicate::UNE: 1425 case CmpFPredicate::ONE: 1426 return CmpIPredicate::ne; 1427 default: 1428 llvm_unreachable("Unexpected predicate!"); 1429 } 1430 } 1431 1432 LogicalResult matchAndRewrite(CmpFOp op, 1433 PatternRewriter &rewriter) const override { 1434 FloatAttr flt; 1435 if (!matchPattern(op.getRhs(), m_Constant(&flt))) 1436 return failure(); 1437 1438 const APFloat &rhs = flt.getValue(); 1439 1440 // Don't attempt to fold a nan. 1441 if (rhs.isNaN()) 1442 return failure(); 1443 1444 // Get the width of the mantissa. We don't want to hack on conversions that 1445 // might lose information from the integer, e.g. "i64 -> float" 1446 FloatType floatTy = op.getRhs().getType().cast<FloatType>(); 1447 int mantissaWidth = floatTy.getFPMantissaWidth(); 1448 if (mantissaWidth <= 0) 1449 return failure(); 1450 1451 bool isUnsigned; 1452 Value intVal; 1453 1454 if (auto si = op.getLhs().getDefiningOp<SIToFPOp>()) { 1455 isUnsigned = false; 1456 intVal = si.getIn(); 1457 } else if (auto ui = op.getLhs().getDefiningOp<UIToFPOp>()) { 1458 isUnsigned = true; 1459 intVal = ui.getIn(); 1460 } else { 1461 return failure(); 1462 } 1463 1464 // Check to see that the input is converted from an integer type that is 1465 // small enough that preserves all bits. 1466 auto intTy = intVal.getType().cast<IntegerType>(); 1467 auto intWidth = intTy.getWidth(); 1468 1469 // Number of bits representing values, as opposed to the sign 1470 auto valueBits = isUnsigned ? intWidth : (intWidth - 1); 1471 1472 // Following test does NOT adjust intWidth downwards for signed inputs, 1473 // because the most negative value still requires all the mantissa bits 1474 // to distinguish it from one less than that value. 1475 if ((int)intWidth > mantissaWidth) { 1476 // Conversion would lose accuracy. Check if loss can impact comparison. 1477 int exponent = ilogb(rhs); 1478 if (exponent == APFloat::IEK_Inf) { 1479 int maxExponent = ilogb(APFloat::getLargest(rhs.getSemantics())); 1480 if (maxExponent < (int)valueBits) { 1481 // Conversion could create infinity. 1482 return failure(); 1483 } 1484 } else { 1485 // Note that if rhs is zero or NaN, then Exp is negative 1486 // and first condition is trivially false. 1487 if (mantissaWidth <= exponent && exponent <= (int)valueBits) { 1488 // Conversion could affect comparison. 1489 return failure(); 1490 } 1491 } 1492 } 1493 1494 // Convert to equivalent cmpi predicate 1495 CmpIPredicate pred; 1496 switch (op.getPredicate()) { 1497 case CmpFPredicate::ORD: 1498 // Int to fp conversion doesn't create a nan (ord checks neither is a nan) 1499 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1500 /*width=*/1); 1501 return success(); 1502 case CmpFPredicate::UNO: 1503 // Int to fp conversion doesn't create a nan (uno checks either is a nan) 1504 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1505 /*width=*/1); 1506 return success(); 1507 default: 1508 pred = convertToIntegerPredicate(op.getPredicate(), isUnsigned); 1509 break; 1510 } 1511 1512 if (!isUnsigned) { 1513 // If the rhs value is > SignedMax, fold the comparison. This handles 1514 // +INF and large values. 1515 APFloat signedMax(rhs.getSemantics()); 1516 signedMax.convertFromAPInt(APInt::getSignedMaxValue(intWidth), true, 1517 APFloat::rmNearestTiesToEven); 1518 if (signedMax < rhs) { // smax < 13123.0 1519 if (pred == CmpIPredicate::ne || pred == CmpIPredicate::slt || 1520 pred == CmpIPredicate::sle) 1521 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1522 /*width=*/1); 1523 else 1524 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1525 /*width=*/1); 1526 return success(); 1527 } 1528 } else { 1529 // If the rhs value is > UnsignedMax, fold the comparison. This handles 1530 // +INF and large values. 1531 APFloat unsignedMax(rhs.getSemantics()); 1532 unsignedMax.convertFromAPInt(APInt::getMaxValue(intWidth), false, 1533 APFloat::rmNearestTiesToEven); 1534 if (unsignedMax < rhs) { // umax < 13123.0 1535 if (pred == CmpIPredicate::ne || pred == CmpIPredicate::ult || 1536 pred == CmpIPredicate::ule) 1537 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1538 /*width=*/1); 1539 else 1540 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1541 /*width=*/1); 1542 return success(); 1543 } 1544 } 1545 1546 if (!isUnsigned) { 1547 // See if the rhs value is < SignedMin. 1548 APFloat signedMin(rhs.getSemantics()); 1549 signedMin.convertFromAPInt(APInt::getSignedMinValue(intWidth), true, 1550 APFloat::rmNearestTiesToEven); 1551 if (signedMin > rhs) { // smin > 12312.0 1552 if (pred == CmpIPredicate::ne || pred == CmpIPredicate::sgt || 1553 pred == CmpIPredicate::sge) 1554 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1555 /*width=*/1); 1556 else 1557 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1558 /*width=*/1); 1559 return success(); 1560 } 1561 } else { 1562 // See if the rhs value is < UnsignedMin. 1563 APFloat unsignedMin(rhs.getSemantics()); 1564 unsignedMin.convertFromAPInt(APInt::getMinValue(intWidth), false, 1565 APFloat::rmNearestTiesToEven); 1566 if (unsignedMin > rhs) { // umin > 12312.0 1567 if (pred == CmpIPredicate::ne || pred == CmpIPredicate::ugt || 1568 pred == CmpIPredicate::uge) 1569 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1570 /*width=*/1); 1571 else 1572 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1573 /*width=*/1); 1574 return success(); 1575 } 1576 } 1577 1578 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 1579 // [0, UMAX], but it may still be fractional. See if it is fractional by 1580 // casting the FP value to the integer value and back, checking for 1581 // equality. Don't do this for zero, because -0.0 is not fractional. 1582 bool ignored; 1583 APSInt rhsInt(intWidth, isUnsigned); 1584 if (APFloat::opInvalidOp == 1585 rhs.convertToInteger(rhsInt, APFloat::rmTowardZero, &ignored)) { 1586 // Undefined behavior invoked - the destination type can't represent 1587 // the input constant. 1588 return failure(); 1589 } 1590 1591 if (!rhs.isZero()) { 1592 APFloat apf(floatTy.getFloatSemantics(), 1593 APInt::getZero(floatTy.getWidth())); 1594 apf.convertFromAPInt(rhsInt, !isUnsigned, APFloat::rmNearestTiesToEven); 1595 1596 bool equal = apf == rhs; 1597 if (!equal) { 1598 // If we had a comparison against a fractional value, we have to adjust 1599 // the compare predicate and sometimes the value. rhsInt is rounded 1600 // towards zero at this point. 1601 switch (pred) { 1602 case CmpIPredicate::ne: // (float)int != 4.4 --> true 1603 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1604 /*width=*/1); 1605 return success(); 1606 case CmpIPredicate::eq: // (float)int == 4.4 --> false 1607 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1608 /*width=*/1); 1609 return success(); 1610 case CmpIPredicate::ule: 1611 // (float)int <= 4.4 --> int <= 4 1612 // (float)int <= -4.4 --> false 1613 if (rhs.isNegative()) { 1614 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1615 /*width=*/1); 1616 return success(); 1617 } 1618 break; 1619 case CmpIPredicate::sle: 1620 // (float)int <= 4.4 --> int <= 4 1621 // (float)int <= -4.4 --> int < -4 1622 if (rhs.isNegative()) 1623 pred = CmpIPredicate::slt; 1624 break; 1625 case CmpIPredicate::ult: 1626 // (float)int < -4.4 --> false 1627 // (float)int < 4.4 --> int <= 4 1628 if (rhs.isNegative()) { 1629 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/false, 1630 /*width=*/1); 1631 return success(); 1632 } 1633 pred = CmpIPredicate::ule; 1634 break; 1635 case CmpIPredicate::slt: 1636 // (float)int < -4.4 --> int < -4 1637 // (float)int < 4.4 --> int <= 4 1638 if (!rhs.isNegative()) 1639 pred = CmpIPredicate::sle; 1640 break; 1641 case CmpIPredicate::ugt: 1642 // (float)int > 4.4 --> int > 4 1643 // (float)int > -4.4 --> true 1644 if (rhs.isNegative()) { 1645 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1646 /*width=*/1); 1647 return success(); 1648 } 1649 break; 1650 case CmpIPredicate::sgt: 1651 // (float)int > 4.4 --> int > 4 1652 // (float)int > -4.4 --> int >= -4 1653 if (rhs.isNegative()) 1654 pred = CmpIPredicate::sge; 1655 break; 1656 case CmpIPredicate::uge: 1657 // (float)int >= -4.4 --> true 1658 // (float)int >= 4.4 --> int > 4 1659 if (rhs.isNegative()) { 1660 rewriter.replaceOpWithNewOp<ConstantIntOp>(op, /*value=*/true, 1661 /*width=*/1); 1662 return success(); 1663 } 1664 pred = CmpIPredicate::ugt; 1665 break; 1666 case CmpIPredicate::sge: 1667 // (float)int >= -4.4 --> int >= -4 1668 // (float)int >= 4.4 --> int > 4 1669 if (!rhs.isNegative()) 1670 pred = CmpIPredicate::sgt; 1671 break; 1672 } 1673 } 1674 } 1675 1676 // Lower this FP comparison into an appropriate integer version of the 1677 // comparison. 1678 rewriter.replaceOpWithNewOp<CmpIOp>( 1679 op, pred, intVal, 1680 rewriter.create<ConstantOp>( 1681 op.getLoc(), intVal.getType(), 1682 rewriter.getIntegerAttr(intVal.getType(), rhsInt))); 1683 return success(); 1684 } 1685 }; 1686 1687 void arith::CmpFOp::getCanonicalizationPatterns(RewritePatternSet &patterns, 1688 MLIRContext *context) { 1689 patterns.insert<CmpFIntToFPConst>(context); 1690 } 1691 1692 //===----------------------------------------------------------------------===// 1693 // SelectOp 1694 //===----------------------------------------------------------------------===// 1695 1696 // Transforms a select of a boolean to arithmetic operations 1697 // 1698 // arith.select %arg, %x, %y : i1 1699 // 1700 // becomes 1701 // 1702 // and(%arg, %x) or and(!%arg, %y) 1703 struct SelectI1Simplify : public OpRewritePattern<arith::SelectOp> { 1704 using OpRewritePattern<arith::SelectOp>::OpRewritePattern; 1705 1706 LogicalResult matchAndRewrite(arith::SelectOp op, 1707 PatternRewriter &rewriter) const override { 1708 if (!op.getType().isInteger(1)) 1709 return failure(); 1710 1711 Value falseConstant = 1712 rewriter.create<arith::ConstantIntOp>(op.getLoc(), true, 1); 1713 Value notCondition = rewriter.create<arith::XOrIOp>( 1714 op.getLoc(), op.getCondition(), falseConstant); 1715 1716 Value trueVal = rewriter.create<arith::AndIOp>( 1717 op.getLoc(), op.getCondition(), op.getTrueValue()); 1718 Value falseVal = rewriter.create<arith::AndIOp>(op.getLoc(), notCondition, 1719 op.getFalseValue()); 1720 rewriter.replaceOpWithNewOp<arith::OrIOp>(op, trueVal, falseVal); 1721 return success(); 1722 } 1723 }; 1724 1725 // select %arg, %c1, %c0 => extui %arg 1726 struct SelectToExtUI : public OpRewritePattern<arith::SelectOp> { 1727 using OpRewritePattern<arith::SelectOp>::OpRewritePattern; 1728 1729 LogicalResult matchAndRewrite(arith::SelectOp op, 1730 PatternRewriter &rewriter) const override { 1731 // Cannot extui i1 to i1, or i1 to f32 1732 if (!op.getType().isa<IntegerType>() || op.getType().isInteger(1)) 1733 return failure(); 1734 1735 // select %x, c1, %c0 => extui %arg 1736 if (matchPattern(op.getTrueValue(), m_One())) 1737 if (matchPattern(op.getFalseValue(), m_Zero())) { 1738 rewriter.replaceOpWithNewOp<arith::ExtUIOp>(op, op.getType(), 1739 op.getCondition()); 1740 return success(); 1741 } 1742 1743 // select %x, c0, %c1 => extui (xor %arg, true) 1744 if (matchPattern(op.getTrueValue(), m_Zero())) 1745 if (matchPattern(op.getFalseValue(), m_One())) { 1746 rewriter.replaceOpWithNewOp<arith::ExtUIOp>( 1747 op, op.getType(), 1748 rewriter.create<arith::XOrIOp>( 1749 op.getLoc(), op.getCondition(), 1750 rewriter.create<arith::ConstantIntOp>( 1751 op.getLoc(), 1, op.getCondition().getType()))); 1752 return success(); 1753 } 1754 1755 return failure(); 1756 } 1757 }; 1758 1759 void arith::SelectOp::getCanonicalizationPatterns(RewritePatternSet &results, 1760 MLIRContext *context) { 1761 results.add<SelectI1Simplify, SelectToExtUI>(context); 1762 } 1763 1764 OpFoldResult arith::SelectOp::fold(ArrayRef<Attribute> operands) { 1765 Value trueVal = getTrueValue(); 1766 Value falseVal = getFalseValue(); 1767 if (trueVal == falseVal) 1768 return trueVal; 1769 1770 Value condition = getCondition(); 1771 1772 // select true, %0, %1 => %0 1773 if (matchPattern(condition, m_One())) 1774 return trueVal; 1775 1776 // select false, %0, %1 => %1 1777 if (matchPattern(condition, m_Zero())) 1778 return falseVal; 1779 1780 // select %x, true, false => %x 1781 if (getType().isInteger(1)) 1782 if (matchPattern(getTrueValue(), m_One())) 1783 if (matchPattern(getFalseValue(), m_Zero())) 1784 return condition; 1785 1786 if (auto cmp = dyn_cast_or_null<arith::CmpIOp>(condition.getDefiningOp())) { 1787 auto pred = cmp.getPredicate(); 1788 if (pred == arith::CmpIPredicate::eq || pred == arith::CmpIPredicate::ne) { 1789 auto cmpLhs = cmp.getLhs(); 1790 auto cmpRhs = cmp.getRhs(); 1791 1792 // %0 = arith.cmpi eq, %arg0, %arg1 1793 // %1 = arith.select %0, %arg0, %arg1 => %arg1 1794 1795 // %0 = arith.cmpi ne, %arg0, %arg1 1796 // %1 = arith.select %0, %arg0, %arg1 => %arg0 1797 1798 if ((cmpLhs == trueVal && cmpRhs == falseVal) || 1799 (cmpRhs == trueVal && cmpLhs == falseVal)) 1800 return pred == arith::CmpIPredicate::ne ? trueVal : falseVal; 1801 } 1802 } 1803 return nullptr; 1804 } 1805 1806 ParseResult SelectOp::parse(OpAsmParser &parser, OperationState &result) { 1807 Type conditionType, resultType; 1808 SmallVector<OpAsmParser::UnresolvedOperand, 3> operands; 1809 if (parser.parseOperandList(operands, /*requiredOperandCount=*/3) || 1810 parser.parseOptionalAttrDict(result.attributes) || 1811 parser.parseColonType(resultType)) 1812 return failure(); 1813 1814 // Check for the explicit condition type if this is a masked tensor or vector. 1815 if (succeeded(parser.parseOptionalComma())) { 1816 conditionType = resultType; 1817 if (parser.parseType(resultType)) 1818 return failure(); 1819 } else { 1820 conditionType = parser.getBuilder().getI1Type(); 1821 } 1822 1823 result.addTypes(resultType); 1824 return parser.resolveOperands(operands, 1825 {conditionType, resultType, resultType}, 1826 parser.getNameLoc(), result.operands); 1827 } 1828 1829 void arith::SelectOp::print(OpAsmPrinter &p) { 1830 p << " " << getOperands(); 1831 p.printOptionalAttrDict((*this)->getAttrs()); 1832 p << " : "; 1833 if (ShapedType condType = getCondition().getType().dyn_cast<ShapedType>()) 1834 p << condType << ", "; 1835 p << getType(); 1836 } 1837 1838 LogicalResult arith::SelectOp::verify() { 1839 Type conditionType = getCondition().getType(); 1840 if (conditionType.isSignlessInteger(1)) 1841 return success(); 1842 1843 // If the result type is a vector or tensor, the type can be a mask with the 1844 // same elements. 1845 Type resultType = getType(); 1846 if (!resultType.isa<TensorType, VectorType>()) 1847 return emitOpError() << "expected condition to be a signless i1, but got " 1848 << conditionType; 1849 Type shapedConditionType = getI1SameShape(resultType); 1850 if (conditionType != shapedConditionType) { 1851 return emitOpError() << "expected condition type to have the same shape " 1852 "as the result type, expected " 1853 << shapedConditionType << ", but got " 1854 << conditionType; 1855 } 1856 return success(); 1857 } 1858 //===----------------------------------------------------------------------===// 1859 // ShLIOp 1860 //===----------------------------------------------------------------------===// 1861 1862 OpFoldResult arith::ShLIOp::fold(ArrayRef<Attribute> operands) { 1863 // Don't fold if shifting more than the bit width. 1864 bool bounded = false; 1865 auto result = constFoldBinaryOp<IntegerAttr>( 1866 operands, [&](const APInt &a, const APInt &b) { 1867 bounded = b.ule(b.getBitWidth()); 1868 return a.shl(b); 1869 }); 1870 return bounded ? result : Attribute(); 1871 } 1872 1873 //===----------------------------------------------------------------------===// 1874 // ShRUIOp 1875 //===----------------------------------------------------------------------===// 1876 1877 OpFoldResult arith::ShRUIOp::fold(ArrayRef<Attribute> operands) { 1878 // Don't fold if shifting more than the bit width. 1879 bool bounded = false; 1880 auto result = constFoldBinaryOp<IntegerAttr>( 1881 operands, [&](const APInt &a, const APInt &b) { 1882 bounded = b.ule(b.getBitWidth()); 1883 return a.lshr(b); 1884 }); 1885 return bounded ? result : Attribute(); 1886 } 1887 1888 //===----------------------------------------------------------------------===// 1889 // ShRSIOp 1890 //===----------------------------------------------------------------------===// 1891 1892 OpFoldResult arith::ShRSIOp::fold(ArrayRef<Attribute> operands) { 1893 // Don't fold if shifting more than the bit width. 1894 bool bounded = false; 1895 auto result = constFoldBinaryOp<IntegerAttr>( 1896 operands, [&](const APInt &a, const APInt &b) { 1897 bounded = b.ule(b.getBitWidth()); 1898 return a.ashr(b); 1899 }); 1900 return bounded ? result : Attribute(); 1901 } 1902 1903 //===----------------------------------------------------------------------===// 1904 // Atomic Enum 1905 //===----------------------------------------------------------------------===// 1906 1907 /// Returns the identity value attribute associated with an AtomicRMWKind op. 1908 Attribute mlir::arith::getIdentityValueAttr(AtomicRMWKind kind, Type resultType, 1909 OpBuilder &builder, Location loc) { 1910 switch (kind) { 1911 case AtomicRMWKind::maxf: 1912 return builder.getFloatAttr( 1913 resultType, 1914 APFloat::getInf(resultType.cast<FloatType>().getFloatSemantics(), 1915 /*Negative=*/true)); 1916 case AtomicRMWKind::addf: 1917 case AtomicRMWKind::addi: 1918 case AtomicRMWKind::maxu: 1919 case AtomicRMWKind::ori: 1920 return builder.getZeroAttr(resultType); 1921 case AtomicRMWKind::andi: 1922 return builder.getIntegerAttr( 1923 resultType, 1924 APInt::getAllOnes(resultType.cast<IntegerType>().getWidth())); 1925 case AtomicRMWKind::maxs: 1926 return builder.getIntegerAttr( 1927 resultType, 1928 APInt::getSignedMinValue(resultType.cast<IntegerType>().getWidth())); 1929 case AtomicRMWKind::minf: 1930 return builder.getFloatAttr( 1931 resultType, 1932 APFloat::getInf(resultType.cast<FloatType>().getFloatSemantics(), 1933 /*Negative=*/false)); 1934 case AtomicRMWKind::mins: 1935 return builder.getIntegerAttr( 1936 resultType, 1937 APInt::getSignedMaxValue(resultType.cast<IntegerType>().getWidth())); 1938 case AtomicRMWKind::minu: 1939 return builder.getIntegerAttr( 1940 resultType, 1941 APInt::getMaxValue(resultType.cast<IntegerType>().getWidth())); 1942 case AtomicRMWKind::muli: 1943 return builder.getIntegerAttr(resultType, 1); 1944 case AtomicRMWKind::mulf: 1945 return builder.getFloatAttr(resultType, 1); 1946 // TODO: Add remaining reduction operations. 1947 default: 1948 (void)emitOptionalError(loc, "Reduction operation type not supported"); 1949 break; 1950 } 1951 return nullptr; 1952 } 1953 1954 /// Returns the identity value associated with an AtomicRMWKind op. 1955 Value mlir::arith::getIdentityValue(AtomicRMWKind op, Type resultType, 1956 OpBuilder &builder, Location loc) { 1957 Attribute attr = getIdentityValueAttr(op, resultType, builder, loc); 1958 return builder.create<arith::ConstantOp>(loc, attr); 1959 } 1960 1961 /// Return the value obtained by applying the reduction operation kind 1962 /// associated with a binary AtomicRMWKind op to `lhs` and `rhs`. 1963 Value mlir::arith::getReductionOp(AtomicRMWKind op, OpBuilder &builder, 1964 Location loc, Value lhs, Value rhs) { 1965 switch (op) { 1966 case AtomicRMWKind::addf: 1967 return builder.create<arith::AddFOp>(loc, lhs, rhs); 1968 case AtomicRMWKind::addi: 1969 return builder.create<arith::AddIOp>(loc, lhs, rhs); 1970 case AtomicRMWKind::mulf: 1971 return builder.create<arith::MulFOp>(loc, lhs, rhs); 1972 case AtomicRMWKind::muli: 1973 return builder.create<arith::MulIOp>(loc, lhs, rhs); 1974 case AtomicRMWKind::maxf: 1975 return builder.create<arith::MaxFOp>(loc, lhs, rhs); 1976 case AtomicRMWKind::minf: 1977 return builder.create<arith::MinFOp>(loc, lhs, rhs); 1978 case AtomicRMWKind::maxs: 1979 return builder.create<arith::MaxSIOp>(loc, lhs, rhs); 1980 case AtomicRMWKind::mins: 1981 return builder.create<arith::MinSIOp>(loc, lhs, rhs); 1982 case AtomicRMWKind::maxu: 1983 return builder.create<arith::MaxUIOp>(loc, lhs, rhs); 1984 case AtomicRMWKind::minu: 1985 return builder.create<arith::MinUIOp>(loc, lhs, rhs); 1986 case AtomicRMWKind::ori: 1987 return builder.create<arith::OrIOp>(loc, lhs, rhs); 1988 case AtomicRMWKind::andi: 1989 return builder.create<arith::AndIOp>(loc, lhs, rhs); 1990 // TODO: Add remaining reduction operations. 1991 default: 1992 (void)emitOptionalError(loc, "Reduction operation type not supported"); 1993 break; 1994 } 1995 return nullptr; 1996 } 1997 1998 //===----------------------------------------------------------------------===// 1999 // TableGen'd op method definitions 2000 //===----------------------------------------------------------------------===// 2001 2002 #define GET_OP_CLASSES 2003 #include "mlir/Dialect/Arithmetic/IR/ArithmeticOps.cpp.inc" 2004 2005 //===----------------------------------------------------------------------===// 2006 // TableGen'd enum attribute definitions 2007 //===----------------------------------------------------------------------===// 2008 2009 #include "mlir/Dialect/Arithmetic/IR/ArithmeticOpsEnums.cpp.inc" 2010