1 //===- SuperVectorize.cpp - Vectorize Pass Impl ---------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements vectorization of loops, operations and data types to 10 // a target-independent, n-D super-vector abstraction. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PassDetail.h" 15 #include "mlir/Analysis/LoopAnalysis.h" 16 #include "mlir/Analysis/NestedMatcher.h" 17 #include "mlir/Analysis/SliceAnalysis.h" 18 #include "mlir/Analysis/Utils.h" 19 #include "mlir/Dialect/Affine/IR/AffineOps.h" 20 #include "mlir/Dialect/Affine/Passes.h" 21 #include "mlir/Dialect/Affine/Utils.h" 22 #include "mlir/Dialect/StandardOps/IR/Ops.h" 23 #include "mlir/Dialect/Vector/VectorOps.h" 24 #include "mlir/Dialect/Vector/VectorUtils.h" 25 #include "mlir/IR/AffineExpr.h" 26 #include "mlir/IR/Builders.h" 27 #include "mlir/IR/Location.h" 28 #include "mlir/IR/Types.h" 29 #include "mlir/Support/LLVM.h" 30 #include "mlir/Transforms/FoldUtils.h" 31 32 #include "llvm/ADT/DenseMap.h" 33 #include "llvm/ADT/DenseSet.h" 34 #include "llvm/ADT/SetVector.h" 35 #include "llvm/ADT/SmallString.h" 36 #include "llvm/ADT/SmallVector.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/Debug.h" 39 40 using namespace mlir; 41 42 /// 43 /// Implements a high-level vectorization strategy on a Function. 44 /// The abstraction used is that of super-vectors, which provide a single, 45 /// compact, representation in the vector types, information that is expected 46 /// to reduce the impact of the phase ordering problem 47 /// 48 /// Vector granularity: 49 /// =================== 50 /// This pass is designed to perform vectorization at a super-vector 51 /// granularity. A super-vector is loosely defined as a vector type that is a 52 /// multiple of a "good" vector size so the HW can efficiently implement a set 53 /// of high-level primitives. Multiple is understood along any dimension; e.g. 54 /// both vector<16xf32> and vector<2x8xf32> are valid super-vectors for a 55 /// vector<8xf32> HW vector. Note that a "good vector size so the HW can 56 /// efficiently implement a set of high-level primitives" is not necessarily an 57 /// integer multiple of actual hardware registers. We leave details of this 58 /// distinction unspecified for now. 59 /// 60 /// Some may prefer the terminology a "tile of HW vectors". In this case, one 61 /// should note that super-vectors implement an "always full tile" abstraction. 62 /// They guarantee no partial-tile separation is necessary by relying on a 63 /// high-level copy-reshape abstraction that we call vector.transfer. This 64 /// copy-reshape operations is also responsible for performing layout 65 /// transposition if necessary. In the general case this will require a scoped 66 /// allocation in some notional local memory. 67 /// 68 /// Whatever the mental model one prefers to use for this abstraction, the key 69 /// point is that we burn into a single, compact, representation in the vector 70 /// types, information that is expected to reduce the impact of the phase 71 /// ordering problem. Indeed, a vector type conveys information that: 72 /// 1. the associated loops have dependency semantics that do not prevent 73 /// vectorization; 74 /// 2. the associate loops have been sliced in chunks of static sizes that are 75 /// compatible with vector sizes (i.e. similar to unroll-and-jam); 76 /// 3. the inner loops, in the unroll-and-jam analogy of 2, are captured by 77 /// the 78 /// vector type and no vectorization hampering transformations can be 79 /// applied to them anymore; 80 /// 4. the underlying memrefs are accessed in some notional contiguous way 81 /// that allows loading into vectors with some amount of spatial locality; 82 /// In other words, super-vectorization provides a level of separation of 83 /// concern by way of opacity to subsequent passes. This has the effect of 84 /// encapsulating and propagating vectorization constraints down the list of 85 /// passes until we are ready to lower further. 86 /// 87 /// For a particular target, a notion of minimal n-d vector size will be 88 /// specified and vectorization targets a multiple of those. In the following 89 /// paragraph, let "k ." represent "a multiple of", to be understood as a 90 /// multiple in the same dimension (e.g. vector<16 x k . 128> summarizes 91 /// vector<16 x 128>, vector<16 x 256>, vector<16 x 1024>, etc). 92 /// 93 /// Some non-exhaustive notable super-vector sizes of interest include: 94 /// - CPU: vector<k . HW_vector_size>, 95 /// vector<k' . core_count x k . HW_vector_size>, 96 /// vector<socket_count x k' . core_count x k . HW_vector_size>; 97 /// - GPU: vector<k . warp_size>, 98 /// vector<k . warp_size x float2>, 99 /// vector<k . warp_size x float4>, 100 /// vector<k . warp_size x 4 x 4x 4> (for tensor_core sizes). 101 /// 102 /// Loops and operations are emitted that operate on those super-vector shapes. 103 /// Subsequent lowering passes will materialize to actual HW vector sizes. These 104 /// passes are expected to be (gradually) more target-specific. 105 /// 106 /// At a high level, a vectorized load in a loop will resemble: 107 /// ```mlir 108 /// affine.for %i = ? to ? step ? { 109 /// %v_a = vector.transfer_read A[%i] : memref<?xf32>, vector<128xf32> 110 /// } 111 /// ``` 112 /// It is the responsibility of the implementation of vector.transfer_read to 113 /// materialize vector registers from the original scalar memrefs. A later (more 114 /// target-dependent) lowering pass will materialize to actual HW vector sizes. 115 /// This lowering may be occur at different times: 116 /// 1. at the MLIR level into a combination of loops, unrolling, DmaStartOp + 117 /// DmaWaitOp + vectorized operations for data transformations and shuffle; 118 /// thus opening opportunities for unrolling and pipelining. This is an 119 /// instance of library call "whiteboxing"; or 120 /// 2. later in the a target-specific lowering pass or hand-written library 121 /// call; achieving full separation of concerns. This is an instance of 122 /// library call; or 123 /// 3. a mix of both, e.g. based on a model. 124 /// In the future, these operations will expose a contract to constrain the 125 /// search on vectorization patterns and sizes. 126 /// 127 /// Occurrence of super-vectorization in the compiler flow: 128 /// ======================================================= 129 /// This is an active area of investigation. We start with 2 remarks to position 130 /// super-vectorization in the context of existing ongoing work: LLVM VPLAN 131 /// and LLVM SLP Vectorizer. 132 /// 133 /// LLVM VPLAN: 134 /// ----------- 135 /// The astute reader may have noticed that in the limit, super-vectorization 136 /// can be applied at a similar time and with similar objectives than VPLAN. 137 /// For instance, in the case of a traditional, polyhedral compilation-flow (for 138 /// instance, the PPCG project uses ISL to provide dependence analysis, 139 /// multi-level(scheduling + tiling), lifting footprint to fast memory, 140 /// communication synthesis, mapping, register optimizations) and before 141 /// unrolling. When vectorization is applied at this *late* level in a typical 142 /// polyhedral flow, and is instantiated with actual hardware vector sizes, 143 /// super-vectorization is expected to match (or subsume) the type of patterns 144 /// that LLVM's VPLAN aims at targeting. The main difference here is that MLIR 145 /// is higher level and our implementation should be significantly simpler. Also 146 /// note that in this mode, recursive patterns are probably a bit of an overkill 147 /// although it is reasonable to expect that mixing a bit of outer loop and 148 /// inner loop vectorization + unrolling will provide interesting choices to 149 /// MLIR. 150 /// 151 /// LLVM SLP Vectorizer: 152 /// -------------------- 153 /// Super-vectorization however is not meant to be usable in a similar fashion 154 /// to the SLP vectorizer. The main difference lies in the information that 155 /// both vectorizers use: super-vectorization examines contiguity of memory 156 /// references along fastest varying dimensions and loops with recursive nested 157 /// patterns capturing imperfectly-nested loop nests; the SLP vectorizer, on 158 /// the other hand, performs flat pattern matching inside a single unrolled loop 159 /// body and stitches together pieces of load and store operations into full 160 /// 1-D vectors. We envision that the SLP vectorizer is a good way to capture 161 /// innermost loop, control-flow dependent patterns that super-vectorization may 162 /// not be able to capture easily. In other words, super-vectorization does not 163 /// aim at replacing the SLP vectorizer and the two solutions are complementary. 164 /// 165 /// Ongoing investigations: 166 /// ----------------------- 167 /// We discuss the following *early* places where super-vectorization is 168 /// applicable and touch on the expected benefits and risks . We list the 169 /// opportunities in the context of the traditional polyhedral compiler flow 170 /// described in PPCG. There are essentially 6 places in the MLIR pass pipeline 171 /// we expect to experiment with super-vectorization: 172 /// 1. Right after language lowering to MLIR: this is the earliest time where 173 /// super-vectorization is expected to be applied. At this level, all the 174 /// language/user/library-level annotations are available and can be fully 175 /// exploited. Examples include loop-type annotations (such as parallel, 176 /// reduction, scan, dependence distance vector, vectorizable) as well as 177 /// memory access annotations (such as non-aliasing writes guaranteed, 178 /// indirect accesses that are permutations by construction) accesses or 179 /// that a particular operation is prescribed atomic by the user. At this 180 /// level, anything that enriches what dependence analysis can do should be 181 /// aggressively exploited. At this level we are close to having explicit 182 /// vector types in the language, except we do not impose that burden on the 183 /// programmer/library: we derive information from scalar code + annotations. 184 /// 2. After dependence analysis and before polyhedral scheduling: the 185 /// information that supports vectorization does not need to be supplied by a 186 /// higher level of abstraction. Traditional dependence analysis is available 187 /// in MLIR and will be used to drive vectorization and cost models. 188 /// 189 /// Let's pause here and remark that applying super-vectorization as described 190 /// in 1. and 2. presents clear opportunities and risks: 191 /// - the opportunity is that vectorization is burned in the type system and 192 /// is protected from the adverse effect of loop scheduling, tiling, loop 193 /// interchange and all passes downstream. Provided that subsequent passes are 194 /// able to operate on vector types; the vector shapes, associated loop 195 /// iterator properties, alignment, and contiguity of fastest varying 196 /// dimensions are preserved until we lower the super-vector types. We expect 197 /// this to significantly rein in on the adverse effects of phase ordering. 198 /// - the risks are that a. all passes after super-vectorization have to work 199 /// on elemental vector types (not that this is always true, wherever 200 /// vectorization is applied) and b. that imposing vectorization constraints 201 /// too early may be overall detrimental to loop fusion, tiling and other 202 /// transformations because the dependence distances are coarsened when 203 /// operating on elemental vector types. For this reason, the pattern 204 /// profitability analysis should include a component that also captures the 205 /// maximal amount of fusion available under a particular pattern. This is 206 /// still at the stage of rough ideas but in this context, search is our 207 /// friend as the Tensor Comprehensions and auto-TVM contributions 208 /// demonstrated previously. 209 /// Bottom-line is we do not yet have good answers for the above but aim at 210 /// making it easy to answer such questions. 211 /// 212 /// Back to our listing, the last places where early super-vectorization makes 213 /// sense are: 214 /// 3. right after polyhedral-style scheduling: PLUTO-style algorithms are known 215 /// to improve locality, parallelism and be configurable (e.g. max-fuse, 216 /// smart-fuse etc). They can also have adverse effects on contiguity 217 /// properties that are required for vectorization but the vector.transfer 218 /// copy-reshape-pad-transpose abstraction is expected to help recapture 219 /// these properties. 220 /// 4. right after polyhedral-style scheduling+tiling; 221 /// 5. right after scheduling+tiling+rescheduling: points 4 and 5 represent 222 /// probably the most promising places because applying tiling achieves a 223 /// separation of concerns that allows rescheduling to worry less about 224 /// locality and more about parallelism and distribution (e.g. min-fuse). 225 /// 226 /// At these levels the risk-reward looks different: on one hand we probably 227 /// lost a good deal of language/user/library-level annotation; on the other 228 /// hand we gained parallelism and locality through scheduling and tiling. 229 /// However we probably want to ensure tiling is compatible with the 230 /// full-tile-only abstraction used in super-vectorization or suffer the 231 /// consequences. It is too early to place bets on what will win but we expect 232 /// super-vectorization to be the right abstraction to allow exploring at all 233 /// these levels. And again, search is our friend. 234 /// 235 /// Lastly, we mention it again here: 236 /// 6. as a MLIR-based alternative to VPLAN. 237 /// 238 /// Lowering, unrolling, pipelining: 239 /// ================================ 240 /// TODO: point to the proper places. 241 /// 242 /// Algorithm: 243 /// ========== 244 /// The algorithm proceeds in a few steps: 245 /// 1. defining super-vectorization patterns and matching them on the tree of 246 /// AffineForOp. A super-vectorization pattern is defined as a recursive 247 /// data structures that matches and captures nested, imperfectly-nested 248 /// loops that have a. conformable loop annotations attached (e.g. parallel, 249 /// reduction, vectorizable, ...) as well as b. all contiguous load/store 250 /// operations along a specified minor dimension (not necessarily the 251 /// fastest varying) ; 252 /// 2. analyzing those patterns for profitability (TODO: and 253 /// interference); 254 /// 3. Then, for each pattern in order: 255 /// a. applying iterative rewriting of the loop and the load operations in 256 /// DFS postorder. Rewriting is implemented by coarsening the loops and 257 /// turning load operations into opaque vector.transfer_read ops; 258 /// b. keeping track of the load operations encountered as "roots" and the 259 /// store operations as "terminals"; 260 /// c. traversing the use-def chains starting from the roots and iteratively 261 /// propagating vectorized values. Scalar values that are encountered 262 /// during this process must come from outside the scope of the current 263 /// pattern (TODO: enforce this and generalize). Such a scalar value 264 /// is vectorized only if it is a constant (into a vector splat). The 265 /// non-constant case is not supported for now and results in the pattern 266 /// failing to vectorize; 267 /// d. performing a second traversal on the terminals (store ops) to 268 /// rewriting the scalar value they write to memory into vector form. 269 /// If the scalar value has been vectorized previously, we simply replace 270 /// it by its vector form. Otherwise, if the scalar value is a constant, 271 /// it is vectorized into a splat. In all other cases, vectorization for 272 /// the pattern currently fails. 273 /// e. if everything under the root AffineForOp in the current pattern 274 /// vectorizes properly, we commit that loop to the IR. Otherwise we 275 /// discard it and restore a previously cloned version of the loop. Thanks 276 /// to the recursive scoping nature of matchers and captured patterns, 277 /// this is transparently achieved by a simple RAII implementation. 278 /// f. vectorization is applied on the next pattern in the list. Because 279 /// pattern interference avoidance is not yet implemented and that we do 280 /// not support further vectorizing an already vector load we need to 281 /// re-verify that the pattern is still vectorizable. This is expected to 282 /// make cost models more difficult to write and is subject to improvement 283 /// in the future. 284 /// 285 /// Points c. and d. above are worth additional comment. In most passes that 286 /// do not change the type of operands, it is usually preferred to eagerly 287 /// `replaceAllUsesWith`. Unfortunately this does not work for vectorization 288 /// because during the use-def chain traversal, all the operands of an operation 289 /// must be available in vector form. Trying to propagate eagerly makes the IR 290 /// temporarily invalid and results in errors such as: 291 /// `vectorize.mlir:308:13: error: 'addf' op requires the same type for all 292 /// operands and results 293 /// %s5 = addf %a5, %b5 : f32` 294 /// 295 /// Lastly, we show a minimal example for which use-def chains rooted in load / 296 /// vector.transfer_read are not enough. This is what motivated splitting 297 /// terminal processing out of the use-def chains starting from loads. In the 298 /// following snippet, there is simply no load:: 299 /// ```mlir 300 /// func @fill(%A : memref<128xf32>) -> () { 301 /// %f1 = constant 1.0 : f32 302 /// affine.for %i0 = 0 to 32 { 303 /// affine.store %f1, %A[%i0] : memref<128xf32, 0> 304 /// } 305 /// return 306 /// } 307 /// ``` 308 /// 309 /// Choice of loop transformation to support the algorithm: 310 /// ======================================================= 311 /// The choice of loop transformation to apply for coarsening vectorized loops 312 /// is still subject to exploratory tradeoffs. In particular, say we want to 313 /// vectorize by a factor 128, we want to transform the following input: 314 /// ```mlir 315 /// affine.for %i = %M to %N { 316 /// %a = affine.load %A[%i] : memref<?xf32> 317 /// } 318 /// ``` 319 /// 320 /// Traditionally, one would vectorize late (after scheduling, tiling, 321 /// memory promotion etc) say after stripmining (and potentially unrolling in 322 /// the case of LLVM's SLP vectorizer): 323 /// ```mlir 324 /// affine.for %i = floor(%M, 128) to ceil(%N, 128) { 325 /// affine.for %ii = max(%M, 128 * %i) to min(%N, 128*%i + 127) { 326 /// %a = affine.load %A[%ii] : memref<?xf32> 327 /// } 328 /// } 329 /// ``` 330 /// 331 /// Instead, we seek to vectorize early and freeze vector types before 332 /// scheduling, so we want to generate a pattern that resembles: 333 /// ```mlir 334 /// affine.for %i = ? to ? step ? { 335 /// %v_a = vector.transfer_read %A[%i] : memref<?xf32>, vector<128xf32> 336 /// } 337 /// ``` 338 /// 339 /// i. simply dividing the lower / upper bounds by 128 creates issues 340 /// when representing expressions such as ii + 1 because now we only 341 /// have access to original values that have been divided. Additional 342 /// information is needed to specify accesses at below-128 granularity; 343 /// ii. another alternative is to coarsen the loop step but this may have 344 /// consequences on dependence analysis and fusability of loops: fusable 345 /// loops probably need to have the same step (because we don't want to 346 /// stripmine/unroll to enable fusion). 347 /// As a consequence, we choose to represent the coarsening using the loop 348 /// step for now and reevaluate in the future. Note that we can renormalize 349 /// loop steps later if/when we have evidence that they are problematic. 350 /// 351 /// For the simple strawman example above, vectorizing for a 1-D vector 352 /// abstraction of size 128 returns code similar to: 353 /// ```mlir 354 /// affine.for %i = %M to %N step 128 { 355 /// %v_a = vector.transfer_read %A[%i] : memref<?xf32>, vector<128xf32> 356 /// } 357 /// ``` 358 /// 359 /// Unsupported cases, extensions, and work in progress (help welcome :-) ): 360 /// ======================================================================== 361 /// 1. lowering to concrete vector types for various HW; 362 /// 2. reduction support; 363 /// 3. non-effecting padding during vector.transfer_read and filter during 364 /// vector.transfer_write; 365 /// 4. misalignment support vector.transfer_read / vector.transfer_write 366 /// (hopefully without read-modify-writes); 367 /// 5. control-flow support; 368 /// 6. cost-models, heuristics and search; 369 /// 7. Op implementation, extensions and implication on memref views; 370 /// 8. many TODOs left around. 371 /// 372 /// Examples: 373 /// ========= 374 /// Consider the following Function: 375 /// ```mlir 376 /// func @vector_add_2d(%M : index, %N : index) -> f32 { 377 /// %A = alloc (%M, %N) : memref<?x?xf32, 0> 378 /// %B = alloc (%M, %N) : memref<?x?xf32, 0> 379 /// %C = alloc (%M, %N) : memref<?x?xf32, 0> 380 /// %f1 = constant 1.0 : f32 381 /// %f2 = constant 2.0 : f32 382 /// affine.for %i0 = 0 to %M { 383 /// affine.for %i1 = 0 to %N { 384 /// // non-scoped %f1 385 /// affine.store %f1, %A[%i0, %i1] : memref<?x?xf32, 0> 386 /// } 387 /// } 388 /// affine.for %i2 = 0 to %M { 389 /// affine.for %i3 = 0 to %N { 390 /// // non-scoped %f2 391 /// affine.store %f2, %B[%i2, %i3] : memref<?x?xf32, 0> 392 /// } 393 /// } 394 /// affine.for %i4 = 0 to %M { 395 /// affine.for %i5 = 0 to %N { 396 /// %a5 = affine.load %A[%i4, %i5] : memref<?x?xf32, 0> 397 /// %b5 = affine.load %B[%i4, %i5] : memref<?x?xf32, 0> 398 /// %s5 = addf %a5, %b5 : f32 399 /// // non-scoped %f1 400 /// %s6 = addf %s5, %f1 : f32 401 /// // non-scoped %f2 402 /// %s7 = addf %s5, %f2 : f32 403 /// // diamond dependency. 404 /// %s8 = addf %s7, %s6 : f32 405 /// affine.store %s8, %C[%i4, %i5] : memref<?x?xf32, 0> 406 /// } 407 /// } 408 /// %c7 = constant 7 : index 409 /// %c42 = constant 42 : index 410 /// %res = load %C[%c7, %c42] : memref<?x?xf32, 0> 411 /// return %res : f32 412 /// } 413 /// ``` 414 /// 415 /// The -affine-vectorize pass with the following arguments: 416 /// ``` 417 /// -affine-vectorize="virtual-vector-size=256 test-fastest-varying=0" 418 /// ``` 419 /// 420 /// produces this standard innermost-loop vectorized code: 421 /// ```mlir 422 /// func @vector_add_2d(%arg0 : index, %arg1 : index) -> f32 { 423 /// %0 = alloc(%arg0, %arg1) : memref<?x?xf32> 424 /// %1 = alloc(%arg0, %arg1) : memref<?x?xf32> 425 /// %2 = alloc(%arg0, %arg1) : memref<?x?xf32> 426 /// %cst = constant 1.0 : f32 427 /// %cst_0 = constant 2.0 : f32 428 /// affine.for %i0 = 0 to %arg0 { 429 /// affine.for %i1 = 0 to %arg1 step 256 { 430 /// %cst_1 = constant dense<vector<256xf32>, 1.0> : 431 /// vector<256xf32> 432 /// vector.transfer_write %cst_1, %0[%i0, %i1] : 433 /// vector<256xf32>, memref<?x?xf32> 434 /// } 435 /// } 436 /// affine.for %i2 = 0 to %arg0 { 437 /// affine.for %i3 = 0 to %arg1 step 256 { 438 /// %cst_2 = constant dense<vector<256xf32>, 2.0> : 439 /// vector<256xf32> 440 /// vector.transfer_write %cst_2, %1[%i2, %i3] : 441 /// vector<256xf32>, memref<?x?xf32> 442 /// } 443 /// } 444 /// affine.for %i4 = 0 to %arg0 { 445 /// affine.for %i5 = 0 to %arg1 step 256 { 446 /// %3 = vector.transfer_read %0[%i4, %i5] : 447 /// memref<?x?xf32>, vector<256xf32> 448 /// %4 = vector.transfer_read %1[%i4, %i5] : 449 /// memref<?x?xf32>, vector<256xf32> 450 /// %5 = addf %3, %4 : vector<256xf32> 451 /// %cst_3 = constant dense<vector<256xf32>, 1.0> : 452 /// vector<256xf32> 453 /// %6 = addf %5, %cst_3 : vector<256xf32> 454 /// %cst_4 = constant dense<vector<256xf32>, 2.0> : 455 /// vector<256xf32> 456 /// %7 = addf %5, %cst_4 : vector<256xf32> 457 /// %8 = addf %7, %6 : vector<256xf32> 458 /// vector.transfer_write %8, %2[%i4, %i5] : 459 /// vector<256xf32>, memref<?x?xf32> 460 /// } 461 /// } 462 /// %c7 = constant 7 : index 463 /// %c42 = constant 42 : index 464 /// %9 = load %2[%c7, %c42] : memref<?x?xf32> 465 /// return %9 : f32 466 /// } 467 /// ``` 468 /// 469 /// The -affine-vectorize pass with the following arguments: 470 /// ``` 471 /// -affine-vectorize="virtual-vector-size=32,256 test-fastest-varying=1,0" 472 /// ``` 473 /// 474 /// produces this more interesting mixed outer-innermost-loop vectorized code: 475 /// ```mlir 476 /// func @vector_add_2d(%arg0 : index, %arg1 : index) -> f32 { 477 /// %0 = alloc(%arg0, %arg1) : memref<?x?xf32> 478 /// %1 = alloc(%arg0, %arg1) : memref<?x?xf32> 479 /// %2 = alloc(%arg0, %arg1) : memref<?x?xf32> 480 /// %cst = constant 1.0 : f32 481 /// %cst_0 = constant 2.0 : f32 482 /// affine.for %i0 = 0 to %arg0 step 32 { 483 /// affine.for %i1 = 0 to %arg1 step 256 { 484 /// %cst_1 = constant dense<vector<32x256xf32>, 1.0> : 485 /// vector<32x256xf32> 486 /// vector.transfer_write %cst_1, %0[%i0, %i1] : 487 /// vector<32x256xf32>, memref<?x?xf32> 488 /// } 489 /// } 490 /// affine.for %i2 = 0 to %arg0 step 32 { 491 /// affine.for %i3 = 0 to %arg1 step 256 { 492 /// %cst_2 = constant dense<vector<32x256xf32>, 2.0> : 493 /// vector<32x256xf32> 494 /// vector.transfer_write %cst_2, %1[%i2, %i3] : 495 /// vector<32x256xf32>, memref<?x?xf32> 496 /// } 497 /// } 498 /// affine.for %i4 = 0 to %arg0 step 32 { 499 /// affine.for %i5 = 0 to %arg1 step 256 { 500 /// %3 = vector.transfer_read %0[%i4, %i5] : 501 /// memref<?x?xf32> vector<32x256xf32> 502 /// %4 = vector.transfer_read %1[%i4, %i5] : 503 /// memref<?x?xf32>, vector<32x256xf32> 504 /// %5 = addf %3, %4 : vector<32x256xf32> 505 /// %cst_3 = constant dense<vector<32x256xf32>, 1.0> : 506 /// vector<32x256xf32> 507 /// %6 = addf %5, %cst_3 : vector<32x256xf32> 508 /// %cst_4 = constant dense<vector<32x256xf32>, 2.0> : 509 /// vector<32x256xf32> 510 /// %7 = addf %5, %cst_4 : vector<32x256xf32> 511 /// %8 = addf %7, %6 : vector<32x256xf32> 512 /// vector.transfer_write %8, %2[%i4, %i5] : 513 /// vector<32x256xf32>, memref<?x?xf32> 514 /// } 515 /// } 516 /// %c7 = constant 7 : index 517 /// %c42 = constant 42 : index 518 /// %9 = load %2[%c7, %c42] : memref<?x?xf32> 519 /// return %9 : f32 520 /// } 521 /// ``` 522 /// 523 /// Of course, much more intricate n-D imperfectly-nested patterns can be 524 /// vectorized too and specified in a fully declarative fashion. 525 526 #define DEBUG_TYPE "early-vect" 527 528 using llvm::dbgs; 529 using llvm::SetVector; 530 531 /// Forward declaration. 532 static FilterFunctionType 533 isVectorizableLoopPtrFactory(const DenseSet<Operation *> ¶llelLoops, 534 int fastestVaryingMemRefDimension); 535 536 /// Creates a vectorization pattern from the command line arguments. 537 /// Up to 3-D patterns are supported. 538 /// If the command line argument requests a pattern of higher order, returns an 539 /// empty pattern list which will conservatively result in no vectorization. 540 static std::vector<NestedPattern> 541 makePatterns(const DenseSet<Operation *> ¶llelLoops, int vectorRank, 542 ArrayRef<int64_t> fastestVaryingPattern) { 543 using matcher::For; 544 int64_t d0 = fastestVaryingPattern.empty() ? -1 : fastestVaryingPattern[0]; 545 int64_t d1 = fastestVaryingPattern.size() < 2 ? -1 : fastestVaryingPattern[1]; 546 int64_t d2 = fastestVaryingPattern.size() < 3 ? -1 : fastestVaryingPattern[2]; 547 switch (vectorRank) { 548 case 1: 549 return {For(isVectorizableLoopPtrFactory(parallelLoops, d0))}; 550 case 2: 551 return {For(isVectorizableLoopPtrFactory(parallelLoops, d0), 552 For(isVectorizableLoopPtrFactory(parallelLoops, d1)))}; 553 case 3: 554 return {For(isVectorizableLoopPtrFactory(parallelLoops, d0), 555 For(isVectorizableLoopPtrFactory(parallelLoops, d1), 556 For(isVectorizableLoopPtrFactory(parallelLoops, d2))))}; 557 default: { 558 return std::vector<NestedPattern>(); 559 } 560 } 561 } 562 563 static NestedPattern &vectorTransferPattern() { 564 static auto pattern = matcher::Op([](Operation &op) { 565 return isa<vector::TransferReadOp, vector::TransferWriteOp>(op); 566 }); 567 return pattern; 568 } 569 570 namespace { 571 572 /// Base state for the vectorize pass. 573 /// Command line arguments are preempted by non-empty pass arguments. 574 struct Vectorize : public AffineVectorizeBase<Vectorize> { 575 Vectorize() = default; 576 Vectorize(ArrayRef<int64_t> virtualVectorSize); 577 void runOnFunction() override; 578 }; 579 580 } // end anonymous namespace 581 582 Vectorize::Vectorize(ArrayRef<int64_t> virtualVectorSize) { 583 vectorSizes = virtualVectorSize; 584 } 585 586 /////// TODO: Hoist to a VectorizationStrategy.cpp when appropriate. 587 ///////// 588 namespace { 589 590 struct VectorizationStrategy { 591 SmallVector<int64_t, 8> vectorSizes; 592 DenseMap<Operation *, unsigned> loopToVectorDim; 593 }; 594 595 } // end anonymous namespace 596 597 static void vectorizeLoopIfProfitable(Operation *loop, unsigned depthInPattern, 598 unsigned patternDepth, 599 VectorizationStrategy *strategy) { 600 assert(patternDepth > depthInPattern && 601 "patternDepth is greater than depthInPattern"); 602 if (patternDepth - depthInPattern > strategy->vectorSizes.size()) { 603 // Don't vectorize this loop 604 return; 605 } 606 strategy->loopToVectorDim[loop] = 607 strategy->vectorSizes.size() - (patternDepth - depthInPattern); 608 } 609 610 /// Implements a simple strawman strategy for vectorization. 611 /// Given a matched pattern `matches` of depth `patternDepth`, this strategy 612 /// greedily assigns the fastest varying dimension ** of the vector ** to the 613 /// innermost loop in the pattern. 614 /// When coupled with a pattern that looks for the fastest varying dimension in 615 /// load/store MemRefs, this creates a generic vectorization strategy that works 616 /// for any loop in a hierarchy (outermost, innermost or intermediate). 617 /// 618 /// TODO: In the future we should additionally increase the power of the 619 /// profitability analysis along 3 directions: 620 /// 1. account for loop extents (both static and parametric + annotations); 621 /// 2. account for data layout permutations; 622 /// 3. account for impact of vectorization on maximal loop fusion. 623 /// Then we can quantify the above to build a cost model and search over 624 /// strategies. 625 static LogicalResult analyzeProfitability(ArrayRef<NestedMatch> matches, 626 unsigned depthInPattern, 627 unsigned patternDepth, 628 VectorizationStrategy *strategy) { 629 for (auto m : matches) { 630 if (failed(analyzeProfitability(m.getMatchedChildren(), depthInPattern + 1, 631 patternDepth, strategy))) { 632 return failure(); 633 } 634 vectorizeLoopIfProfitable(m.getMatchedOperation(), depthInPattern, 635 patternDepth, strategy); 636 } 637 return success(); 638 } 639 640 ///// end TODO: Hoist to a VectorizationStrategy.cpp when appropriate ///// 641 642 namespace { 643 644 struct VectorizationState { 645 /// Adds an entry of pre/post vectorization operations in the state. 646 void registerReplacement(Operation *key, Operation *value); 647 /// When the current vectorization pattern is successful, this erases the 648 /// operations that were marked for erasure in the proper order and resets 649 /// the internal state for the next pattern. 650 void finishVectorizationPattern(); 651 652 // In-order tracking of original Operation that have been vectorized. 653 // Erase in reverse order. 654 SmallVector<Operation *, 16> toErase; 655 // Set of Operation that have been vectorized (the values in the 656 // vectorizationMap for hashed access). The vectorizedSet is used in 657 // particular to filter the operations that have already been vectorized by 658 // this pattern, when iterating over nested loops in this pattern. 659 DenseSet<Operation *> vectorizedSet; 660 // Map of old scalar Operation to new vectorized Operation. 661 DenseMap<Operation *, Operation *> vectorizationMap; 662 // Map of old scalar Value to new vectorized Value. 663 DenseMap<Value, Value> replacementMap; 664 // The strategy drives which loop to vectorize by which amount. 665 const VectorizationStrategy *strategy; 666 // Use-def roots. These represent the starting points for the worklist in the 667 // vectorizeNonTerminals function. They consist of the subset of load 668 // operations that have been vectorized. They can be retrieved from 669 // `vectorizationMap` but it is convenient to keep track of them in a separate 670 // data structure. 671 DenseSet<Operation *> roots; 672 // Terminal operations for the worklist in the vectorizeNonTerminals 673 // function. They consist of the subset of store operations that have been 674 // vectorized. They can be retrieved from `vectorizationMap` but it is 675 // convenient to keep track of them in a separate data structure. Since they 676 // do not necessarily belong to use-def chains starting from loads (e.g 677 // storing a constant), we need to handle them in a post-pass. 678 DenseSet<Operation *> terminals; 679 // Checks that the type of `op` is AffineStoreOp and adds it to the terminals 680 // set. 681 void registerTerminal(Operation *op); 682 // Folder used to factor out constant creation. 683 OperationFolder *folder; 684 685 private: 686 void registerReplacement(Value key, Value value); 687 }; 688 689 } // end namespace 690 691 void VectorizationState::registerReplacement(Operation *key, Operation *value) { 692 LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ commit vectorized op: "); 693 LLVM_DEBUG(key->print(dbgs())); 694 LLVM_DEBUG(dbgs() << " into "); 695 LLVM_DEBUG(value->print(dbgs())); 696 assert(key->getNumResults() == 1 && "already registered"); 697 assert(value->getNumResults() == 1 && "already registered"); 698 assert(vectorizedSet.count(value) == 0 && "already registered"); 699 assert(vectorizationMap.count(key) == 0 && "already registered"); 700 toErase.push_back(key); 701 vectorizedSet.insert(value); 702 vectorizationMap.insert(std::make_pair(key, value)); 703 registerReplacement(key->getResult(0), value->getResult(0)); 704 if (isa<AffineLoadOp>(key)) { 705 assert(roots.count(key) == 0 && "root was already inserted previously"); 706 roots.insert(key); 707 } 708 } 709 710 void VectorizationState::registerTerminal(Operation *op) { 711 assert(isa<AffineStoreOp>(op) && "terminal must be a AffineStoreOp"); 712 assert(terminals.count(op) == 0 && 713 "terminal was already inserted previously"); 714 terminals.insert(op); 715 } 716 717 void VectorizationState::finishVectorizationPattern() { 718 while (!toErase.empty()) { 719 auto *op = toErase.pop_back_val(); 720 LLVM_DEBUG(dbgs() << "\n[early-vect] finishVectorizationPattern erase: "); 721 LLVM_DEBUG(op->print(dbgs())); 722 op->erase(); 723 } 724 } 725 726 void VectorizationState::registerReplacement(Value key, Value value) { 727 assert(replacementMap.count(key) == 0 && "replacement already registered"); 728 replacementMap.insert(std::make_pair(key, value)); 729 } 730 731 // Apply 'map' with 'mapOperands' returning resulting values in 'results'. 732 static void computeMemoryOpIndices(Operation *op, AffineMap map, 733 ValueRange mapOperands, 734 SmallVectorImpl<Value> &results) { 735 OpBuilder builder(op); 736 for (auto resultExpr : map.getResults()) { 737 auto singleResMap = 738 AffineMap::get(map.getNumDims(), map.getNumSymbols(), resultExpr); 739 auto afOp = 740 builder.create<AffineApplyOp>(op->getLoc(), singleResMap, mapOperands); 741 results.push_back(afOp); 742 } 743 } 744 745 ////// TODO: Hoist to a VectorizationMaterialize.cpp when appropriate. //// 746 747 /// Handles the vectorization of load and store MLIR operations. 748 /// 749 /// AffineLoadOp operations are the roots of the vectorizeNonTerminals call. 750 /// They are vectorized immediately. The resulting vector.transfer_read is 751 /// immediately registered to replace all uses of the AffineLoadOp in this 752 /// pattern's scope. 753 /// 754 /// AffineStoreOp are the terminals of the vectorizeNonTerminals call. They 755 /// need to be vectorized late once all the use-def chains have been traversed. 756 /// Additionally, they may have ssa-values operands which come from outside the 757 /// scope of the current pattern. 758 /// Such special cases force us to delay the vectorization of the stores until 759 /// the last step. Here we merely register the store operation. 760 template <typename LoadOrStoreOpPointer> 761 static LogicalResult vectorizeRootOrTerminal(Value iv, 762 LoadOrStoreOpPointer memoryOp, 763 VectorizationState *state) { 764 auto memRefType = memoryOp.getMemRef().getType().template cast<MemRefType>(); 765 766 auto elementType = memRefType.getElementType(); 767 // TODO: ponder whether we want to further vectorize a vector value. 768 assert(VectorType::isValidElementType(elementType) && 769 "Not a valid vector element type"); 770 auto vectorType = VectorType::get(state->strategy->vectorSizes, elementType); 771 772 // Materialize a MemRef with 1 vector. 773 auto *opInst = memoryOp.getOperation(); 774 // For now, vector.transfers must be aligned, operate only on indices with an 775 // identity subset of AffineMap and do not change layout. 776 // TODO: increase the expressiveness power of vector.transfer operations 777 // as needed by various targets. 778 if (auto load = dyn_cast<AffineLoadOp>(opInst)) { 779 OpBuilder b(opInst); 780 ValueRange mapOperands = load.getMapOperands(); 781 SmallVector<Value, 8> indices; 782 indices.reserve(load.getMemRefType().getRank()); 783 if (load.getAffineMap() != 784 b.getMultiDimIdentityMap(load.getMemRefType().getRank())) { 785 computeMemoryOpIndices(opInst, load.getAffineMap(), mapOperands, indices); 786 } else { 787 indices.append(mapOperands.begin(), mapOperands.end()); 788 } 789 auto permutationMap = 790 makePermutationMap(opInst, indices, state->strategy->loopToVectorDim); 791 if (!permutationMap) 792 return LogicalResult::Failure; 793 LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ permutationMap: "); 794 LLVM_DEBUG(permutationMap.print(dbgs())); 795 auto transfer = b.create<vector::TransferReadOp>( 796 opInst->getLoc(), vectorType, memoryOp.getMemRef(), indices, 797 permutationMap); 798 state->registerReplacement(opInst, transfer.getOperation()); 799 } else { 800 state->registerTerminal(opInst); 801 } 802 return success(); 803 } 804 /// end TODO: Hoist to a VectorizationMaterialize.cpp when appropriate. /// 805 806 /// Coarsens the loops bounds and transforms all remaining load and store 807 /// operations into the appropriate vector.transfer. 808 static LogicalResult vectorizeAffineForOp(AffineForOp loop, int64_t step, 809 VectorizationState *state) { 810 loop.setStep(step); 811 812 FilterFunctionType notVectorizedThisPattern = [state](Operation &op) { 813 if (!matcher::isLoadOrStore(op)) { 814 return false; 815 } 816 return state->vectorizationMap.count(&op) == 0 && 817 state->vectorizedSet.count(&op) == 0 && 818 state->roots.count(&op) == 0 && state->terminals.count(&op) == 0; 819 }; 820 auto loadAndStores = matcher::Op(notVectorizedThisPattern); 821 SmallVector<NestedMatch, 8> loadAndStoresMatches; 822 loadAndStores.match(loop.getOperation(), &loadAndStoresMatches); 823 for (auto ls : loadAndStoresMatches) { 824 auto *opInst = ls.getMatchedOperation(); 825 auto load = dyn_cast<AffineLoadOp>(opInst); 826 auto store = dyn_cast<AffineStoreOp>(opInst); 827 LLVM_DEBUG(opInst->print(dbgs())); 828 LogicalResult result = 829 load ? vectorizeRootOrTerminal(loop.getInductionVar(), load, state) 830 : vectorizeRootOrTerminal(loop.getInductionVar(), store, state); 831 if (failed(result)) { 832 return failure(); 833 } 834 } 835 return success(); 836 } 837 838 /// Returns a FilterFunctionType that can be used in NestedPattern to match a 839 /// loop whose underlying load/store accesses are either invariant or all 840 // varying along the `fastestVaryingMemRefDimension`. 841 static FilterFunctionType 842 isVectorizableLoopPtrFactory(const DenseSet<Operation *> ¶llelLoops, 843 int fastestVaryingMemRefDimension) { 844 return [¶llelLoops, fastestVaryingMemRefDimension](Operation &forOp) { 845 auto loop = cast<AffineForOp>(forOp); 846 auto parallelIt = parallelLoops.find(loop); 847 if (parallelIt == parallelLoops.end()) 848 return false; 849 int memRefDim = -1; 850 auto vectorizableBody = 851 isVectorizableLoopBody(loop, &memRefDim, vectorTransferPattern()); 852 if (!vectorizableBody) 853 return false; 854 return memRefDim == -1 || fastestVaryingMemRefDimension == -1 || 855 memRefDim == fastestVaryingMemRefDimension; 856 }; 857 } 858 859 /// Apply vectorization of `loop` according to `state`. This is only triggered 860 /// if all vectorizations in `childrenMatches` have already succeeded 861 /// recursively in DFS post-order. 862 static LogicalResult 863 vectorizeLoopsAndLoadsRecursively(NestedMatch oneMatch, 864 VectorizationState *state) { 865 auto *loopInst = oneMatch.getMatchedOperation(); 866 auto loop = cast<AffineForOp>(loopInst); 867 auto childrenMatches = oneMatch.getMatchedChildren(); 868 869 // 1. DFS postorder recursion, if any of my children fails, I fail too. 870 for (auto m : childrenMatches) { 871 if (failed(vectorizeLoopsAndLoadsRecursively(m, state))) { 872 return failure(); 873 } 874 } 875 876 // 2. This loop may have been omitted from vectorization for various reasons 877 // (e.g. due to the performance model or pattern depth > vector size). 878 auto it = state->strategy->loopToVectorDim.find(loopInst); 879 if (it == state->strategy->loopToVectorDim.end()) { 880 return success(); 881 } 882 883 // 3. Actual post-order transformation. 884 auto vectorDim = it->second; 885 assert(vectorDim < state->strategy->vectorSizes.size() && 886 "vector dim overflow"); 887 // a. get actual vector size 888 auto vectorSize = state->strategy->vectorSizes[vectorDim]; 889 // b. loop transformation for early vectorization is still subject to 890 // exploratory tradeoffs (see top of the file). Apply coarsening, i.e.: 891 // | ub -> ub 892 // | step -> step * vectorSize 893 LLVM_DEBUG(dbgs() << "\n[early-vect] vectorizeForOp by " << vectorSize 894 << " : "); 895 LLVM_DEBUG(loopInst->print(dbgs())); 896 return vectorizeAffineForOp(loop, loop.getStep() * vectorSize, state); 897 } 898 899 /// Tries to transform a scalar constant into a vector splat of that constant. 900 /// Returns the vectorized splat operation if the constant is a valid vector 901 /// element type. 902 /// If `type` is not a valid vector type or if the scalar constant is not a 903 /// valid vector element type, returns nullptr. 904 static Value vectorizeConstant(Operation *op, ConstantOp constant, Type type) { 905 if (!type || !type.isa<VectorType>() || 906 !VectorType::isValidElementType(constant.getType())) { 907 return nullptr; 908 } 909 OpBuilder b(op); 910 Location loc = op->getLoc(); 911 auto vectorType = type.cast<VectorType>(); 912 auto attr = DenseElementsAttr::get(vectorType, constant.getValue()); 913 auto *constantOpInst = constant.getOperation(); 914 915 OperationState state(loc, constantOpInst->getName().getStringRef(), {}, 916 {vectorType}, {b.getNamedAttr("value", attr)}); 917 918 return b.createOperation(state)->getResult(0); 919 } 920 921 /// Tries to vectorize a given operand `op` of Operation `op` during 922 /// def-chain propagation or during terminal vectorization, by applying the 923 /// following logic: 924 /// 1. if the defining operation is part of the vectorizedSet (i.e. vectorized 925 /// useby -def propagation), `op` is already in the proper vector form; 926 /// 2. otherwise, the `op` may be in some other vector form that fails to 927 /// vectorize atm (i.e. broadcasting required), returns nullptr to indicate 928 /// failure; 929 /// 3. if the `op` is a constant, returns the vectorized form of the constant; 930 /// 4. non-constant scalars are currently non-vectorizable, in particular to 931 /// guard against vectorizing an index which may be loop-variant and needs 932 /// special handling. 933 /// 934 /// In particular this logic captures some of the use cases where definitions 935 /// that are not scoped under the current pattern are needed to vectorize. 936 /// One such example is top level function constants that need to be splatted. 937 /// 938 /// Returns an operand that has been vectorized to match `state`'s strategy if 939 /// vectorization is possible with the above logic. Returns nullptr otherwise. 940 /// 941 /// TODO: handle more complex cases. 942 static Value vectorizeOperand(Value operand, Operation *op, 943 VectorizationState *state) { 944 LLVM_DEBUG(dbgs() << "\n[early-vect]vectorize operand: " << operand); 945 // 1. If this value has already been vectorized this round, we are done. 946 if (state->vectorizedSet.count(operand.getDefiningOp()) > 0) { 947 LLVM_DEBUG(dbgs() << " -> already vector operand"); 948 return operand; 949 } 950 // 1.b. Delayed on-demand replacement of a use. 951 // Note that we cannot just call replaceAllUsesWith because it may result 952 // in ops with mixed types, for ops whose operands have not all yet 953 // been vectorized. This would be invalid IR. 954 auto it = state->replacementMap.find(operand); 955 if (it != state->replacementMap.end()) { 956 auto res = it->second; 957 LLVM_DEBUG(dbgs() << "-> delayed replacement by: " << res); 958 return res; 959 } 960 // 2. TODO: broadcast needed. 961 if (operand.getType().isa<VectorType>()) { 962 LLVM_DEBUG(dbgs() << "-> non-vectorizable"); 963 return nullptr; 964 } 965 // 3. vectorize constant. 966 if (auto constant = operand.getDefiningOp<ConstantOp>()) { 967 return vectorizeConstant( 968 op, constant, 969 VectorType::get(state->strategy->vectorSizes, operand.getType())); 970 } 971 // 4. currently non-vectorizable. 972 LLVM_DEBUG(dbgs() << "-> non-vectorizable: " << operand); 973 return nullptr; 974 } 975 976 /// Encodes Operation-specific behavior for vectorization. In general we assume 977 /// that all operands of an op must be vectorized but this is not always true. 978 /// In the future, it would be nice to have a trait that describes how a 979 /// particular operation vectorizes. For now we implement the case distinction 980 /// here. 981 /// Returns a vectorized form of an operation or nullptr if vectorization fails. 982 // TODO: consider adding a trait to Op to describe how it gets vectorized. 983 // Maybe some Ops are not vectorizable or require some tricky logic, we cannot 984 // do one-off logic here; ideally it would be TableGen'd. 985 static Operation *vectorizeOneOperation(Operation *opInst, 986 VectorizationState *state) { 987 // Sanity checks. 988 assert(!isa<AffineLoadOp>(opInst) && 989 "all loads must have already been fully vectorized independently"); 990 assert(!isa<vector::TransferReadOp>(opInst) && 991 "vector.transfer_read cannot be further vectorized"); 992 assert(!isa<vector::TransferWriteOp>(opInst) && 993 "vector.transfer_write cannot be further vectorized"); 994 995 if (auto store = dyn_cast<AffineStoreOp>(opInst)) { 996 OpBuilder b(opInst); 997 auto memRef = store.getMemRef(); 998 auto value = store.getValueToStore(); 999 auto vectorValue = vectorizeOperand(value, opInst, state); 1000 if (!vectorValue) 1001 return nullptr; 1002 1003 ValueRange mapOperands = store.getMapOperands(); 1004 SmallVector<Value, 8> indices; 1005 indices.reserve(store.getMemRefType().getRank()); 1006 if (store.getAffineMap() != 1007 b.getMultiDimIdentityMap(store.getMemRefType().getRank())) { 1008 computeMemoryOpIndices(opInst, store.getAffineMap(), mapOperands, 1009 indices); 1010 } else { 1011 indices.append(mapOperands.begin(), mapOperands.end()); 1012 } 1013 1014 auto permutationMap = 1015 makePermutationMap(opInst, indices, state->strategy->loopToVectorDim); 1016 if (!permutationMap) 1017 return nullptr; 1018 LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ permutationMap: "); 1019 LLVM_DEBUG(permutationMap.print(dbgs())); 1020 auto transfer = b.create<vector::TransferWriteOp>( 1021 opInst->getLoc(), vectorValue, memRef, indices, permutationMap); 1022 auto *res = transfer.getOperation(); 1023 LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ vectorized store: " << *res); 1024 // "Terminals" (i.e. AffineStoreOps) are erased on the spot. 1025 opInst->erase(); 1026 return res; 1027 } 1028 if (opInst->getNumRegions() != 0) 1029 return nullptr; 1030 1031 SmallVector<Type, 8> vectorTypes; 1032 for (auto v : opInst->getResults()) { 1033 vectorTypes.push_back( 1034 VectorType::get(state->strategy->vectorSizes, v.getType())); 1035 } 1036 SmallVector<Value, 8> vectorOperands; 1037 for (auto v : opInst->getOperands()) { 1038 vectorOperands.push_back(vectorizeOperand(v, opInst, state)); 1039 } 1040 // Check whether a single operand is null. If so, vectorization failed. 1041 bool success = llvm::all_of(vectorOperands, [](Value op) { return op; }); 1042 if (!success) { 1043 LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ an operand failed vectorize"); 1044 return nullptr; 1045 } 1046 1047 // Create a clone of the op with the proper operands and return types. 1048 // TODO: The following assumes there is always an op with a fixed 1049 // name that works both in scalar mode and vector mode. 1050 // TODO: Is it worth considering an Operation.clone operation which 1051 // changes the type so we can promote an Operation with less boilerplate? 1052 OpBuilder b(opInst); 1053 OperationState newOp(opInst->getLoc(), opInst->getName().getStringRef(), 1054 vectorOperands, vectorTypes, opInst->getAttrs(), 1055 /*successors=*/{}, /*regions=*/{}); 1056 return b.createOperation(newOp); 1057 } 1058 1059 /// Iterates over the forward slice from the loads in the vectorization pattern 1060 /// and rewrites them using their vectorized counterpart by: 1061 /// 1. Create the forward slice starting from the loads in the vectorization 1062 /// pattern. 1063 /// 2. Topologically sorts the forward slice. 1064 /// 3. For each operation in the slice, create the vector form of this 1065 /// operation, replacing each operand by a replacement operands retrieved from 1066 /// replacementMap. If any such replacement is missing, vectorization fails. 1067 static LogicalResult vectorizeNonTerminals(VectorizationState *state) { 1068 // 1. create initial worklist with the uses of the roots. 1069 SetVector<Operation *> worklist; 1070 // Note: state->roots have already been vectorized and must not be vectorized 1071 // again. This fits `getForwardSlice` which does not insert `op` in the 1072 // result. 1073 // Note: we have to exclude terminals because some of their defs may not be 1074 // nested under the vectorization pattern (e.g. constants defined in an 1075 // encompassing scope). 1076 // TODO: Use a backward slice for terminals, avoid special casing and 1077 // merge implementations. 1078 for (auto *op : state->roots) { 1079 getForwardSlice(op, &worklist, [state](Operation *op) { 1080 return state->terminals.count(op) == 0; // propagate if not terminal 1081 }); 1082 } 1083 // We merged multiple slices, topological order may not hold anymore. 1084 worklist = topologicalSort(worklist); 1085 1086 for (unsigned i = 0; i < worklist.size(); ++i) { 1087 auto *op = worklist[i]; 1088 LLVM_DEBUG(dbgs() << "\n[early-vect] vectorize use: "); 1089 LLVM_DEBUG(op->print(dbgs())); 1090 1091 // Create vector form of the operation. 1092 // Insert it just before op, on success register op as replaced. 1093 auto *vectorizedInst = vectorizeOneOperation(op, state); 1094 if (!vectorizedInst) { 1095 return failure(); 1096 } 1097 1098 // 3. Register replacement for future uses in the scope. 1099 // Note that we cannot just call replaceAllUsesWith because it may 1100 // result in ops with mixed types, for ops whose operands have not all 1101 // yet been vectorized. This would be invalid IR. 1102 state->registerReplacement(op, vectorizedInst); 1103 } 1104 return success(); 1105 } 1106 1107 /// Vectorization is a recursive procedure where anything below can fail. 1108 /// The root match thus needs to maintain a clone for handling failure. 1109 /// Each root may succeed independently but will otherwise clean after itself if 1110 /// anything below it fails. 1111 static LogicalResult vectorizeRootMatch(NestedMatch m, 1112 VectorizationStrategy *strategy) { 1113 auto loop = cast<AffineForOp>(m.getMatchedOperation()); 1114 OperationFolder folder(loop.getContext()); 1115 VectorizationState state; 1116 state.strategy = strategy; 1117 state.folder = &folder; 1118 1119 // Since patterns are recursive, they can very well intersect. 1120 // Since we do not want a fully greedy strategy in general, we decouple 1121 // pattern matching, from profitability analysis, from application. 1122 // As a consequence we must check that each root pattern is still 1123 // vectorizable. If a pattern is not vectorizable anymore, we just skip it. 1124 // TODO: implement a non-greedy profitability analysis that keeps only 1125 // non-intersecting patterns. 1126 if (!isVectorizableLoopBody(loop, vectorTransferPattern())) { 1127 LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ loop is not vectorizable"); 1128 return failure(); 1129 } 1130 1131 /// Sets up error handling for this root loop. This is how the root match 1132 /// maintains a clone for handling failure and restores the proper state via 1133 /// RAII. 1134 auto *loopInst = loop.getOperation(); 1135 OpBuilder builder(loopInst); 1136 auto clonedLoop = cast<AffineForOp>(builder.clone(*loopInst)); 1137 struct Guard { 1138 LogicalResult failure() { 1139 loop.getInductionVar().replaceAllUsesWith(clonedLoop.getInductionVar()); 1140 loop.erase(); 1141 return mlir::failure(); 1142 } 1143 LogicalResult success() { 1144 clonedLoop.erase(); 1145 return mlir::success(); 1146 } 1147 AffineForOp loop; 1148 AffineForOp clonedLoop; 1149 } guard{loop, clonedLoop}; 1150 1151 ////////////////////////////////////////////////////////////////////////////// 1152 // Start vectorizing. 1153 // From now on, any error triggers the scope guard above. 1154 ////////////////////////////////////////////////////////////////////////////// 1155 // 1. Vectorize all the loops matched by the pattern, recursively. 1156 // This also vectorizes the roots (AffineLoadOp) as well as registers the 1157 // terminals (AffineStoreOp) for post-processing vectorization (we need to 1158 // wait for all use-def chains into them to be vectorized first). 1159 if (failed(vectorizeLoopsAndLoadsRecursively(m, &state))) { 1160 LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ failed root vectorizeLoop"); 1161 return guard.failure(); 1162 } 1163 1164 // 2. Vectorize operations reached by use-def chains from root except the 1165 // terminals (store operations) that need to be post-processed separately. 1166 // TODO: add more as we expand. 1167 if (failed(vectorizeNonTerminals(&state))) { 1168 LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ failed vectorizeNonTerminals"); 1169 return guard.failure(); 1170 } 1171 1172 // 3. Post-process terminals. 1173 // Note: we have to post-process terminals because some of their defs may not 1174 // be nested under the vectorization pattern (e.g. constants defined in an 1175 // encompassing scope). 1176 // TODO: Use a backward slice for terminals, avoid special casing and 1177 // merge implementations. 1178 for (auto *op : state.terminals) { 1179 if (!vectorizeOneOperation(op, &state)) { // nullptr == failure 1180 LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ failed to vectorize terminals"); 1181 return guard.failure(); 1182 } 1183 } 1184 1185 // 4. Finish this vectorization pattern. 1186 LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ success vectorizing pattern"); 1187 state.finishVectorizationPattern(); 1188 return guard.success(); 1189 } 1190 1191 /// Applies vectorization to the current Function by searching over a bunch of 1192 /// predetermined patterns. 1193 void Vectorize::runOnFunction() { 1194 FuncOp f = getFunction(); 1195 if (!fastestVaryingPattern.empty() && 1196 fastestVaryingPattern.size() != vectorSizes.size()) { 1197 f.emitRemark("Fastest varying pattern specified with different size than " 1198 "the vector size."); 1199 return signalPassFailure(); 1200 } 1201 1202 DenseSet<Operation *> parallelLoops; 1203 f.walk([¶llelLoops](AffineForOp loop) { 1204 if (isLoopParallel(loop)) 1205 parallelLoops.insert(loop); 1206 }); 1207 1208 vectorizeAffineLoops(f, parallelLoops, vectorSizes, fastestVaryingPattern); 1209 } 1210 1211 namespace mlir { 1212 1213 /// Vectorizes affine loops in 'loops' using the n-D vectorization factors in 1214 /// 'vectorSizes'. By default, each vectorization factor is applied 1215 /// inner-to-outer to the loops of each loop nest. 'fastestVaryingPattern' can 1216 /// be optionally used to provide a different loop vectorization order. 1217 void vectorizeAffineLoops(Operation *parentOp, DenseSet<Operation *> &loops, 1218 ArrayRef<int64_t> vectorSizes, 1219 ArrayRef<int64_t> fastestVaryingPattern) { 1220 // Thread-safe RAII local context, BumpPtrAllocator freed on exit. 1221 NestedPatternContext mlContext; 1222 1223 for (auto &pat : 1224 makePatterns(loops, vectorSizes.size(), fastestVaryingPattern)) { 1225 LLVM_DEBUG(dbgs() << "\n******************************************"); 1226 LLVM_DEBUG(dbgs() << "\n******************************************"); 1227 LLVM_DEBUG(dbgs() << "\n[early-vect] new pattern on parent op\n"); 1228 LLVM_DEBUG(parentOp->print(dbgs())); 1229 1230 unsigned patternDepth = pat.getDepth(); 1231 1232 SmallVector<NestedMatch, 8> matches; 1233 pat.match(parentOp, &matches); 1234 // Iterate over all the top-level matches and vectorize eagerly. 1235 // This automatically prunes intersecting matches. 1236 for (auto m : matches) { 1237 VectorizationStrategy strategy; 1238 // TODO: depending on profitability, elect to reduce the vector size. 1239 strategy.vectorSizes.assign(vectorSizes.begin(), vectorSizes.end()); 1240 if (failed(analyzeProfitability(m.getMatchedChildren(), 1, patternDepth, 1241 &strategy))) { 1242 continue; 1243 } 1244 vectorizeLoopIfProfitable(m.getMatchedOperation(), 0, patternDepth, 1245 &strategy); 1246 // TODO: if pattern does not apply, report it; alter the 1247 // cost/benefit. 1248 vectorizeRootMatch(m, &strategy); 1249 // TODO: some diagnostics if failure to vectorize occurs. 1250 } 1251 } 1252 LLVM_DEBUG(dbgs() << "\n"); 1253 } 1254 1255 std::unique_ptr<OperationPass<FuncOp>> 1256 createSuperVectorizePass(ArrayRef<int64_t> virtualVectorSize) { 1257 return std::make_unique<Vectorize>(virtualVectorSize); 1258 } 1259 std::unique_ptr<OperationPass<FuncOp>> createSuperVectorizePass() { 1260 return std::make_unique<Vectorize>(); 1261 } 1262 1263 } // namespace mlir 1264