1 //===- LoopTiling.cpp --- Loop tiling pass ------------------------------*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a pass to tile loop nests. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PassDetail.h" 14 #include "mlir/Analysis/AffineAnalysis.h" 15 #include "mlir/Analysis/AffineStructures.h" 16 #include "mlir/Analysis/LoopAnalysis.h" 17 #include "mlir/Analysis/Utils.h" 18 #include "mlir/Dialect/Affine/IR/AffineOps.h" 19 #include "mlir/Dialect/Affine/IR/AffineValueMap.h" 20 #include "mlir/Dialect/Affine/Passes.h" 21 #include "mlir/IR/BlockAndValueMapping.h" 22 #include "mlir/IR/Builders.h" 23 #include "mlir/Transforms/LoopUtils.h" 24 #include "mlir/Transforms/Utils.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/Debug.h" 27 using namespace mlir; 28 29 #define DEBUG_TYPE "affine-loop-tile" 30 31 namespace { 32 33 /// A pass to perform loop tiling on all suitable loop nests of a Function. 34 struct LoopTiling : public AffineLoopTilingBase<LoopTiling> { 35 LoopTiling() = default; 36 explicit LoopTiling(uint64_t cacheSizeBytes, bool avoidMaxMinBounds = true) 37 : avoidMaxMinBounds(avoidMaxMinBounds) { 38 this->cacheSizeInKiB = cacheSizeBytes / 1024; 39 } 40 41 void runOnFunction() override; 42 void getTileSizes(ArrayRef<AffineForOp> band, 43 SmallVectorImpl<unsigned> *tileSizes); 44 45 // Default tile size if nothing is provided. 46 constexpr static unsigned kDefaultTileSize = 4; 47 48 // If true, tile sizes are set to avoid max/min in bounds if possible. 49 bool avoidMaxMinBounds = true; 50 }; 51 52 } // end anonymous namespace 53 54 /// Creates a pass to perform loop tiling on all suitable loop nests of a 55 /// Function. 56 std::unique_ptr<OperationPass<FuncOp>> 57 mlir::createLoopTilingPass(uint64_t cacheSizeBytes) { 58 return std::make_unique<LoopTiling>(cacheSizeBytes); 59 } 60 std::unique_ptr<OperationPass<FuncOp>> mlir::createLoopTilingPass() { 61 return std::make_unique<LoopTiling>(); 62 } 63 64 // Move the loop body of AffineForOp 'src' from 'src' into the specified 65 // location in destination's body, ignoring the terminator. 66 static inline void moveLoopBody(AffineForOp src, AffineForOp dest, 67 Block::iterator loc) { 68 auto &insts = src.getBody()->getOperations(); 69 dest.getBody()->getOperations().splice(loc, insts, insts.begin(), 70 std::prev(insts.end())); 71 } 72 73 // Move the loop body of AffineForOp 'src' from 'src' to the start of dest's 74 // body. 75 static inline void moveLoopBody(AffineForOp src, AffineForOp dest) { 76 moveLoopBody(src, dest, dest.getBody()->begin()); 77 } 78 79 /// Constructs and sets new loop bounds after tiling for the case of 80 /// hyper-rectangular index sets, where the bounds of one dimension do not 81 /// depend on other dimensions. Bounds of each dimension can thus be treated 82 /// independently, and deriving the new bounds is much simpler and faster 83 /// than for the case of tiling arbitrary polyhedral shapes. 84 static void 85 constructTiledIndexSetHyperRect(MutableArrayRef<AffineForOp> origLoops, 86 MutableArrayRef<AffineForOp> newLoops, 87 ArrayRef<unsigned> tileSizes) { 88 assert(!origLoops.empty()); 89 assert(origLoops.size() == tileSizes.size()); 90 91 OpBuilder b(origLoops[0].getOperation()); 92 unsigned width = origLoops.size(); 93 94 // Bounds for tile space loops. 95 for (unsigned i = 0; i < width; i++) { 96 OperandRange newLbOperands = origLoops[i].getLowerBoundOperands(); 97 OperandRange newUbOperands = origLoops[i].getUpperBoundOperands(); 98 newLoops[i].setLowerBound(newLbOperands, origLoops[i].getLowerBoundMap()); 99 newLoops[i].setUpperBound(newUbOperands, origLoops[i].getUpperBoundMap()); 100 newLoops[i].setStep(tileSizes[i]); 101 } 102 // Bounds for intra-tile loops. 103 for (unsigned i = 0; i < width; i++) { 104 int64_t largestDiv = getLargestDivisorOfTripCount(origLoops[i]); 105 auto mayBeConstantCount = getConstantTripCount(origLoops[i]); 106 // The lower bound is just the tile-space loop. 107 AffineMap lbMap = b.getDimIdentityMap(); 108 newLoops[width + i].setLowerBound( 109 /*operands=*/newLoops[i].getInductionVar(), lbMap); 110 111 // Set the upper bound. 112 if (mayBeConstantCount && mayBeConstantCount.getValue() < tileSizes[i]) { 113 // Trip count is less than tile size; upper bound is the trip count. 114 auto ubMap = b.getConstantAffineMap(mayBeConstantCount.getValue()); 115 newLoops[width + i].setUpperBoundMap(ubMap); 116 } else if (largestDiv % tileSizes[i] != 0) { 117 // Intra-tile loop ii goes from i to min(i + tileSize, ub_i). 118 // Construct the upper bound map; the operands are the original operands 119 // with 'i' (tile-space loop) appended to it. The new upper bound map is 120 // the original one with an additional expression i + tileSize appended. 121 122 // Add dim operands from original upper bound. 123 SmallVector<Value, 4> ubOperands; 124 auto ub = origLoops[i].getUpperBound(); 125 ubOperands.reserve(ub.getNumOperands() + 1); 126 auto origUbMap = ub.getMap(); 127 for (unsigned j = 0, e = origUbMap.getNumDims(); j < e; ++j) 128 ubOperands.push_back(ub.getOperand(j)); 129 130 // Add dim operand for new loop upper bound. 131 ubOperands.push_back(newLoops[i].getInductionVar()); 132 133 // Add symbol operands from original upper bound. 134 for (unsigned j = 0, e = origUbMap.getNumSymbols(); j < e; ++j) 135 ubOperands.push_back(ub.getOperand(origUbMap.getNumDims() + j)); 136 137 SmallVector<AffineExpr, 4> boundExprs; 138 boundExprs.reserve(1 + origUbMap.getNumResults()); 139 auto dim = b.getAffineDimExpr(origUbMap.getNumDims()); 140 // The new upper bound map is the original one with an additional 141 // expression i + tileSize appended. 142 boundExprs.push_back(dim + tileSizes[i]); 143 boundExprs.append(origUbMap.getResults().begin(), 144 origUbMap.getResults().end()); 145 auto ubMap = 146 AffineMap::get(origUbMap.getNumDims() + 1, origUbMap.getNumSymbols(), 147 boundExprs, b.getContext()); 148 newLoops[width + i].setUpperBound(/*operands=*/ubOperands, ubMap); 149 } else { 150 // No need of the min expression. 151 auto dim = b.getAffineDimExpr(0); 152 auto ubMap = AffineMap::get(1, 0, dim + tileSizes[i]); 153 newLoops[width + i].setUpperBound(newLoops[i].getInductionVar(), ubMap); 154 } 155 } 156 } 157 158 /// Tiles the specified band of perfectly nested loops creating tile-space loops 159 /// and intra-tile loops. A band is a contiguous set of loops. 160 // TODO(bondhugula): handle non hyper-rectangular spaces. 161 LogicalResult 162 mlir::tilePerfectlyNested(MutableArrayRef<AffineForOp> input, 163 ArrayRef<unsigned> tileSizes, 164 SmallVectorImpl<AffineForOp> *tiledNest) { 165 // Check if the supplied for op's are all successively nested. 166 assert(!input.empty() && "no loops in input band"); 167 assert(input.size() == tileSizes.size() && "Too few/many tile sizes"); 168 169 assert(isPerfectlyNested(input) && "input loops not perfectly nested"); 170 171 auto origLoops = input; 172 173 AffineForOp rootAffineForOp = origLoops[0]; 174 auto loc = rootAffineForOp.getLoc(); 175 // Note that width is at least one since band isn't empty. 176 unsigned width = input.size(); 177 178 SmallVector<AffineForOp, 6> tiledLoops(2 * width); 179 180 // The outermost among the loops as we add more.. 181 auto *topLoop = rootAffineForOp.getOperation(); 182 AffineForOp innermostPointLoop; 183 184 // Add intra-tile (or point) loops. 185 for (unsigned i = 0; i < width; i++) { 186 OpBuilder b(topLoop); 187 // Loop bounds will be set later. 188 auto pointLoop = b.create<AffineForOp>(loc, 0, 0); 189 pointLoop.getBody()->getOperations().splice( 190 pointLoop.getBody()->begin(), topLoop->getBlock()->getOperations(), 191 topLoop); 192 tiledLoops[2 * width - 1 - i] = pointLoop; 193 topLoop = pointLoop.getOperation(); 194 if (i == 0) 195 innermostPointLoop = pointLoop; 196 } 197 198 // Add tile space loops; 199 for (unsigned i = width; i < 2 * width; i++) { 200 OpBuilder b(topLoop); 201 // Loop bounds will be set later. 202 auto tileSpaceLoop = b.create<AffineForOp>(loc, 0, 0); 203 tileSpaceLoop.getBody()->getOperations().splice( 204 tileSpaceLoop.getBody()->begin(), topLoop->getBlock()->getOperations(), 205 topLoop); 206 tiledLoops[2 * width - i - 1] = tileSpaceLoop; 207 topLoop = tileSpaceLoop.getOperation(); 208 } 209 210 // Move the loop body of the original nest to the new one. 211 moveLoopBody(origLoops.back(), innermostPointLoop); 212 213 SmallVector<Value, 8> origLoopIVs; 214 extractForInductionVars(input, &origLoopIVs); 215 216 FlatAffineConstraints cst; 217 getIndexSet(input, &cst); 218 if (!cst.isHyperRectangular(0, width)) { 219 llvm::dbgs() << "tiled code generation unimplemented for the " 220 "non-hyperrectangular case, op:" 221 << *rootAffineForOp << "\n"; 222 return failure(); 223 } 224 225 constructTiledIndexSetHyperRect(origLoops, tiledLoops, tileSizes); 226 227 // Replace original IVs with intra-tile loop IVs. 228 for (unsigned i = 0; i < width; i++) 229 origLoopIVs[i].replaceAllUsesWith(tiledLoops[i + width].getInductionVar()); 230 231 // Erase the old loop nest. 232 rootAffineForOp.erase(); 233 234 if (tiledNest) 235 *tiledNest = std::move(tiledLoops); 236 237 return success(); 238 } 239 240 // Identify valid and profitable bands of loops to tile. This is currently just 241 // a temporary placeholder to test the mechanics of tiled code generation. 242 // Returns all maximal outermost perfect loop nests to tile. 243 static void getTileableBands(FuncOp f, 244 std::vector<SmallVector<AffineForOp, 6>> *bands) { 245 // Get maximal perfect nest of 'affine.for' insts starting from root 246 // (inclusive). 247 auto getMaximalPerfectLoopNest = [&](AffineForOp root) { 248 SmallVector<AffineForOp, 6> band; 249 getPerfectlyNestedLoops(band, root); 250 bands->push_back(band); 251 }; 252 253 for (auto &block : f) 254 for (auto &op : block) 255 if (auto forOp = dyn_cast<AffineForOp>(op)) 256 getMaximalPerfectLoopNest(forOp); 257 } 258 259 /// Reduces each tile size to the largest divisor of the corresponding trip 260 /// count (if the trip count is known). 261 static void adjustToDivisorsOfTripCounts(ArrayRef<AffineForOp> band, 262 SmallVectorImpl<unsigned> *tileSizes) { 263 assert(band.size() == tileSizes->size() && "invalid tile size count"); 264 for (unsigned i = 0, e = band.size(); i < e; i++) { 265 unsigned &tSizeAdjusted = (*tileSizes)[i]; 266 auto mayConst = getConstantTripCount(band[i]); 267 if (!mayConst) 268 continue; 269 // Adjust the tile size to largest factor of the trip count less than 270 // tSize. 271 uint64_t constTripCount = mayConst.getValue(); 272 if (constTripCount > 1 && tSizeAdjusted > constTripCount / 2) 273 tSizeAdjusted = constTripCount / 2; 274 while (constTripCount % tSizeAdjusted != 0) 275 tSizeAdjusted--; 276 } 277 } 278 279 // Returns tile sizes to use. Checks CL options; if none are specified, sets it 280 // based on a simple model that looks at the memory footprint and determines 281 // tile sizes assuming identity accesses / 1:1 tile size proportional footprint 282 // along each of the dimensions being tiled. 283 // TODO(mlir-team): evolve this model. Tile size determination is a large area 284 // to play with in general. 285 void LoopTiling::getTileSizes(ArrayRef<AffineForOp> band, 286 SmallVectorImpl<unsigned> *tileSizes) { 287 if (band.empty()) 288 return; 289 290 // Use command-line tileSize for all loops if specified. 291 if (tileSize) { 292 tileSizes->assign(band.size(), tileSize); 293 return; 294 } 295 296 // Use tileSizes and fill them with default tile size if it's short. 297 if (!this->tileSizes.empty()) { 298 tileSizes->assign(this->tileSizes.begin(), this->tileSizes.end()); 299 tileSizes->resize(band.size(), kDefaultTileSize); 300 return; 301 } 302 tileSizes->resize(band.size()); 303 304 // The first loop in the band. 305 auto rootForOp = band[0]; 306 (void)rootForOp; 307 308 // Obtain memory footprint and set tile sizes so that a tile fits in 309 // the cache size. This is an approximation with the assumption that the 310 // footprint increases with the tile size linearly in that dimension (i.e., 311 // assumes one-to-one access function). 312 auto fp = getMemoryFootprintBytes(band[0], 0); 313 if (!fp) { 314 // Fill with default tile sizes if footprint is unknown. 315 std::fill(tileSizes->begin(), tileSizes->end(), 316 LoopTiling::kDefaultTileSize); 317 if (avoidMaxMinBounds) 318 adjustToDivisorsOfTripCounts(band, tileSizes); 319 LLVM_DEBUG( 320 rootForOp.emitWarning("memory footprint unknown: using default tile " 321 "sizes adjusted to trip count divisors")); 322 return; 323 } 324 325 // Check how many times larger the cache size is when compared to footprint. 326 uint64_t cacheSizeBytes = cacheSizeInKiB * 1024; 327 uint64_t excessFactor = llvm::divideCeil(fp.getValue(), cacheSizeBytes); 328 if (excessFactor <= 1) { 329 // No need of any tiling - set tile size to 1. 330 std::fill(tileSizes->begin(), tileSizes->end(), 1); 331 return; 332 } 333 334 // Divide all loops equally in an attempt to reduce footprint. 335 // TODO(bondhugula): this is approximate. Ideally, obtain reuse factor / 336 // profitability along each dimension and weight tile sizes based on that as 337 // one possible approach. Or compute a polynomial in tile sizes and solve for 338 // it. 339 340 // For an n-d tileable band, compute the n^th root of the excess. 341 unsigned tSize = 342 static_cast<unsigned>(floorl(std::pow(excessFactor, 1.0 / band.size()))); 343 // We'll keep a running product to determine the last tile size better. 344 unsigned cumulProductOfTileSizes = 1; 345 for (unsigned i = 0, e = band.size(); i < e; i++) { 346 if (i < e - 1) 347 (*tileSizes)[i] = tSize; 348 else 349 // Set last tile size to cover the balance. 350 (*tileSizes)[i] = std::max( 351 1U, static_cast<unsigned>(excessFactor / cumulProductOfTileSizes)); 352 cumulProductOfTileSizes *= (*tileSizes)[i]; 353 } 354 if (avoidMaxMinBounds) 355 adjustToDivisorsOfTripCounts(band, tileSizes); 356 } 357 358 void LoopTiling::runOnFunction() { 359 // Bands of loops to tile. 360 std::vector<SmallVector<AffineForOp, 6>> bands; 361 getTileableBands(getFunction(), &bands); 362 363 // Tile each band. 364 for (auto &band : bands) { 365 // Set up tile sizes; fill missing tile sizes at the end with default tile 366 // size or tileSize if one was provided. 367 SmallVector<unsigned, 6> tileSizes; 368 getTileSizes(band, &tileSizes); 369 if (llvm::DebugFlag) { 370 auto diag = band[0].emitRemark("using tile sizes ["); 371 for (auto tSize : tileSizes) 372 diag << tSize << ' '; 373 diag << "]\n"; 374 } 375 SmallVector<AffineForOp, 6> tiledNest; 376 if (failed(tilePerfectlyNested(band, tileSizes, &tiledNest))) 377 return signalPassFailure(); 378 379 // Separate full and partial tiles. 380 if (separate) { 381 auto intraTileLoops = 382 MutableArrayRef<AffineForOp>(tiledNest).drop_front(band.size()); 383 separateFullTiles(intraTileLoops); 384 } 385 } 386 } 387 388 constexpr unsigned LoopTiling::kDefaultTileSize; 389