1 //===- SuperVectorize.cpp - Vectorize Pass Impl ---------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements vectorization of loops, operations and data types to 10 // a target-independent, n-D super-vector abstraction. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PassDetail.h" 15 #include "mlir/Dialect/Affine/Analysis/AffineAnalysis.h" 16 #include "mlir/Dialect/Affine/Analysis/LoopAnalysis.h" 17 #include "mlir/Dialect/Affine/Analysis/NestedMatcher.h" 18 #include "mlir/Dialect/Affine/IR/AffineOps.h" 19 #include "mlir/Dialect/Affine/Utils.h" 20 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 21 #include "mlir/Dialect/Vector/IR/VectorOps.h" 22 #include "mlir/Dialect/Vector/Utils/VectorUtils.h" 23 #include "mlir/IR/BlockAndValueMapping.h" 24 #include "mlir/Support/LLVM.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/Support/Debug.h" 27 28 using namespace mlir; 29 using namespace vector; 30 31 /// 32 /// Implements a high-level vectorization strategy on a Function. 33 /// The abstraction used is that of super-vectors, which provide a single, 34 /// compact, representation in the vector types, information that is expected 35 /// to reduce the impact of the phase ordering problem 36 /// 37 /// Vector granularity: 38 /// =================== 39 /// This pass is designed to perform vectorization at a super-vector 40 /// granularity. A super-vector is loosely defined as a vector type that is a 41 /// multiple of a "good" vector size so the HW can efficiently implement a set 42 /// of high-level primitives. Multiple is understood along any dimension; e.g. 43 /// both vector<16xf32> and vector<2x8xf32> are valid super-vectors for a 44 /// vector<8xf32> HW vector. Note that a "good vector size so the HW can 45 /// efficiently implement a set of high-level primitives" is not necessarily an 46 /// integer multiple of actual hardware registers. We leave details of this 47 /// distinction unspecified for now. 48 /// 49 /// Some may prefer the terminology a "tile of HW vectors". In this case, one 50 /// should note that super-vectors implement an "always full tile" abstraction. 51 /// They guarantee no partial-tile separation is necessary by relying on a 52 /// high-level copy-reshape abstraction that we call vector.transfer. This 53 /// copy-reshape operations is also responsible for performing layout 54 /// transposition if necessary. In the general case this will require a scoped 55 /// allocation in some notional local memory. 56 /// 57 /// Whatever the mental model one prefers to use for this abstraction, the key 58 /// point is that we burn into a single, compact, representation in the vector 59 /// types, information that is expected to reduce the impact of the phase 60 /// ordering problem. Indeed, a vector type conveys information that: 61 /// 1. the associated loops have dependency semantics that do not prevent 62 /// vectorization; 63 /// 2. the associate loops have been sliced in chunks of static sizes that are 64 /// compatible with vector sizes (i.e. similar to unroll-and-jam); 65 /// 3. the inner loops, in the unroll-and-jam analogy of 2, are captured by 66 /// the 67 /// vector type and no vectorization hampering transformations can be 68 /// applied to them anymore; 69 /// 4. the underlying memrefs are accessed in some notional contiguous way 70 /// that allows loading into vectors with some amount of spatial locality; 71 /// In other words, super-vectorization provides a level of separation of 72 /// concern by way of opacity to subsequent passes. This has the effect of 73 /// encapsulating and propagating vectorization constraints down the list of 74 /// passes until we are ready to lower further. 75 /// 76 /// For a particular target, a notion of minimal n-d vector size will be 77 /// specified and vectorization targets a multiple of those. In the following 78 /// paragraph, let "k ." represent "a multiple of", to be understood as a 79 /// multiple in the same dimension (e.g. vector<16 x k . 128> summarizes 80 /// vector<16 x 128>, vector<16 x 256>, vector<16 x 1024>, etc). 81 /// 82 /// Some non-exhaustive notable super-vector sizes of interest include: 83 /// - CPU: vector<k . HW_vector_size>, 84 /// vector<k' . core_count x k . HW_vector_size>, 85 /// vector<socket_count x k' . core_count x k . HW_vector_size>; 86 /// - GPU: vector<k . warp_size>, 87 /// vector<k . warp_size x float2>, 88 /// vector<k . warp_size x float4>, 89 /// vector<k . warp_size x 4 x 4x 4> (for tensor_core sizes). 90 /// 91 /// Loops and operations are emitted that operate on those super-vector shapes. 92 /// Subsequent lowering passes will materialize to actual HW vector sizes. These 93 /// passes are expected to be (gradually) more target-specific. 94 /// 95 /// At a high level, a vectorized load in a loop will resemble: 96 /// ```mlir 97 /// affine.for %i = ? to ? step ? { 98 /// %v_a = vector.transfer_read A[%i] : memref<?xf32>, vector<128xf32> 99 /// } 100 /// ``` 101 /// It is the responsibility of the implementation of vector.transfer_read to 102 /// materialize vector registers from the original scalar memrefs. A later (more 103 /// target-dependent) lowering pass will materialize to actual HW vector sizes. 104 /// This lowering may be occur at different times: 105 /// 1. at the MLIR level into a combination of loops, unrolling, DmaStartOp + 106 /// DmaWaitOp + vectorized operations for data transformations and shuffle; 107 /// thus opening opportunities for unrolling and pipelining. This is an 108 /// instance of library call "whiteboxing"; or 109 /// 2. later in the a target-specific lowering pass or hand-written library 110 /// call; achieving full separation of concerns. This is an instance of 111 /// library call; or 112 /// 3. a mix of both, e.g. based on a model. 113 /// In the future, these operations will expose a contract to constrain the 114 /// search on vectorization patterns and sizes. 115 /// 116 /// Occurrence of super-vectorization in the compiler flow: 117 /// ======================================================= 118 /// This is an active area of investigation. We start with 2 remarks to position 119 /// super-vectorization in the context of existing ongoing work: LLVM VPLAN 120 /// and LLVM SLP Vectorizer. 121 /// 122 /// LLVM VPLAN: 123 /// ----------- 124 /// The astute reader may have noticed that in the limit, super-vectorization 125 /// can be applied at a similar time and with similar objectives than VPLAN. 126 /// For instance, in the case of a traditional, polyhedral compilation-flow (for 127 /// instance, the PPCG project uses ISL to provide dependence analysis, 128 /// multi-level(scheduling + tiling), lifting footprint to fast memory, 129 /// communication synthesis, mapping, register optimizations) and before 130 /// unrolling. When vectorization is applied at this *late* level in a typical 131 /// polyhedral flow, and is instantiated with actual hardware vector sizes, 132 /// super-vectorization is expected to match (or subsume) the type of patterns 133 /// that LLVM's VPLAN aims at targeting. The main difference here is that MLIR 134 /// is higher level and our implementation should be significantly simpler. Also 135 /// note that in this mode, recursive patterns are probably a bit of an overkill 136 /// although it is reasonable to expect that mixing a bit of outer loop and 137 /// inner loop vectorization + unrolling will provide interesting choices to 138 /// MLIR. 139 /// 140 /// LLVM SLP Vectorizer: 141 /// -------------------- 142 /// Super-vectorization however is not meant to be usable in a similar fashion 143 /// to the SLP vectorizer. The main difference lies in the information that 144 /// both vectorizers use: super-vectorization examines contiguity of memory 145 /// references along fastest varying dimensions and loops with recursive nested 146 /// patterns capturing imperfectly-nested loop nests; the SLP vectorizer, on 147 /// the other hand, performs flat pattern matching inside a single unrolled loop 148 /// body and stitches together pieces of load and store operations into full 149 /// 1-D vectors. We envision that the SLP vectorizer is a good way to capture 150 /// innermost loop, control-flow dependent patterns that super-vectorization may 151 /// not be able to capture easily. In other words, super-vectorization does not 152 /// aim at replacing the SLP vectorizer and the two solutions are complementary. 153 /// 154 /// Ongoing investigations: 155 /// ----------------------- 156 /// We discuss the following *early* places where super-vectorization is 157 /// applicable and touch on the expected benefits and risks . We list the 158 /// opportunities in the context of the traditional polyhedral compiler flow 159 /// described in PPCG. There are essentially 6 places in the MLIR pass pipeline 160 /// we expect to experiment with super-vectorization: 161 /// 1. Right after language lowering to MLIR: this is the earliest time where 162 /// super-vectorization is expected to be applied. At this level, all the 163 /// language/user/library-level annotations are available and can be fully 164 /// exploited. Examples include loop-type annotations (such as parallel, 165 /// reduction, scan, dependence distance vector, vectorizable) as well as 166 /// memory access annotations (such as non-aliasing writes guaranteed, 167 /// indirect accesses that are permutations by construction) accesses or 168 /// that a particular operation is prescribed atomic by the user. At this 169 /// level, anything that enriches what dependence analysis can do should be 170 /// aggressively exploited. At this level we are close to having explicit 171 /// vector types in the language, except we do not impose that burden on the 172 /// programmer/library: we derive information from scalar code + annotations. 173 /// 2. After dependence analysis and before polyhedral scheduling: the 174 /// information that supports vectorization does not need to be supplied by a 175 /// higher level of abstraction. Traditional dependence analysis is available 176 /// in MLIR and will be used to drive vectorization and cost models. 177 /// 178 /// Let's pause here and remark that applying super-vectorization as described 179 /// in 1. and 2. presents clear opportunities and risks: 180 /// - the opportunity is that vectorization is burned in the type system and 181 /// is protected from the adverse effect of loop scheduling, tiling, loop 182 /// interchange and all passes downstream. Provided that subsequent passes are 183 /// able to operate on vector types; the vector shapes, associated loop 184 /// iterator properties, alignment, and contiguity of fastest varying 185 /// dimensions are preserved until we lower the super-vector types. We expect 186 /// this to significantly rein in on the adverse effects of phase ordering. 187 /// - the risks are that a. all passes after super-vectorization have to work 188 /// on elemental vector types (not that this is always true, wherever 189 /// vectorization is applied) and b. that imposing vectorization constraints 190 /// too early may be overall detrimental to loop fusion, tiling and other 191 /// transformations because the dependence distances are coarsened when 192 /// operating on elemental vector types. For this reason, the pattern 193 /// profitability analysis should include a component that also captures the 194 /// maximal amount of fusion available under a particular pattern. This is 195 /// still at the stage of rough ideas but in this context, search is our 196 /// friend as the Tensor Comprehensions and auto-TVM contributions 197 /// demonstrated previously. 198 /// Bottom-line is we do not yet have good answers for the above but aim at 199 /// making it easy to answer such questions. 200 /// 201 /// Back to our listing, the last places where early super-vectorization makes 202 /// sense are: 203 /// 3. right after polyhedral-style scheduling: PLUTO-style algorithms are known 204 /// to improve locality, parallelism and be configurable (e.g. max-fuse, 205 /// smart-fuse etc). They can also have adverse effects on contiguity 206 /// properties that are required for vectorization but the vector.transfer 207 /// copy-reshape-pad-transpose abstraction is expected to help recapture 208 /// these properties. 209 /// 4. right after polyhedral-style scheduling+tiling; 210 /// 5. right after scheduling+tiling+rescheduling: points 4 and 5 represent 211 /// probably the most promising places because applying tiling achieves a 212 /// separation of concerns that allows rescheduling to worry less about 213 /// locality and more about parallelism and distribution (e.g. min-fuse). 214 /// 215 /// At these levels the risk-reward looks different: on one hand we probably 216 /// lost a good deal of language/user/library-level annotation; on the other 217 /// hand we gained parallelism and locality through scheduling and tiling. 218 /// However we probably want to ensure tiling is compatible with the 219 /// full-tile-only abstraction used in super-vectorization or suffer the 220 /// consequences. It is too early to place bets on what will win but we expect 221 /// super-vectorization to be the right abstraction to allow exploring at all 222 /// these levels. And again, search is our friend. 223 /// 224 /// Lastly, we mention it again here: 225 /// 6. as a MLIR-based alternative to VPLAN. 226 /// 227 /// Lowering, unrolling, pipelining: 228 /// ================================ 229 /// TODO: point to the proper places. 230 /// 231 /// Algorithm: 232 /// ========== 233 /// The algorithm proceeds in a few steps: 234 /// 1. defining super-vectorization patterns and matching them on the tree of 235 /// AffineForOp. A super-vectorization pattern is defined as a recursive 236 /// data structures that matches and captures nested, imperfectly-nested 237 /// loops that have a. conformable loop annotations attached (e.g. parallel, 238 /// reduction, vectorizable, ...) as well as b. all contiguous load/store 239 /// operations along a specified minor dimension (not necessarily the 240 /// fastest varying) ; 241 /// 2. analyzing those patterns for profitability (TODO: and 242 /// interference); 243 /// 3. then, for each pattern in order: 244 /// a. applying iterative rewriting of the loops and all their nested 245 /// operations in topological order. Rewriting is implemented by 246 /// coarsening the loops and converting operations and operands to their 247 /// vector forms. Processing operations in topological order is relatively 248 /// simple due to the structured nature of the control-flow 249 /// representation. This order ensures that all the operands of a given 250 /// operation have been vectorized before the operation itself in a single 251 /// traversal, except for operands defined outside of the loop nest. The 252 /// algorithm can convert the following operations to their vector form: 253 /// * Affine load and store operations are converted to opaque vector 254 /// transfer read and write operations. 255 /// * Scalar constant operations/operands are converted to vector 256 /// constant operations (splat). 257 /// * Uniform operands (only induction variables of loops not mapped to 258 /// a vector dimension, or operands defined outside of the loop nest 259 /// for now) are broadcasted to a vector. 260 /// TODO: Support more uniform cases. 261 /// * Affine for operations with 'iter_args' are vectorized by 262 /// vectorizing their 'iter_args' operands and results. 263 /// TODO: Support more complex loops with divergent lbs and/or ubs. 264 /// * The remaining operations in the loop nest are vectorized by 265 /// widening their scalar types to vector types. 266 /// b. if everything under the root AffineForOp in the current pattern 267 /// is vectorized properly, we commit that loop to the IR and remove the 268 /// scalar loop. Otherwise, we discard the vectorized loop and keep the 269 /// original scalar loop. 270 /// c. vectorization is applied on the next pattern in the list. Because 271 /// pattern interference avoidance is not yet implemented and that we do 272 /// not support further vectorizing an already vector load we need to 273 /// re-verify that the pattern is still vectorizable. This is expected to 274 /// make cost models more difficult to write and is subject to improvement 275 /// in the future. 276 /// 277 /// Choice of loop transformation to support the algorithm: 278 /// ======================================================= 279 /// The choice of loop transformation to apply for coarsening vectorized loops 280 /// is still subject to exploratory tradeoffs. In particular, say we want to 281 /// vectorize by a factor 128, we want to transform the following input: 282 /// ```mlir 283 /// affine.for %i = %M to %N { 284 /// %a = affine.load %A[%i] : memref<?xf32> 285 /// } 286 /// ``` 287 /// 288 /// Traditionally, one would vectorize late (after scheduling, tiling, 289 /// memory promotion etc) say after stripmining (and potentially unrolling in 290 /// the case of LLVM's SLP vectorizer): 291 /// ```mlir 292 /// affine.for %i = floor(%M, 128) to ceil(%N, 128) { 293 /// affine.for %ii = max(%M, 128 * %i) to min(%N, 128*%i + 127) { 294 /// %a = affine.load %A[%ii] : memref<?xf32> 295 /// } 296 /// } 297 /// ``` 298 /// 299 /// Instead, we seek to vectorize early and freeze vector types before 300 /// scheduling, so we want to generate a pattern that resembles: 301 /// ```mlir 302 /// affine.for %i = ? to ? step ? { 303 /// %v_a = vector.transfer_read %A[%i] : memref<?xf32>, vector<128xf32> 304 /// } 305 /// ``` 306 /// 307 /// i. simply dividing the lower / upper bounds by 128 creates issues 308 /// when representing expressions such as ii + 1 because now we only 309 /// have access to original values that have been divided. Additional 310 /// information is needed to specify accesses at below-128 granularity; 311 /// ii. another alternative is to coarsen the loop step but this may have 312 /// consequences on dependence analysis and fusability of loops: fusable 313 /// loops probably need to have the same step (because we don't want to 314 /// stripmine/unroll to enable fusion). 315 /// As a consequence, we choose to represent the coarsening using the loop 316 /// step for now and reevaluate in the future. Note that we can renormalize 317 /// loop steps later if/when we have evidence that they are problematic. 318 /// 319 /// For the simple strawman example above, vectorizing for a 1-D vector 320 /// abstraction of size 128 returns code similar to: 321 /// ```mlir 322 /// affine.for %i = %M to %N step 128 { 323 /// %v_a = vector.transfer_read %A[%i] : memref<?xf32>, vector<128xf32> 324 /// } 325 /// ``` 326 /// 327 /// Unsupported cases, extensions, and work in progress (help welcome :-) ): 328 /// ======================================================================== 329 /// 1. lowering to concrete vector types for various HW; 330 /// 2. reduction support for n-D vectorization and non-unit steps; 331 /// 3. non-effecting padding during vector.transfer_read and filter during 332 /// vector.transfer_write; 333 /// 4. misalignment support vector.transfer_read / vector.transfer_write 334 /// (hopefully without read-modify-writes); 335 /// 5. control-flow support; 336 /// 6. cost-models, heuristics and search; 337 /// 7. Op implementation, extensions and implication on memref views; 338 /// 8. many TODOs left around. 339 /// 340 /// Examples: 341 /// ========= 342 /// Consider the following Function: 343 /// ```mlir 344 /// func @vector_add_2d(%M : index, %N : index) -> f32 { 345 /// %A = alloc (%M, %N) : memref<?x?xf32, 0> 346 /// %B = alloc (%M, %N) : memref<?x?xf32, 0> 347 /// %C = alloc (%M, %N) : memref<?x?xf32, 0> 348 /// %f1 = arith.constant 1.0 : f32 349 /// %f2 = arith.constant 2.0 : f32 350 /// affine.for %i0 = 0 to %M { 351 /// affine.for %i1 = 0 to %N { 352 /// // non-scoped %f1 353 /// affine.store %f1, %A[%i0, %i1] : memref<?x?xf32, 0> 354 /// } 355 /// } 356 /// affine.for %i2 = 0 to %M { 357 /// affine.for %i3 = 0 to %N { 358 /// // non-scoped %f2 359 /// affine.store %f2, %B[%i2, %i3] : memref<?x?xf32, 0> 360 /// } 361 /// } 362 /// affine.for %i4 = 0 to %M { 363 /// affine.for %i5 = 0 to %N { 364 /// %a5 = affine.load %A[%i4, %i5] : memref<?x?xf32, 0> 365 /// %b5 = affine.load %B[%i4, %i5] : memref<?x?xf32, 0> 366 /// %s5 = arith.addf %a5, %b5 : f32 367 /// // non-scoped %f1 368 /// %s6 = arith.addf %s5, %f1 : f32 369 /// // non-scoped %f2 370 /// %s7 = arith.addf %s5, %f2 : f32 371 /// // diamond dependency. 372 /// %s8 = arith.addf %s7, %s6 : f32 373 /// affine.store %s8, %C[%i4, %i5] : memref<?x?xf32, 0> 374 /// } 375 /// } 376 /// %c7 = arith.constant 7 : index 377 /// %c42 = arith.constant 42 : index 378 /// %res = load %C[%c7, %c42] : memref<?x?xf32, 0> 379 /// return %res : f32 380 /// } 381 /// ``` 382 /// 383 /// The -affine-super-vectorize pass with the following arguments: 384 /// ``` 385 /// -affine-super-vectorize="virtual-vector-size=256 test-fastest-varying=0" 386 /// ``` 387 /// 388 /// produces this standard innermost-loop vectorized code: 389 /// ```mlir 390 /// func @vector_add_2d(%arg0 : index, %arg1 : index) -> f32 { 391 /// %0 = memref.alloc(%arg0, %arg1) : memref<?x?xf32> 392 /// %1 = memref.alloc(%arg0, %arg1) : memref<?x?xf32> 393 /// %2 = memref.alloc(%arg0, %arg1) : memref<?x?xf32> 394 /// %cst = arith.constant 1.0 : f32 395 /// %cst_0 = arith.constant 2.0 : f32 396 /// affine.for %i0 = 0 to %arg0 { 397 /// affine.for %i1 = 0 to %arg1 step 256 { 398 /// %cst_1 = arith.constant dense<vector<256xf32>, 1.0> : 399 /// vector<256xf32> 400 /// vector.transfer_write %cst_1, %0[%i0, %i1] : 401 /// vector<256xf32>, memref<?x?xf32> 402 /// } 403 /// } 404 /// affine.for %i2 = 0 to %arg0 { 405 /// affine.for %i3 = 0 to %arg1 step 256 { 406 /// %cst_2 = arith.constant dense<vector<256xf32>, 2.0> : 407 /// vector<256xf32> 408 /// vector.transfer_write %cst_2, %1[%i2, %i3] : 409 /// vector<256xf32>, memref<?x?xf32> 410 /// } 411 /// } 412 /// affine.for %i4 = 0 to %arg0 { 413 /// affine.for %i5 = 0 to %arg1 step 256 { 414 /// %3 = vector.transfer_read %0[%i4, %i5] : 415 /// memref<?x?xf32>, vector<256xf32> 416 /// %4 = vector.transfer_read %1[%i4, %i5] : 417 /// memref<?x?xf32>, vector<256xf32> 418 /// %5 = arith.addf %3, %4 : vector<256xf32> 419 /// %cst_3 = arith.constant dense<vector<256xf32>, 1.0> : 420 /// vector<256xf32> 421 /// %6 = arith.addf %5, %cst_3 : vector<256xf32> 422 /// %cst_4 = arith.constant dense<vector<256xf32>, 2.0> : 423 /// vector<256xf32> 424 /// %7 = arith.addf %5, %cst_4 : vector<256xf32> 425 /// %8 = arith.addf %7, %6 : vector<256xf32> 426 /// vector.transfer_write %8, %2[%i4, %i5] : 427 /// vector<256xf32>, memref<?x?xf32> 428 /// } 429 /// } 430 /// %c7 = arith.constant 7 : index 431 /// %c42 = arith.constant 42 : index 432 /// %9 = load %2[%c7, %c42] : memref<?x?xf32> 433 /// return %9 : f32 434 /// } 435 /// ``` 436 /// 437 /// The -affine-super-vectorize pass with the following arguments: 438 /// ``` 439 /// -affine-super-vectorize="virtual-vector-size=32,256 \ 440 /// test-fastest-varying=1,0" 441 /// ``` 442 /// 443 /// produces this more interesting mixed outer-innermost-loop vectorized code: 444 /// ```mlir 445 /// func @vector_add_2d(%arg0 : index, %arg1 : index) -> f32 { 446 /// %0 = memref.alloc(%arg0, %arg1) : memref<?x?xf32> 447 /// %1 = memref.alloc(%arg0, %arg1) : memref<?x?xf32> 448 /// %2 = memref.alloc(%arg0, %arg1) : memref<?x?xf32> 449 /// %cst = arith.constant 1.0 : f32 450 /// %cst_0 = arith.constant 2.0 : f32 451 /// affine.for %i0 = 0 to %arg0 step 32 { 452 /// affine.for %i1 = 0 to %arg1 step 256 { 453 /// %cst_1 = arith.constant dense<vector<32x256xf32>, 1.0> : 454 /// vector<32x256xf32> 455 /// vector.transfer_write %cst_1, %0[%i0, %i1] : 456 /// vector<32x256xf32>, memref<?x?xf32> 457 /// } 458 /// } 459 /// affine.for %i2 = 0 to %arg0 step 32 { 460 /// affine.for %i3 = 0 to %arg1 step 256 { 461 /// %cst_2 = arith.constant dense<vector<32x256xf32>, 2.0> : 462 /// vector<32x256xf32> 463 /// vector.transfer_write %cst_2, %1[%i2, %i3] : 464 /// vector<32x256xf32>, memref<?x?xf32> 465 /// } 466 /// } 467 /// affine.for %i4 = 0 to %arg0 step 32 { 468 /// affine.for %i5 = 0 to %arg1 step 256 { 469 /// %3 = vector.transfer_read %0[%i4, %i5] : 470 /// memref<?x?xf32> vector<32x256xf32> 471 /// %4 = vector.transfer_read %1[%i4, %i5] : 472 /// memref<?x?xf32>, vector<32x256xf32> 473 /// %5 = arith.addf %3, %4 : vector<32x256xf32> 474 /// %cst_3 = arith.constant dense<vector<32x256xf32>, 1.0> : 475 /// vector<32x256xf32> 476 /// %6 = arith.addf %5, %cst_3 : vector<32x256xf32> 477 /// %cst_4 = arith.constant dense<vector<32x256xf32>, 2.0> : 478 /// vector<32x256xf32> 479 /// %7 = arith.addf %5, %cst_4 : vector<32x256xf32> 480 /// %8 = arith.addf %7, %6 : vector<32x256xf32> 481 /// vector.transfer_write %8, %2[%i4, %i5] : 482 /// vector<32x256xf32>, memref<?x?xf32> 483 /// } 484 /// } 485 /// %c7 = arith.constant 7 : index 486 /// %c42 = arith.constant 42 : index 487 /// %9 = load %2[%c7, %c42] : memref<?x?xf32> 488 /// return %9 : f32 489 /// } 490 /// ``` 491 /// 492 /// Of course, much more intricate n-D imperfectly-nested patterns can be 493 /// vectorized too and specified in a fully declarative fashion. 494 /// 495 /// Reduction: 496 /// ========== 497 /// Vectorizing reduction loops along the reduction dimension is supported if: 498 /// - the reduction kind is supported, 499 /// - the vectorization is 1-D, and 500 /// - the step size of the loop equals to one. 501 /// 502 /// Comparing to the non-vector-dimension case, two additional things are done 503 /// during vectorization of such loops: 504 /// - The resulting vector returned from the loop is reduced to a scalar using 505 /// `vector.reduce`. 506 /// - In some cases a mask is applied to the vector yielded at the end of the 507 /// loop to prevent garbage values from being written to the accumulator. 508 /// 509 /// Reduction vectorization is switched off by default, it can be enabled by 510 /// passing a map from loops to reductions to utility functions, or by passing 511 /// `vectorize-reductions=true` to the vectorization pass. 512 /// 513 /// Consider the following example: 514 /// ```mlir 515 /// func @vecred(%in: memref<512xf32>) -> f32 { 516 /// %cst = arith.constant 0.000000e+00 : f32 517 /// %sum = affine.for %i = 0 to 500 iter_args(%part_sum = %cst) -> (f32) { 518 /// %ld = affine.load %in[%i] : memref<512xf32> 519 /// %cos = math.cos %ld : f32 520 /// %add = arith.addf %part_sum, %cos : f32 521 /// affine.yield %add : f32 522 /// } 523 /// return %sum : f32 524 /// } 525 /// ``` 526 /// 527 /// The -affine-super-vectorize pass with the following arguments: 528 /// ``` 529 /// -affine-super-vectorize="virtual-vector-size=128 test-fastest-varying=0 \ 530 /// vectorize-reductions=true" 531 /// ``` 532 /// produces the following output: 533 /// ```mlir 534 /// #map = affine_map<(d0) -> (-d0 + 500)> 535 /// func @vecred(%arg0: memref<512xf32>) -> f32 { 536 /// %cst = arith.constant 0.000000e+00 : f32 537 /// %cst_0 = arith.constant dense<0.000000e+00> : vector<128xf32> 538 /// %0 = affine.for %arg1 = 0 to 500 step 128 iter_args(%arg2 = %cst_0) 539 /// -> (vector<128xf32>) { 540 /// // %2 is the number of iterations left in the original loop. 541 /// %2 = affine.apply #map(%arg1) 542 /// %3 = vector.create_mask %2 : vector<128xi1> 543 /// %cst_1 = arith.constant 0.000000e+00 : f32 544 /// %4 = vector.transfer_read %arg0[%arg1], %cst_1 : 545 /// memref<512xf32>, vector<128xf32> 546 /// %5 = math.cos %4 : vector<128xf32> 547 /// %6 = arith.addf %arg2, %5 : vector<128xf32> 548 /// // We filter out the effect of last 12 elements using the mask. 549 /// %7 = select %3, %6, %arg2 : vector<128xi1>, vector<128xf32> 550 /// affine.yield %7 : vector<128xf32> 551 /// } 552 /// %1 = vector.reduction <add>, %0 : vector<128xf32> into f32 553 /// return %1 : f32 554 /// } 555 /// ``` 556 /// 557 /// Note that because of loop misalignment we needed to apply a mask to prevent 558 /// last 12 elements from affecting the final result. The mask is full of ones 559 /// in every iteration except for the last one, in which it has the form 560 /// `11...100...0` with 116 ones and 12 zeros. 561 562 #define DEBUG_TYPE "early-vect" 563 564 using llvm::dbgs; 565 566 /// Forward declaration. 567 static FilterFunctionType 568 isVectorizableLoopPtrFactory(const DenseSet<Operation *> ¶llelLoops, 569 int fastestVaryingMemRefDimension); 570 571 /// Creates a vectorization pattern from the command line arguments. 572 /// Up to 3-D patterns are supported. 573 /// If the command line argument requests a pattern of higher order, returns an 574 /// empty pattern list which will conservatively result in no vectorization. 575 static Optional<NestedPattern> 576 makePattern(const DenseSet<Operation *> ¶llelLoops, int vectorRank, 577 ArrayRef<int64_t> fastestVaryingPattern) { 578 using matcher::For; 579 int64_t d0 = fastestVaryingPattern.empty() ? -1 : fastestVaryingPattern[0]; 580 int64_t d1 = fastestVaryingPattern.size() < 2 ? -1 : fastestVaryingPattern[1]; 581 int64_t d2 = fastestVaryingPattern.size() < 3 ? -1 : fastestVaryingPattern[2]; 582 switch (vectorRank) { 583 case 1: 584 return For(isVectorizableLoopPtrFactory(parallelLoops, d0)); 585 case 2: 586 return For(isVectorizableLoopPtrFactory(parallelLoops, d0), 587 For(isVectorizableLoopPtrFactory(parallelLoops, d1))); 588 case 3: 589 return For(isVectorizableLoopPtrFactory(parallelLoops, d0), 590 For(isVectorizableLoopPtrFactory(parallelLoops, d1), 591 For(isVectorizableLoopPtrFactory(parallelLoops, d2)))); 592 default: { 593 return llvm::None; 594 } 595 } 596 } 597 598 static NestedPattern &vectorTransferPattern() { 599 static auto pattern = matcher::Op([](Operation &op) { 600 return isa<vector::TransferReadOp, vector::TransferWriteOp>(op); 601 }); 602 return pattern; 603 } 604 605 namespace { 606 607 /// Base state for the vectorize pass. 608 /// Command line arguments are preempted by non-empty pass arguments. 609 struct Vectorize : public AffineVectorizeBase<Vectorize> { 610 Vectorize() = default; 611 Vectorize(ArrayRef<int64_t> virtualVectorSize); 612 void runOnOperation() override; 613 }; 614 615 } // namespace 616 617 Vectorize::Vectorize(ArrayRef<int64_t> virtualVectorSize) { 618 vectorSizes = virtualVectorSize; 619 } 620 621 static void vectorizeLoopIfProfitable(Operation *loop, unsigned depthInPattern, 622 unsigned patternDepth, 623 VectorizationStrategy *strategy) { 624 assert(patternDepth > depthInPattern && 625 "patternDepth is greater than depthInPattern"); 626 if (patternDepth - depthInPattern > strategy->vectorSizes.size()) { 627 // Don't vectorize this loop 628 return; 629 } 630 strategy->loopToVectorDim[loop] = 631 strategy->vectorSizes.size() - (patternDepth - depthInPattern); 632 } 633 634 /// Implements a simple strawman strategy for vectorization. 635 /// Given a matched pattern `matches` of depth `patternDepth`, this strategy 636 /// greedily assigns the fastest varying dimension ** of the vector ** to the 637 /// innermost loop in the pattern. 638 /// When coupled with a pattern that looks for the fastest varying dimension in 639 /// load/store MemRefs, this creates a generic vectorization strategy that works 640 /// for any loop in a hierarchy (outermost, innermost or intermediate). 641 /// 642 /// TODO: In the future we should additionally increase the power of the 643 /// profitability analysis along 3 directions: 644 /// 1. account for loop extents (both static and parametric + annotations); 645 /// 2. account for data layout permutations; 646 /// 3. account for impact of vectorization on maximal loop fusion. 647 /// Then we can quantify the above to build a cost model and search over 648 /// strategies. 649 static LogicalResult analyzeProfitability(ArrayRef<NestedMatch> matches, 650 unsigned depthInPattern, 651 unsigned patternDepth, 652 VectorizationStrategy *strategy) { 653 for (auto m : matches) { 654 if (failed(analyzeProfitability(m.getMatchedChildren(), depthInPattern + 1, 655 patternDepth, strategy))) { 656 return failure(); 657 } 658 vectorizeLoopIfProfitable(m.getMatchedOperation(), depthInPattern, 659 patternDepth, strategy); 660 } 661 return success(); 662 } 663 664 ///// end TODO: Hoist to a VectorizationStrategy.cpp when appropriate ///// 665 666 namespace { 667 668 struct VectorizationState { 669 670 VectorizationState(MLIRContext *context) : builder(context) {} 671 672 /// Registers the vector replacement of a scalar operation and its result 673 /// values. Both operations must have the same number of results. 674 /// 675 /// This utility is used to register the replacement for the vast majority of 676 /// the vectorized operations. 677 /// 678 /// Example: 679 /// * 'replaced': %0 = arith.addf %1, %2 : f32 680 /// * 'replacement': %0 = arith.addf %1, %2 : vector<128xf32> 681 void registerOpVectorReplacement(Operation *replaced, Operation *replacement); 682 683 /// Registers the vector replacement of a scalar value. The replacement 684 /// operation should have a single result, which replaces the scalar value. 685 /// 686 /// This utility is used to register the vector replacement of block arguments 687 /// and operation results which are not directly vectorized (i.e., their 688 /// scalar version still exists after vectorization), like uniforms. 689 /// 690 /// Example: 691 /// * 'replaced': block argument or operation outside of the vectorized 692 /// loop. 693 /// * 'replacement': %0 = vector.broadcast %1 : f32 to vector<128xf32> 694 void registerValueVectorReplacement(Value replaced, Operation *replacement); 695 696 /// Registers the vector replacement of a block argument (e.g., iter_args). 697 /// 698 /// Example: 699 /// * 'replaced': 'iter_arg' block argument. 700 /// * 'replacement': vectorized 'iter_arg' block argument. 701 void registerBlockArgVectorReplacement(BlockArgument replaced, 702 BlockArgument replacement); 703 704 /// Registers the scalar replacement of a scalar value. 'replacement' must be 705 /// scalar. Both values must be block arguments. Operation results should be 706 /// replaced using the 'registerOp*' utilitites. 707 /// 708 /// This utility is used to register the replacement of block arguments 709 /// that are within the loop to be vectorized and will continue being scalar 710 /// within the vector loop. 711 /// 712 /// Example: 713 /// * 'replaced': induction variable of a loop to be vectorized. 714 /// * 'replacement': new induction variable in the new vector loop. 715 void registerValueScalarReplacement(BlockArgument replaced, 716 BlockArgument replacement); 717 718 /// Registers the scalar replacement of a scalar result returned from a 719 /// reduction loop. 'replacement' must be scalar. 720 /// 721 /// This utility is used to register the replacement for scalar results of 722 /// vectorized reduction loops with iter_args. 723 /// 724 /// Example 2: 725 /// * 'replaced': %0 = affine.for %i = 0 to 512 iter_args(%x = ...) -> (f32) 726 /// * 'replacement': %1 = vector.reduction <add>, %0 : vector<4xf32> into 727 /// f32 728 void registerLoopResultScalarReplacement(Value replaced, Value replacement); 729 730 /// Returns in 'replacedVals' the scalar replacement for values in 731 /// 'inputVals'. 732 void getScalarValueReplacementsFor(ValueRange inputVals, 733 SmallVectorImpl<Value> &replacedVals); 734 735 /// Erases the scalar loop nest after its successful vectorization. 736 void finishVectorizationPattern(AffineForOp rootLoop); 737 738 // Used to build and insert all the new operations created. The insertion 739 // point is preserved and updated along the vectorization process. 740 OpBuilder builder; 741 742 // Maps input scalar operations to their vector counterparts. 743 DenseMap<Operation *, Operation *> opVectorReplacement; 744 // Maps input scalar values to their vector counterparts. 745 BlockAndValueMapping valueVectorReplacement; 746 // Maps input scalar values to their new scalar counterparts in the vector 747 // loop nest. 748 BlockAndValueMapping valueScalarReplacement; 749 // Maps results of reduction loops to their new scalar counterparts. 750 DenseMap<Value, Value> loopResultScalarReplacement; 751 752 // Maps the newly created vector loops to their vector dimension. 753 DenseMap<Operation *, unsigned> vecLoopToVecDim; 754 755 // Maps the new vectorized loops to the corresponding vector masks if it is 756 // required. 757 DenseMap<Operation *, Value> vecLoopToMask; 758 759 // The strategy drives which loop to vectorize by which amount. 760 const VectorizationStrategy *strategy = nullptr; 761 762 private: 763 /// Internal implementation to map input scalar values to new vector or scalar 764 /// values. 765 void registerValueVectorReplacementImpl(Value replaced, Value replacement); 766 void registerValueScalarReplacementImpl(Value replaced, Value replacement); 767 }; 768 769 } // namespace 770 771 /// Registers the vector replacement of a scalar operation and its result 772 /// values. Both operations must have the same number of results. 773 /// 774 /// This utility is used to register the replacement for the vast majority of 775 /// the vectorized operations. 776 /// 777 /// Example: 778 /// * 'replaced': %0 = arith.addf %1, %2 : f32 779 /// * 'replacement': %0 = arith.addf %1, %2 : vector<128xf32> 780 void VectorizationState::registerOpVectorReplacement(Operation *replaced, 781 Operation *replacement) { 782 LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ commit vectorized op:\n"); 783 LLVM_DEBUG(dbgs() << *replaced << "\n"); 784 LLVM_DEBUG(dbgs() << "into\n"); 785 LLVM_DEBUG(dbgs() << *replacement << "\n"); 786 787 assert(replaced->getNumResults() == replacement->getNumResults() && 788 "Unexpected replaced and replacement results"); 789 assert(opVectorReplacement.count(replaced) == 0 && "already registered"); 790 opVectorReplacement[replaced] = replacement; 791 792 for (auto resultTuple : 793 llvm::zip(replaced->getResults(), replacement->getResults())) 794 registerValueVectorReplacementImpl(std::get<0>(resultTuple), 795 std::get<1>(resultTuple)); 796 } 797 798 /// Registers the vector replacement of a scalar value. The replacement 799 /// operation should have a single result, which replaces the scalar value. 800 /// 801 /// This utility is used to register the vector replacement of block arguments 802 /// and operation results which are not directly vectorized (i.e., their 803 /// scalar version still exists after vectorization), like uniforms. 804 /// 805 /// Example: 806 /// * 'replaced': block argument or operation outside of the vectorized loop. 807 /// * 'replacement': %0 = vector.broadcast %1 : f32 to vector<128xf32> 808 void VectorizationState::registerValueVectorReplacement( 809 Value replaced, Operation *replacement) { 810 assert(replacement->getNumResults() == 1 && 811 "Expected single-result replacement"); 812 if (Operation *defOp = replaced.getDefiningOp()) 813 registerOpVectorReplacement(defOp, replacement); 814 else 815 registerValueVectorReplacementImpl(replaced, replacement->getResult(0)); 816 } 817 818 /// Registers the vector replacement of a block argument (e.g., iter_args). 819 /// 820 /// Example: 821 /// * 'replaced': 'iter_arg' block argument. 822 /// * 'replacement': vectorized 'iter_arg' block argument. 823 void VectorizationState::registerBlockArgVectorReplacement( 824 BlockArgument replaced, BlockArgument replacement) { 825 registerValueVectorReplacementImpl(replaced, replacement); 826 } 827 828 void VectorizationState::registerValueVectorReplacementImpl(Value replaced, 829 Value replacement) { 830 assert(!valueVectorReplacement.contains(replaced) && 831 "Vector replacement already registered"); 832 assert(replacement.getType().isa<VectorType>() && 833 "Expected vector type in vector replacement"); 834 valueVectorReplacement.map(replaced, replacement); 835 } 836 837 /// Registers the scalar replacement of a scalar value. 'replacement' must be 838 /// scalar. Both values must be block arguments. Operation results should be 839 /// replaced using the 'registerOp*' utilitites. 840 /// 841 /// This utility is used to register the replacement of block arguments 842 /// that are within the loop to be vectorized and will continue being scalar 843 /// within the vector loop. 844 /// 845 /// Example: 846 /// * 'replaced': induction variable of a loop to be vectorized. 847 /// * 'replacement': new induction variable in the new vector loop. 848 void VectorizationState::registerValueScalarReplacement( 849 BlockArgument replaced, BlockArgument replacement) { 850 registerValueScalarReplacementImpl(replaced, replacement); 851 } 852 853 /// Registers the scalar replacement of a scalar result returned from a 854 /// reduction loop. 'replacement' must be scalar. 855 /// 856 /// This utility is used to register the replacement for scalar results of 857 /// vectorized reduction loops with iter_args. 858 /// 859 /// Example 2: 860 /// * 'replaced': %0 = affine.for %i = 0 to 512 iter_args(%x = ...) -> (f32) 861 /// * 'replacement': %1 = vector.reduction <add>, %0 : vector<4xf32> into f32 862 void VectorizationState::registerLoopResultScalarReplacement( 863 Value replaced, Value replacement) { 864 assert(isa<AffineForOp>(replaced.getDefiningOp())); 865 assert(loopResultScalarReplacement.count(replaced) == 0 && 866 "already registered"); 867 LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ will replace a result of the loop " 868 "with scalar: " 869 << replacement); 870 loopResultScalarReplacement[replaced] = replacement; 871 } 872 873 void VectorizationState::registerValueScalarReplacementImpl(Value replaced, 874 Value replacement) { 875 assert(!valueScalarReplacement.contains(replaced) && 876 "Scalar value replacement already registered"); 877 assert(!replacement.getType().isa<VectorType>() && 878 "Expected scalar type in scalar replacement"); 879 valueScalarReplacement.map(replaced, replacement); 880 } 881 882 /// Returns in 'replacedVals' the scalar replacement for values in 'inputVals'. 883 void VectorizationState::getScalarValueReplacementsFor( 884 ValueRange inputVals, SmallVectorImpl<Value> &replacedVals) { 885 for (Value inputVal : inputVals) 886 replacedVals.push_back(valueScalarReplacement.lookupOrDefault(inputVal)); 887 } 888 889 /// Erases a loop nest, including all its nested operations. 890 static void eraseLoopNest(AffineForOp forOp) { 891 LLVM_DEBUG(dbgs() << "[early-vect]+++++ erasing:\n" << forOp << "\n"); 892 forOp.erase(); 893 } 894 895 /// Erases the scalar loop nest after its successful vectorization. 896 void VectorizationState::finishVectorizationPattern(AffineForOp rootLoop) { 897 LLVM_DEBUG(dbgs() << "\n[early-vect] Finalizing vectorization\n"); 898 eraseLoopNest(rootLoop); 899 } 900 901 // Apply 'map' with 'mapOperands' returning resulting values in 'results'. 902 static void computeMemoryOpIndices(Operation *op, AffineMap map, 903 ValueRange mapOperands, 904 VectorizationState &state, 905 SmallVectorImpl<Value> &results) { 906 for (auto resultExpr : map.getResults()) { 907 auto singleResMap = 908 AffineMap::get(map.getNumDims(), map.getNumSymbols(), resultExpr); 909 auto afOp = state.builder.create<AffineApplyOp>(op->getLoc(), singleResMap, 910 mapOperands); 911 results.push_back(afOp); 912 } 913 } 914 915 /// Returns a FilterFunctionType that can be used in NestedPattern to match a 916 /// loop whose underlying load/store accesses are either invariant or all 917 // varying along the `fastestVaryingMemRefDimension`. 918 static FilterFunctionType 919 isVectorizableLoopPtrFactory(const DenseSet<Operation *> ¶llelLoops, 920 int fastestVaryingMemRefDimension) { 921 return [¶llelLoops, fastestVaryingMemRefDimension](Operation &forOp) { 922 auto loop = cast<AffineForOp>(forOp); 923 auto parallelIt = parallelLoops.find(loop); 924 if (parallelIt == parallelLoops.end()) 925 return false; 926 int memRefDim = -1; 927 auto vectorizableBody = 928 isVectorizableLoopBody(loop, &memRefDim, vectorTransferPattern()); 929 if (!vectorizableBody) 930 return false; 931 return memRefDim == -1 || fastestVaryingMemRefDimension == -1 || 932 memRefDim == fastestVaryingMemRefDimension; 933 }; 934 } 935 936 /// Returns the vector type resulting from applying the provided vectorization 937 /// strategy on the scalar type. 938 static VectorType getVectorType(Type scalarTy, 939 const VectorizationStrategy *strategy) { 940 assert(!scalarTy.isa<VectorType>() && "Expected scalar type"); 941 return VectorType::get(strategy->vectorSizes, scalarTy); 942 } 943 944 /// Tries to transform a scalar constant into a vector constant. Returns the 945 /// vector constant if the scalar type is valid vector element type. Returns 946 /// nullptr, otherwise. 947 static arith::ConstantOp vectorizeConstant(arith::ConstantOp constOp, 948 VectorizationState &state) { 949 Type scalarTy = constOp.getType(); 950 if (!VectorType::isValidElementType(scalarTy)) 951 return nullptr; 952 953 auto vecTy = getVectorType(scalarTy, state.strategy); 954 auto vecAttr = DenseElementsAttr::get(vecTy, constOp.getValue()); 955 956 OpBuilder::InsertionGuard guard(state.builder); 957 Operation *parentOp = state.builder.getInsertionBlock()->getParentOp(); 958 // Find the innermost vectorized ancestor loop to insert the vector constant. 959 while (parentOp && !state.vecLoopToVecDim.count(parentOp)) 960 parentOp = parentOp->getParentOp(); 961 assert(parentOp && state.vecLoopToVecDim.count(parentOp) && 962 isa<AffineForOp>(parentOp) && "Expected a vectorized for op"); 963 auto vecForOp = cast<AffineForOp>(parentOp); 964 state.builder.setInsertionPointToStart(vecForOp.getBody()); 965 auto newConstOp = 966 state.builder.create<arith::ConstantOp>(constOp.getLoc(), vecAttr); 967 968 // Register vector replacement for future uses in the scope. 969 state.registerOpVectorReplacement(constOp, newConstOp); 970 return newConstOp; 971 } 972 973 /// Creates a constant vector filled with the neutral elements of the given 974 /// reduction. The scalar type of vector elements will be taken from 975 /// `oldOperand`. 976 static arith::ConstantOp createInitialVector(arith::AtomicRMWKind reductionKind, 977 Value oldOperand, 978 VectorizationState &state) { 979 Type scalarTy = oldOperand.getType(); 980 if (!VectorType::isValidElementType(scalarTy)) 981 return nullptr; 982 983 Attribute valueAttr = getIdentityValueAttr( 984 reductionKind, scalarTy, state.builder, oldOperand.getLoc()); 985 auto vecTy = getVectorType(scalarTy, state.strategy); 986 auto vecAttr = DenseElementsAttr::get(vecTy, valueAttr); 987 auto newConstOp = 988 state.builder.create<arith::ConstantOp>(oldOperand.getLoc(), vecAttr); 989 990 return newConstOp; 991 } 992 993 /// Creates a mask used to filter out garbage elements in the last iteration 994 /// of unaligned loops. If a mask is not required then `nullptr` is returned. 995 /// The mask will be a vector of booleans representing meaningful vector 996 /// elements in the current iteration. It is filled with ones for each iteration 997 /// except for the last one, where it has the form `11...100...0` with the 998 /// number of ones equal to the number of meaningful elements (i.e. the number 999 /// of iterations that would be left in the original loop). 1000 static Value createMask(AffineForOp vecForOp, VectorizationState &state) { 1001 assert(state.strategy->vectorSizes.size() == 1 && 1002 "Creating a mask non-1-D vectors is not supported."); 1003 assert(vecForOp.getStep() == state.strategy->vectorSizes[0] && 1004 "Creating a mask for loops with non-unit original step size is not " 1005 "supported."); 1006 1007 // Check if we have already created the mask. 1008 if (Value mask = state.vecLoopToMask.lookup(vecForOp)) 1009 return mask; 1010 1011 // If the loop has constant bounds and the original number of iterations is 1012 // divisable by the vector size then we don't need a mask. 1013 if (vecForOp.hasConstantBounds()) { 1014 int64_t originalTripCount = 1015 vecForOp.getConstantUpperBound() - vecForOp.getConstantLowerBound(); 1016 if (originalTripCount % vecForOp.getStep() == 0) 1017 return nullptr; 1018 } 1019 1020 OpBuilder::InsertionGuard guard(state.builder); 1021 state.builder.setInsertionPointToStart(vecForOp.getBody()); 1022 1023 // We generate the mask using the `vector.create_mask` operation which accepts 1024 // the number of meaningful elements (i.e. the length of the prefix of 1s). 1025 // To compute the number of meaningful elements we subtract the current value 1026 // of the iteration variable from the upper bound of the loop. Example: 1027 // 1028 // // 500 is the upper bound of the loop 1029 // #map = affine_map<(d0) -> (500 - d0)> 1030 // %elems_left = affine.apply #map(%iv) 1031 // %mask = vector.create_mask %elems_left : vector<128xi1> 1032 1033 Location loc = vecForOp.getLoc(); 1034 1035 // First we get the upper bound of the loop using `affine.apply` or 1036 // `affine.min`. 1037 AffineMap ubMap = vecForOp.getUpperBoundMap(); 1038 Value ub; 1039 if (ubMap.getNumResults() == 1) 1040 ub = state.builder.create<AffineApplyOp>(loc, vecForOp.getUpperBoundMap(), 1041 vecForOp.getUpperBoundOperands()); 1042 else 1043 ub = state.builder.create<AffineMinOp>(loc, vecForOp.getUpperBoundMap(), 1044 vecForOp.getUpperBoundOperands()); 1045 // Then we compute the number of (original) iterations left in the loop. 1046 AffineExpr subExpr = 1047 state.builder.getAffineDimExpr(0) - state.builder.getAffineDimExpr(1); 1048 Value itersLeft = 1049 makeComposedAffineApply(state.builder, loc, AffineMap::get(2, 0, subExpr), 1050 {ub, vecForOp.getInductionVar()}); 1051 // If the affine maps were successfully composed then `ub` is unneeded. 1052 if (ub.use_empty()) 1053 ub.getDefiningOp()->erase(); 1054 // Finally we create the mask. 1055 Type maskTy = VectorType::get(state.strategy->vectorSizes, 1056 state.builder.getIntegerType(1)); 1057 Value mask = 1058 state.builder.create<vector::CreateMaskOp>(loc, maskTy, itersLeft); 1059 1060 LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ creating a mask:\n" 1061 << itersLeft << "\n" 1062 << mask << "\n"); 1063 1064 state.vecLoopToMask[vecForOp] = mask; 1065 return mask; 1066 } 1067 1068 /// Returns true if the provided value is vector uniform given the vectorization 1069 /// strategy. 1070 // TODO: For now, only values that are induction variables of loops not in 1071 // `loopToVectorDim` or invariants to all the loops in the vectorization 1072 // strategy are considered vector uniforms. 1073 static bool isUniformDefinition(Value value, 1074 const VectorizationStrategy *strategy) { 1075 AffineForOp forOp = getForInductionVarOwner(value); 1076 if (forOp && strategy->loopToVectorDim.count(forOp) == 0) 1077 return true; 1078 1079 for (auto loopToDim : strategy->loopToVectorDim) { 1080 auto loop = cast<AffineForOp>(loopToDim.first); 1081 if (!loop.isDefinedOutsideOfLoop(value)) 1082 return false; 1083 } 1084 return true; 1085 } 1086 1087 /// Generates a broadcast op for the provided uniform value using the 1088 /// vectorization strategy in 'state'. 1089 static Operation *vectorizeUniform(Value uniformVal, 1090 VectorizationState &state) { 1091 OpBuilder::InsertionGuard guard(state.builder); 1092 Value uniformScalarRepl = 1093 state.valueScalarReplacement.lookupOrDefault(uniformVal); 1094 state.builder.setInsertionPointAfterValue(uniformScalarRepl); 1095 1096 auto vectorTy = getVectorType(uniformVal.getType(), state.strategy); 1097 auto bcastOp = state.builder.create<BroadcastOp>(uniformVal.getLoc(), 1098 vectorTy, uniformScalarRepl); 1099 state.registerValueVectorReplacement(uniformVal, bcastOp); 1100 return bcastOp; 1101 } 1102 1103 /// Tries to vectorize a given `operand` by applying the following logic: 1104 /// 1. if the defining operation has been already vectorized, `operand` is 1105 /// already in the proper vector form; 1106 /// 2. if the `operand` is a constant, returns the vectorized form of the 1107 /// constant; 1108 /// 3. if the `operand` is uniform, returns a vector broadcast of the `op`; 1109 /// 4. otherwise, the vectorization of `operand` is not supported. 1110 /// Newly created vector operations are registered in `state` as replacement 1111 /// for their scalar counterparts. 1112 /// In particular this logic captures some of the use cases where definitions 1113 /// that are not scoped under the current pattern are needed to vectorize. 1114 /// One such example is top level function constants that need to be splatted. 1115 /// 1116 /// Returns an operand that has been vectorized to match `state`'s strategy if 1117 /// vectorization is possible with the above logic. Returns nullptr otherwise. 1118 /// 1119 /// TODO: handle more complex cases. 1120 static Value vectorizeOperand(Value operand, VectorizationState &state) { 1121 LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ vectorize operand: " << operand); 1122 // If this value is already vectorized, we are done. 1123 if (Value vecRepl = state.valueVectorReplacement.lookupOrNull(operand)) { 1124 LLVM_DEBUG(dbgs() << " -> already vectorized: " << vecRepl); 1125 return vecRepl; 1126 } 1127 1128 // An vector operand that is not in the replacement map should never reach 1129 // this point. Reaching this point could mean that the code was already 1130 // vectorized and we shouldn't try to vectorize already vectorized code. 1131 assert(!operand.getType().isa<VectorType>() && 1132 "Vector op not found in replacement map"); 1133 1134 // Vectorize constant. 1135 if (auto constOp = operand.getDefiningOp<arith::ConstantOp>()) { 1136 auto vecConstant = vectorizeConstant(constOp, state); 1137 LLVM_DEBUG(dbgs() << "-> constant: " << vecConstant); 1138 return vecConstant.getResult(); 1139 } 1140 1141 // Vectorize uniform values. 1142 if (isUniformDefinition(operand, state.strategy)) { 1143 Operation *vecUniform = vectorizeUniform(operand, state); 1144 LLVM_DEBUG(dbgs() << "-> uniform: " << *vecUniform); 1145 return vecUniform->getResult(0); 1146 } 1147 1148 // Check for unsupported block argument scenarios. A supported block argument 1149 // should have been vectorized already. 1150 if (!operand.getDefiningOp()) 1151 LLVM_DEBUG(dbgs() << "-> unsupported block argument\n"); 1152 else 1153 // Generic unsupported case. 1154 LLVM_DEBUG(dbgs() << "-> non-vectorizable\n"); 1155 1156 return nullptr; 1157 } 1158 1159 /// Vectorizes an affine load with the vectorization strategy in 'state' by 1160 /// generating a 'vector.transfer_read' op with the proper permutation map 1161 /// inferred from the indices of the load. The new 'vector.transfer_read' is 1162 /// registered as replacement of the scalar load. Returns the newly created 1163 /// 'vector.transfer_read' if vectorization was successful. Returns nullptr, 1164 /// otherwise. 1165 static Operation *vectorizeAffineLoad(AffineLoadOp loadOp, 1166 VectorizationState &state) { 1167 MemRefType memRefType = loadOp.getMemRefType(); 1168 Type elementType = memRefType.getElementType(); 1169 auto vectorType = VectorType::get(state.strategy->vectorSizes, elementType); 1170 1171 // Replace map operands with operands from the vector loop nest. 1172 SmallVector<Value, 8> mapOperands; 1173 state.getScalarValueReplacementsFor(loadOp.getMapOperands(), mapOperands); 1174 1175 // Compute indices for the transfer op. AffineApplyOp's may be generated. 1176 SmallVector<Value, 8> indices; 1177 indices.reserve(memRefType.getRank()); 1178 if (loadOp.getAffineMap() != 1179 state.builder.getMultiDimIdentityMap(memRefType.getRank())) 1180 computeMemoryOpIndices(loadOp, loadOp.getAffineMap(), mapOperands, state, 1181 indices); 1182 else 1183 indices.append(mapOperands.begin(), mapOperands.end()); 1184 1185 // Compute permutation map using the information of new vector loops. 1186 auto permutationMap = makePermutationMap(state.builder.getInsertionBlock(), 1187 indices, state.vecLoopToVecDim); 1188 if (!permutationMap) { 1189 LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ can't compute permutationMap\n"); 1190 return nullptr; 1191 } 1192 LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ permutationMap: "); 1193 LLVM_DEBUG(permutationMap.print(dbgs())); 1194 1195 auto transfer = state.builder.create<vector::TransferReadOp>( 1196 loadOp.getLoc(), vectorType, loadOp.getMemRef(), indices, permutationMap); 1197 1198 // Register replacement for future uses in the scope. 1199 state.registerOpVectorReplacement(loadOp, transfer); 1200 return transfer; 1201 } 1202 1203 /// Vectorizes an affine store with the vectorization strategy in 'state' by 1204 /// generating a 'vector.transfer_write' op with the proper permutation map 1205 /// inferred from the indices of the store. The new 'vector.transfer_store' is 1206 /// registered as replacement of the scalar load. Returns the newly created 1207 /// 'vector.transfer_write' if vectorization was successful. Returns nullptr, 1208 /// otherwise. 1209 static Operation *vectorizeAffineStore(AffineStoreOp storeOp, 1210 VectorizationState &state) { 1211 MemRefType memRefType = storeOp.getMemRefType(); 1212 Value vectorValue = vectorizeOperand(storeOp.getValueToStore(), state); 1213 if (!vectorValue) 1214 return nullptr; 1215 1216 // Replace map operands with operands from the vector loop nest. 1217 SmallVector<Value, 8> mapOperands; 1218 state.getScalarValueReplacementsFor(storeOp.getMapOperands(), mapOperands); 1219 1220 // Compute indices for the transfer op. AffineApplyOp's may be generated. 1221 SmallVector<Value, 8> indices; 1222 indices.reserve(memRefType.getRank()); 1223 if (storeOp.getAffineMap() != 1224 state.builder.getMultiDimIdentityMap(memRefType.getRank())) 1225 computeMemoryOpIndices(storeOp, storeOp.getAffineMap(), mapOperands, state, 1226 indices); 1227 else 1228 indices.append(mapOperands.begin(), mapOperands.end()); 1229 1230 // Compute permutation map using the information of new vector loops. 1231 auto permutationMap = makePermutationMap(state.builder.getInsertionBlock(), 1232 indices, state.vecLoopToVecDim); 1233 if (!permutationMap) 1234 return nullptr; 1235 LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ permutationMap: "); 1236 LLVM_DEBUG(permutationMap.print(dbgs())); 1237 1238 auto transfer = state.builder.create<vector::TransferWriteOp>( 1239 storeOp.getLoc(), vectorValue, storeOp.getMemRef(), indices, 1240 permutationMap); 1241 LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ vectorized store: " << transfer); 1242 1243 // Register replacement for future uses in the scope. 1244 state.registerOpVectorReplacement(storeOp, transfer); 1245 return transfer; 1246 } 1247 1248 /// Returns true if `value` is a constant equal to the neutral element of the 1249 /// given vectorizable reduction. 1250 static bool isNeutralElementConst(arith::AtomicRMWKind reductionKind, 1251 Value value, VectorizationState &state) { 1252 Type scalarTy = value.getType(); 1253 if (!VectorType::isValidElementType(scalarTy)) 1254 return false; 1255 Attribute valueAttr = getIdentityValueAttr(reductionKind, scalarTy, 1256 state.builder, value.getLoc()); 1257 if (auto constOp = dyn_cast_or_null<arith::ConstantOp>(value.getDefiningOp())) 1258 return constOp.getValue() == valueAttr; 1259 return false; 1260 } 1261 1262 /// Vectorizes a loop with the vectorization strategy in 'state'. A new loop is 1263 /// created and registered as replacement for the scalar loop. The builder's 1264 /// insertion point is set to the new loop's body so that subsequent vectorized 1265 /// operations are inserted into the new loop. If the loop is a vector 1266 /// dimension, the step of the newly created loop will reflect the vectorization 1267 /// factor used to vectorized that dimension. 1268 static Operation *vectorizeAffineForOp(AffineForOp forOp, 1269 VectorizationState &state) { 1270 const VectorizationStrategy &strategy = *state.strategy; 1271 auto loopToVecDimIt = strategy.loopToVectorDim.find(forOp); 1272 bool isLoopVecDim = loopToVecDimIt != strategy.loopToVectorDim.end(); 1273 1274 // TODO: Vectorization of reduction loops is not supported for non-unit steps. 1275 if (isLoopVecDim && forOp.getNumIterOperands() > 0 && forOp.getStep() != 1) { 1276 LLVM_DEBUG( 1277 dbgs() 1278 << "\n[early-vect]+++++ unsupported step size for reduction loop: " 1279 << forOp.getStep() << "\n"); 1280 return nullptr; 1281 } 1282 1283 // If we are vectorizing a vector dimension, compute a new step for the new 1284 // vectorized loop using the vectorization factor for the vector dimension. 1285 // Otherwise, propagate the step of the scalar loop. 1286 unsigned newStep; 1287 if (isLoopVecDim) { 1288 unsigned vectorDim = loopToVecDimIt->second; 1289 assert(vectorDim < strategy.vectorSizes.size() && "vector dim overflow"); 1290 int64_t forOpVecFactor = strategy.vectorSizes[vectorDim]; 1291 newStep = forOp.getStep() * forOpVecFactor; 1292 } else { 1293 newStep = forOp.getStep(); 1294 } 1295 1296 // Get information about reduction kinds. 1297 ArrayRef<LoopReduction> reductions; 1298 if (isLoopVecDim && forOp.getNumIterOperands() > 0) { 1299 auto it = strategy.reductionLoops.find(forOp); 1300 assert(it != strategy.reductionLoops.end() && 1301 "Reduction descriptors not found when vectorizing a reduction loop"); 1302 reductions = it->second; 1303 assert(reductions.size() == forOp.getNumIterOperands() && 1304 "The size of reductions array must match the number of iter_args"); 1305 } 1306 1307 // Vectorize 'iter_args'. 1308 SmallVector<Value, 8> vecIterOperands; 1309 if (!isLoopVecDim) { 1310 for (auto operand : forOp.getIterOperands()) 1311 vecIterOperands.push_back(vectorizeOperand(operand, state)); 1312 } else { 1313 // For reduction loops we need to pass a vector of neutral elements as an 1314 // initial value of the accumulator. We will add the original initial value 1315 // later. 1316 for (auto redAndOperand : llvm::zip(reductions, forOp.getIterOperands())) { 1317 vecIterOperands.push_back(createInitialVector( 1318 std::get<0>(redAndOperand).kind, std::get<1>(redAndOperand), state)); 1319 } 1320 } 1321 1322 auto vecForOp = state.builder.create<AffineForOp>( 1323 forOp.getLoc(), forOp.getLowerBoundOperands(), forOp.getLowerBoundMap(), 1324 forOp.getUpperBoundOperands(), forOp.getUpperBoundMap(), newStep, 1325 vecIterOperands, 1326 /*bodyBuilder=*/[](OpBuilder &, Location, Value, ValueRange) { 1327 // Make sure we don't create a default terminator in the loop body as 1328 // the proper terminator will be added during vectorization. 1329 }); 1330 1331 // Register loop-related replacements: 1332 // 1) The new vectorized loop is registered as vector replacement of the 1333 // scalar loop. 1334 // 2) The new iv of the vectorized loop is registered as scalar replacement 1335 // since a scalar copy of the iv will prevail in the vectorized loop. 1336 // TODO: A vector replacement will also be added in the future when 1337 // vectorization of linear ops is supported. 1338 // 3) The new 'iter_args' region arguments are registered as vector 1339 // replacements since they have been vectorized. 1340 // 4) If the loop performs a reduction along the vector dimension, a 1341 // `vector.reduction` or similar op is inserted for each resulting value 1342 // of the loop and its scalar value replaces the corresponding scalar 1343 // result of the loop. 1344 state.registerOpVectorReplacement(forOp, vecForOp); 1345 state.registerValueScalarReplacement(forOp.getInductionVar(), 1346 vecForOp.getInductionVar()); 1347 for (auto iterTuple : 1348 llvm ::zip(forOp.getRegionIterArgs(), vecForOp.getRegionIterArgs())) 1349 state.registerBlockArgVectorReplacement(std::get<0>(iterTuple), 1350 std::get<1>(iterTuple)); 1351 1352 if (isLoopVecDim) { 1353 for (unsigned i = 0; i < vecForOp.getNumIterOperands(); ++i) { 1354 // First, we reduce the vector returned from the loop into a scalar. 1355 Value reducedRes = 1356 getVectorReductionOp(reductions[i].kind, state.builder, 1357 vecForOp.getLoc(), vecForOp.getResult(i)); 1358 LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ creating a vector reduction: " 1359 << reducedRes); 1360 // Then we combine it with the original (scalar) initial value unless it 1361 // is equal to the neutral element of the reduction. 1362 Value origInit = forOp.getOperand(forOp.getNumControlOperands() + i); 1363 Value finalRes = reducedRes; 1364 if (!isNeutralElementConst(reductions[i].kind, origInit, state)) 1365 finalRes = 1366 arith::getReductionOp(reductions[i].kind, state.builder, 1367 reducedRes.getLoc(), reducedRes, origInit); 1368 state.registerLoopResultScalarReplacement(forOp.getResult(i), finalRes); 1369 } 1370 } 1371 1372 if (isLoopVecDim) 1373 state.vecLoopToVecDim[vecForOp] = loopToVecDimIt->second; 1374 1375 // Change insertion point so that upcoming vectorized instructions are 1376 // inserted into the vectorized loop's body. 1377 state.builder.setInsertionPointToStart(vecForOp.getBody()); 1378 1379 // If this is a reduction loop then we may need to create a mask to filter out 1380 // garbage in the last iteration. 1381 if (isLoopVecDim && forOp.getNumIterOperands() > 0) 1382 createMask(vecForOp, state); 1383 1384 return vecForOp; 1385 } 1386 1387 /// Vectorizes arbitrary operation by plain widening. We apply generic type 1388 /// widening of all its results and retrieve the vector counterparts for all its 1389 /// operands. 1390 static Operation *widenOp(Operation *op, VectorizationState &state) { 1391 SmallVector<Type, 8> vectorTypes; 1392 for (Value result : op->getResults()) 1393 vectorTypes.push_back( 1394 VectorType::get(state.strategy->vectorSizes, result.getType())); 1395 1396 SmallVector<Value, 8> vectorOperands; 1397 for (Value operand : op->getOperands()) { 1398 Value vecOperand = vectorizeOperand(operand, state); 1399 if (!vecOperand) { 1400 LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ an operand failed vectorize\n"); 1401 return nullptr; 1402 } 1403 vectorOperands.push_back(vecOperand); 1404 } 1405 1406 // Create a clone of the op with the proper operands and return types. 1407 // TODO: The following assumes there is always an op with a fixed 1408 // name that works both in scalar mode and vector mode. 1409 // TODO: Is it worth considering an Operation.clone operation which 1410 // changes the type so we can promote an Operation with less boilerplate? 1411 Operation *vecOp = 1412 state.builder.create(op->getLoc(), op->getName().getIdentifier(), 1413 vectorOperands, vectorTypes, op->getAttrs()); 1414 state.registerOpVectorReplacement(op, vecOp); 1415 return vecOp; 1416 } 1417 1418 /// Vectorizes a yield operation by widening its types. The builder's insertion 1419 /// point is set after the vectorized parent op to continue vectorizing the 1420 /// operations after the parent op. When vectorizing a reduction loop a mask may 1421 /// be used to prevent adding garbage values to the accumulator. 1422 static Operation *vectorizeAffineYieldOp(AffineYieldOp yieldOp, 1423 VectorizationState &state) { 1424 Operation *newYieldOp = widenOp(yieldOp, state); 1425 Operation *newParentOp = state.builder.getInsertionBlock()->getParentOp(); 1426 1427 // If there is a mask for this loop then we must prevent garbage values from 1428 // being added to the accumulator by inserting `select` operations, for 1429 // example: 1430 // 1431 // %res = arith.addf %acc, %val : vector<128xf32> 1432 // %res_masked = select %mask, %res, %acc : vector<128xi1>, vector<128xf32> 1433 // affine.yield %res_masked : vector<128xf32> 1434 // 1435 if (Value mask = state.vecLoopToMask.lookup(newParentOp)) { 1436 state.builder.setInsertionPoint(newYieldOp); 1437 for (unsigned i = 0; i < newYieldOp->getNumOperands(); ++i) { 1438 Value result = newYieldOp->getOperand(i); 1439 Value iterArg = cast<AffineForOp>(newParentOp).getRegionIterArgs()[i]; 1440 Value maskedResult = state.builder.create<arith::SelectOp>( 1441 result.getLoc(), mask, result, iterArg); 1442 LLVM_DEBUG( 1443 dbgs() << "\n[early-vect]+++++ masking a yielded vector value: " 1444 << maskedResult); 1445 newYieldOp->setOperand(i, maskedResult); 1446 } 1447 } 1448 1449 state.builder.setInsertionPointAfter(newParentOp); 1450 return newYieldOp; 1451 } 1452 1453 /// Encodes Operation-specific behavior for vectorization. In general we 1454 /// assume that all operands of an op must be vectorized but this is not 1455 /// always true. In the future, it would be nice to have a trait that 1456 /// describes how a particular operation vectorizes. For now we implement the 1457 /// case distinction here. Returns a vectorized form of an operation or 1458 /// nullptr if vectorization fails. 1459 // TODO: consider adding a trait to Op to describe how it gets vectorized. 1460 // Maybe some Ops are not vectorizable or require some tricky logic, we cannot 1461 // do one-off logic here; ideally it would be TableGen'd. 1462 static Operation *vectorizeOneOperation(Operation *op, 1463 VectorizationState &state) { 1464 // Sanity checks. 1465 assert(!isa<vector::TransferReadOp>(op) && 1466 "vector.transfer_read cannot be further vectorized"); 1467 assert(!isa<vector::TransferWriteOp>(op) && 1468 "vector.transfer_write cannot be further vectorized"); 1469 1470 if (auto loadOp = dyn_cast<AffineLoadOp>(op)) 1471 return vectorizeAffineLoad(loadOp, state); 1472 if (auto storeOp = dyn_cast<AffineStoreOp>(op)) 1473 return vectorizeAffineStore(storeOp, state); 1474 if (auto forOp = dyn_cast<AffineForOp>(op)) 1475 return vectorizeAffineForOp(forOp, state); 1476 if (auto yieldOp = dyn_cast<AffineYieldOp>(op)) 1477 return vectorizeAffineYieldOp(yieldOp, state); 1478 if (auto constant = dyn_cast<arith::ConstantOp>(op)) 1479 return vectorizeConstant(constant, state); 1480 1481 // Other ops with regions are not supported. 1482 if (op->getNumRegions() != 0) 1483 return nullptr; 1484 1485 return widenOp(op, state); 1486 } 1487 1488 /// Recursive implementation to convert all the nested loops in 'match' to a 2D 1489 /// vector container that preserves the relative nesting level of each loop with 1490 /// respect to the others in 'match'. 'currentLevel' is the nesting level that 1491 /// will be assigned to the loop in the current 'match'. 1492 static void 1493 getMatchedAffineLoopsRec(NestedMatch match, unsigned currentLevel, 1494 std::vector<SmallVector<AffineForOp, 2>> &loops) { 1495 // Add a new empty level to the output if it doesn't exist already. 1496 assert(currentLevel <= loops.size() && "Unexpected currentLevel"); 1497 if (currentLevel == loops.size()) 1498 loops.emplace_back(); 1499 1500 // Add current match and recursively visit its children. 1501 loops[currentLevel].push_back(cast<AffineForOp>(match.getMatchedOperation())); 1502 for (auto childMatch : match.getMatchedChildren()) { 1503 getMatchedAffineLoopsRec(childMatch, currentLevel + 1, loops); 1504 } 1505 } 1506 1507 /// Converts all the nested loops in 'match' to a 2D vector container that 1508 /// preserves the relative nesting level of each loop with respect to the others 1509 /// in 'match'. This means that every loop in 'loops[i]' will have a parent loop 1510 /// in 'loops[i-1]'. A loop in 'loops[i]' may or may not have a child loop in 1511 /// 'loops[i+1]'. 1512 static void 1513 getMatchedAffineLoops(NestedMatch match, 1514 std::vector<SmallVector<AffineForOp, 2>> &loops) { 1515 getMatchedAffineLoopsRec(match, /*currLoopDepth=*/0, loops); 1516 } 1517 1518 /// Internal implementation to vectorize affine loops from a single loop nest 1519 /// using an n-D vectorization strategy. 1520 static LogicalResult 1521 vectorizeLoopNest(std::vector<SmallVector<AffineForOp, 2>> &loops, 1522 const VectorizationStrategy &strategy) { 1523 assert(loops[0].size() == 1 && "Expected single root loop"); 1524 AffineForOp rootLoop = loops[0][0]; 1525 VectorizationState state(rootLoop.getContext()); 1526 state.builder.setInsertionPointAfter(rootLoop); 1527 state.strategy = &strategy; 1528 1529 // Since patterns are recursive, they can very well intersect. 1530 // Since we do not want a fully greedy strategy in general, we decouple 1531 // pattern matching, from profitability analysis, from application. 1532 // As a consequence we must check that each root pattern is still 1533 // vectorizable. If a pattern is not vectorizable anymore, we just skip it. 1534 // TODO: implement a non-greedy profitability analysis that keeps only 1535 // non-intersecting patterns. 1536 if (!isVectorizableLoopBody(rootLoop, vectorTransferPattern())) { 1537 LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ loop is not vectorizable"); 1538 return failure(); 1539 } 1540 1541 ////////////////////////////////////////////////////////////////////////////// 1542 // Vectorize the scalar loop nest following a topological order. A new vector 1543 // loop nest with the vectorized operations is created along the process. If 1544 // vectorization succeeds, the scalar loop nest is erased. If vectorization 1545 // fails, the vector loop nest is erased and the scalar loop nest is not 1546 // modified. 1547 ////////////////////////////////////////////////////////////////////////////// 1548 1549 auto opVecResult = rootLoop.walk<WalkOrder::PreOrder>([&](Operation *op) { 1550 LLVM_DEBUG(dbgs() << "[early-vect]+++++ Vectorizing: " << *op); 1551 Operation *vectorOp = vectorizeOneOperation(op, state); 1552 if (!vectorOp) { 1553 LLVM_DEBUG( 1554 dbgs() << "[early-vect]+++++ failed vectorizing the operation: " 1555 << *op << "\n"); 1556 return WalkResult::interrupt(); 1557 } 1558 1559 return WalkResult::advance(); 1560 }); 1561 1562 if (opVecResult.wasInterrupted()) { 1563 LLVM_DEBUG(dbgs() << "[early-vect]+++++ failed vectorization for: " 1564 << rootLoop << "\n"); 1565 // Erase vector loop nest if it was created. 1566 auto vecRootLoopIt = state.opVectorReplacement.find(rootLoop); 1567 if (vecRootLoopIt != state.opVectorReplacement.end()) 1568 eraseLoopNest(cast<AffineForOp>(vecRootLoopIt->second)); 1569 1570 return failure(); 1571 } 1572 1573 // Replace results of reduction loops with the scalar values computed using 1574 // `vector.reduce` or similar ops. 1575 for (auto resPair : state.loopResultScalarReplacement) 1576 resPair.first.replaceAllUsesWith(resPair.second); 1577 1578 assert(state.opVectorReplacement.count(rootLoop) == 1 && 1579 "Expected vector replacement for loop nest"); 1580 LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ success vectorizing pattern"); 1581 LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ vectorization result:\n" 1582 << *state.opVectorReplacement[rootLoop]); 1583 1584 // Finish this vectorization pattern. 1585 state.finishVectorizationPattern(rootLoop); 1586 return success(); 1587 } 1588 1589 /// Extracts the matched loops and vectorizes them following a topological 1590 /// order. A new vector loop nest will be created if vectorization succeeds. The 1591 /// original loop nest won't be modified in any case. 1592 static LogicalResult vectorizeRootMatch(NestedMatch m, 1593 const VectorizationStrategy &strategy) { 1594 std::vector<SmallVector<AffineForOp, 2>> loopsToVectorize; 1595 getMatchedAffineLoops(m, loopsToVectorize); 1596 return vectorizeLoopNest(loopsToVectorize, strategy); 1597 } 1598 1599 /// Traverses all the loop matches and classifies them into intersection 1600 /// buckets. Two matches intersect if any of them encloses the other one. A 1601 /// match intersects with a bucket if the match intersects with the root 1602 /// (outermost) loop in that bucket. 1603 static void computeIntersectionBuckets( 1604 ArrayRef<NestedMatch> matches, 1605 std::vector<SmallVector<NestedMatch, 8>> &intersectionBuckets) { 1606 assert(intersectionBuckets.empty() && "Expected empty output"); 1607 // Keeps track of the root (outermost) loop of each bucket. 1608 SmallVector<AffineForOp, 8> bucketRoots; 1609 1610 for (const NestedMatch &match : matches) { 1611 AffineForOp matchRoot = cast<AffineForOp>(match.getMatchedOperation()); 1612 bool intersects = false; 1613 for (int i = 0, end = intersectionBuckets.size(); i < end; ++i) { 1614 AffineForOp bucketRoot = bucketRoots[i]; 1615 // Add match to the bucket if the bucket root encloses the match root. 1616 if (bucketRoot->isAncestor(matchRoot)) { 1617 intersectionBuckets[i].push_back(match); 1618 intersects = true; 1619 break; 1620 } 1621 // Add match to the bucket if the match root encloses the bucket root. The 1622 // match root becomes the new bucket root. 1623 if (matchRoot->isAncestor(bucketRoot)) { 1624 bucketRoots[i] = matchRoot; 1625 intersectionBuckets[i].push_back(match); 1626 intersects = true; 1627 break; 1628 } 1629 } 1630 1631 // Match doesn't intersect with any existing bucket. Create a new bucket for 1632 // it. 1633 if (!intersects) { 1634 bucketRoots.push_back(matchRoot); 1635 intersectionBuckets.emplace_back(); 1636 intersectionBuckets.back().push_back(match); 1637 } 1638 } 1639 } 1640 1641 /// Internal implementation to vectorize affine loops in 'loops' using the n-D 1642 /// vectorization factors in 'vectorSizes'. By default, each vectorization 1643 /// factor is applied inner-to-outer to the loops of each loop nest. 1644 /// 'fastestVaryingPattern' can be optionally used to provide a different loop 1645 /// vectorization order. `reductionLoops` can be provided to specify loops which 1646 /// can be vectorized along the reduction dimension. 1647 static void vectorizeLoops(Operation *parentOp, DenseSet<Operation *> &loops, 1648 ArrayRef<int64_t> vectorSizes, 1649 ArrayRef<int64_t> fastestVaryingPattern, 1650 const ReductionLoopMap &reductionLoops) { 1651 assert((reductionLoops.empty() || vectorSizes.size() == 1) && 1652 "Vectorizing reductions is supported only for 1-D vectors"); 1653 1654 // Compute 1-D, 2-D or 3-D loop pattern to be matched on the target loops. 1655 Optional<NestedPattern> pattern = 1656 makePattern(loops, vectorSizes.size(), fastestVaryingPattern); 1657 if (!pattern.hasValue()) { 1658 LLVM_DEBUG(dbgs() << "\n[early-vect] pattern couldn't be computed\n"); 1659 return; 1660 } 1661 1662 LLVM_DEBUG(dbgs() << "\n******************************************"); 1663 LLVM_DEBUG(dbgs() << "\n******************************************"); 1664 LLVM_DEBUG(dbgs() << "\n[early-vect] new pattern on parent op\n"); 1665 LLVM_DEBUG(dbgs() << *parentOp << "\n"); 1666 1667 unsigned patternDepth = pattern->getDepth(); 1668 1669 // Compute all the pattern matches and classify them into buckets of 1670 // intersecting matches. 1671 SmallVector<NestedMatch, 32> allMatches; 1672 pattern->match(parentOp, &allMatches); 1673 std::vector<SmallVector<NestedMatch, 8>> intersectionBuckets; 1674 computeIntersectionBuckets(allMatches, intersectionBuckets); 1675 1676 // Iterate over all buckets and vectorize the matches eagerly. We can only 1677 // vectorize one match from each bucket since all the matches within a bucket 1678 // intersect. 1679 for (auto &intersectingMatches : intersectionBuckets) { 1680 for (NestedMatch &match : intersectingMatches) { 1681 VectorizationStrategy strategy; 1682 // TODO: depending on profitability, elect to reduce the vector size. 1683 strategy.vectorSizes.assign(vectorSizes.begin(), vectorSizes.end()); 1684 strategy.reductionLoops = reductionLoops; 1685 if (failed(analyzeProfitability(match.getMatchedChildren(), 1, 1686 patternDepth, &strategy))) { 1687 continue; 1688 } 1689 vectorizeLoopIfProfitable(match.getMatchedOperation(), 0, patternDepth, 1690 &strategy); 1691 // Vectorize match. Skip the rest of intersecting matches in the bucket if 1692 // vectorization succeeded. 1693 // TODO: if pattern does not apply, report it; alter the cost/benefit. 1694 // TODO: some diagnostics if failure to vectorize occurs. 1695 if (succeeded(vectorizeRootMatch(match, strategy))) 1696 break; 1697 } 1698 } 1699 1700 LLVM_DEBUG(dbgs() << "\n"); 1701 } 1702 1703 std::unique_ptr<OperationPass<func::FuncOp>> 1704 createSuperVectorizePass(ArrayRef<int64_t> virtualVectorSize) { 1705 return std::make_unique<Vectorize>(virtualVectorSize); 1706 } 1707 std::unique_ptr<OperationPass<func::FuncOp>> createSuperVectorizePass() { 1708 return std::make_unique<Vectorize>(); 1709 } 1710 1711 /// Applies vectorization to the current function by searching over a bunch of 1712 /// predetermined patterns. 1713 void Vectorize::runOnOperation() { 1714 func::FuncOp f = getOperation(); 1715 if (!fastestVaryingPattern.empty() && 1716 fastestVaryingPattern.size() != vectorSizes.size()) { 1717 f.emitRemark("Fastest varying pattern specified with different size than " 1718 "the vector size."); 1719 return signalPassFailure(); 1720 } 1721 1722 if (vectorizeReductions && vectorSizes.size() != 1) { 1723 f.emitError("Vectorizing reductions is supported only for 1-D vectors."); 1724 return signalPassFailure(); 1725 } 1726 1727 DenseSet<Operation *> parallelLoops; 1728 ReductionLoopMap reductionLoops; 1729 1730 // If 'vectorize-reduction=true' is provided, we also populate the 1731 // `reductionLoops` map. 1732 if (vectorizeReductions) { 1733 f.walk([¶llelLoops, &reductionLoops](AffineForOp loop) { 1734 SmallVector<LoopReduction, 2> reductions; 1735 if (isLoopParallel(loop, &reductions)) { 1736 parallelLoops.insert(loop); 1737 // If it's not a reduction loop, adding it to the map is not necessary. 1738 if (!reductions.empty()) 1739 reductionLoops[loop] = reductions; 1740 } 1741 }); 1742 } else { 1743 f.walk([¶llelLoops](AffineForOp loop) { 1744 if (isLoopParallel(loop)) 1745 parallelLoops.insert(loop); 1746 }); 1747 } 1748 1749 // Thread-safe RAII local context, BumpPtrAllocator freed on exit. 1750 NestedPatternContext mlContext; 1751 vectorizeLoops(f, parallelLoops, vectorSizes, fastestVaryingPattern, 1752 reductionLoops); 1753 } 1754 1755 /// Verify that affine loops in 'loops' meet the nesting criteria expected by 1756 /// SuperVectorizer: 1757 /// * There must be at least one loop. 1758 /// * There must be a single root loop (nesting level 0). 1759 /// * Each loop at a given nesting level must be nested in a loop from a 1760 /// previous nesting level. 1761 static LogicalResult 1762 verifyLoopNesting(const std::vector<SmallVector<AffineForOp, 2>> &loops) { 1763 // Expected at least one loop. 1764 if (loops.empty()) 1765 return failure(); 1766 1767 // Expected only one root loop. 1768 if (loops[0].size() != 1) 1769 return failure(); 1770 1771 // Traverse loops outer-to-inner to check some invariants. 1772 for (int i = 1, end = loops.size(); i < end; ++i) { 1773 for (AffineForOp loop : loops[i]) { 1774 // Check that each loop at this level is nested in one of the loops from 1775 // the previous level. 1776 if (none_of(loops[i - 1], [&](AffineForOp maybeParent) { 1777 return maybeParent->isProperAncestor(loop); 1778 })) 1779 return failure(); 1780 1781 // Check that each loop at this level is not nested in another loop from 1782 // this level. 1783 for (AffineForOp sibling : loops[i]) { 1784 if (sibling->isProperAncestor(loop)) 1785 return failure(); 1786 } 1787 } 1788 } 1789 1790 return success(); 1791 } 1792 1793 namespace mlir { 1794 1795 /// External utility to vectorize affine loops in 'loops' using the n-D 1796 /// vectorization factors in 'vectorSizes'. By default, each vectorization 1797 /// factor is applied inner-to-outer to the loops of each loop nest. 1798 /// 'fastestVaryingPattern' can be optionally used to provide a different loop 1799 /// vectorization order. 1800 /// If `reductionLoops` is not empty, the given reduction loops may be 1801 /// vectorized along the reduction dimension. 1802 /// TODO: Vectorizing reductions is supported only for 1-D vectorization. 1803 void vectorizeAffineLoops(Operation *parentOp, DenseSet<Operation *> &loops, 1804 ArrayRef<int64_t> vectorSizes, 1805 ArrayRef<int64_t> fastestVaryingPattern, 1806 const ReductionLoopMap &reductionLoops) { 1807 // Thread-safe RAII local context, BumpPtrAllocator freed on exit. 1808 NestedPatternContext mlContext; 1809 vectorizeLoops(parentOp, loops, vectorSizes, fastestVaryingPattern, 1810 reductionLoops); 1811 } 1812 1813 /// External utility to vectorize affine loops from a single loop nest using an 1814 /// n-D vectorization strategy (see doc in VectorizationStrategy definition). 1815 /// Loops are provided in a 2D vector container. The first dimension represents 1816 /// the nesting level relative to the loops to be vectorized. The second 1817 /// dimension contains the loops. This means that: 1818 /// a) every loop in 'loops[i]' must have a parent loop in 'loops[i-1]', 1819 /// b) a loop in 'loops[i]' may or may not have a child loop in 'loops[i+1]'. 1820 /// 1821 /// For example, for the following loop nest: 1822 /// 1823 /// func @vec2d(%in0: memref<64x128x512xf32>, %in1: memref<64x128x128xf32>, 1824 /// %out0: memref<64x128x512xf32>, 1825 /// %out1: memref<64x128x128xf32>) { 1826 /// affine.for %i0 = 0 to 64 { 1827 /// affine.for %i1 = 0 to 128 { 1828 /// affine.for %i2 = 0 to 512 { 1829 /// %ld = affine.load %in0[%i0, %i1, %i2] : memref<64x128x512xf32> 1830 /// affine.store %ld, %out0[%i0, %i1, %i2] : memref<64x128x512xf32> 1831 /// } 1832 /// affine.for %i3 = 0 to 128 { 1833 /// %ld = affine.load %in1[%i0, %i1, %i3] : memref<64x128x128xf32> 1834 /// affine.store %ld, %out1[%i0, %i1, %i3] : memref<64x128x128xf32> 1835 /// } 1836 /// } 1837 /// } 1838 /// return 1839 /// } 1840 /// 1841 /// loops = {{%i0}, {%i2, %i3}}, to vectorize the outermost and the two 1842 /// innermost loops; 1843 /// loops = {{%i1}, {%i2, %i3}}, to vectorize the middle and the two innermost 1844 /// loops; 1845 /// loops = {{%i2}}, to vectorize only the first innermost loop; 1846 /// loops = {{%i3}}, to vectorize only the second innermost loop; 1847 /// loops = {{%i1}}, to vectorize only the middle loop. 1848 LogicalResult 1849 vectorizeAffineLoopNest(std::vector<SmallVector<AffineForOp, 2>> &loops, 1850 const VectorizationStrategy &strategy) { 1851 // Thread-safe RAII local context, BumpPtrAllocator freed on exit. 1852 NestedPatternContext mlContext; 1853 if (failed(verifyLoopNesting(loops))) 1854 return failure(); 1855 return vectorizeLoopNest(loops, strategy); 1856 } 1857 1858 std::unique_ptr<OperationPass<func::FuncOp>> 1859 createSuperVectorizePass(ArrayRef<int64_t> virtualVectorSize) { 1860 return std::make_unique<Vectorize>(virtualVectorSize); 1861 } 1862 std::unique_ptr<OperationPass<func::FuncOp>> createSuperVectorizePass() { 1863 return std::make_unique<Vectorize>(); 1864 } 1865 1866 } // namespace mlir 1867