1 //===- LoopTiling.cpp --- Loop tiling pass ------------------------------*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a pass to tile loop nests. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Analysis/AffineAnalysis.h" 14 #include "mlir/Analysis/AffineStructures.h" 15 #include "mlir/Analysis/LoopAnalysis.h" 16 #include "mlir/Analysis/Utils.h" 17 #include "mlir/Dialect/Affine/IR/AffineOps.h" 18 #include "mlir/Dialect/Affine/IR/AffineValueMap.h" 19 #include "mlir/Dialect/Affine/Passes.h" 20 #include "mlir/IR/BlockAndValueMapping.h" 21 #include "mlir/IR/Builders.h" 22 #include "mlir/Pass/Pass.h" 23 #include "mlir/Transforms/LoopUtils.h" 24 #include "mlir/Transforms/Utils.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/Debug.h" 27 using namespace mlir; 28 29 #define DEBUG_TYPE "affine-loop-tile" 30 31 static llvm::cl::OptionCategory clOptionsCategory(DEBUG_TYPE " options"); 32 33 static llvm::cl::opt<unsigned long long> 34 clCacheSizeKiB("affine-tile-cache-size", 35 llvm::cl::desc("Set size of cache to tile for in KiB"), 36 llvm::cl::cat(clOptionsCategory)); 37 38 // Separate full and partial tiles. 39 static llvm::cl::opt<bool> 40 clSeparate("affine-tile-separate", 41 llvm::cl::desc("Separate full and partial tiles"), 42 llvm::cl::cat(clOptionsCategory)); 43 44 // Tile size to use for all loops (overrides -tile-sizes if provided). 45 static llvm::cl::opt<unsigned> 46 clTileSize("affine-tile-size", 47 llvm::cl::desc("Use this tile size for all loops"), 48 llvm::cl::cat(clOptionsCategory)); 49 50 // List of tile sizes. If any of them aren't provided, they are filled with 51 // clTileSize / kDefaultTileSize. 52 static llvm::cl::list<unsigned> clTileSizes( 53 "affine-tile-sizes", 54 llvm::cl::desc( 55 "List of tile sizes for each perfect nest (overridden by -tile-size)"), 56 llvm::cl::ZeroOrMore, llvm::cl::cat(clOptionsCategory)); 57 58 namespace { 59 60 /// A pass to perform loop tiling on all suitable loop nests of a Function. 61 struct LoopTiling : public FunctionPass<LoopTiling> { 62 /// Include the generated pass utilities. 63 #define GEN_PASS_AffineLoopTiling 64 #include "mlir/Dialect/Affine/Passes.h.inc" 65 66 explicit LoopTiling(uint64_t cacheSizeBytes = kDefaultCacheMemCapacity, 67 bool avoidMaxMinBounds = true) 68 : cacheSizeBytes(cacheSizeBytes), avoidMaxMinBounds(avoidMaxMinBounds) {} 69 70 void runOnFunction() override; 71 void getTileSizes(ArrayRef<AffineForOp> band, 72 SmallVectorImpl<unsigned> *tileSizes); 73 74 // Default tile size if nothing is provided. 75 constexpr static unsigned kDefaultTileSize = 4; 76 constexpr static uint64_t kDefaultCacheMemCapacity = 512 * 1024UL; 77 78 // Capacity of the cache to tile for. 79 uint64_t cacheSizeBytes; 80 // If true, tile sizes are set to avoid max/min in bounds if possible. 81 bool avoidMaxMinBounds; 82 }; 83 84 } // end anonymous namespace 85 86 /// Creates a pass to perform loop tiling on all suitable loop nests of a 87 /// Function. 88 std::unique_ptr<OpPassBase<FuncOp>> 89 mlir::createLoopTilingPass(uint64_t cacheSizeBytes) { 90 return std::make_unique<LoopTiling>(cacheSizeBytes); 91 } 92 std::unique_ptr<OpPassBase<FuncOp>> mlir::createLoopTilingPass() { 93 return std::make_unique<LoopTiling>(); 94 } 95 96 // Move the loop body of AffineForOp 'src' from 'src' into the specified 97 // location in destination's body, ignoring the terminator. 98 static inline void moveLoopBody(AffineForOp src, AffineForOp dest, 99 Block::iterator loc) { 100 auto &insts = src.getBody()->getOperations(); 101 dest.getBody()->getOperations().splice(loc, insts, insts.begin(), 102 std::prev(insts.end())); 103 } 104 105 // Move the loop body of AffineForOp 'src' from 'src' to the start of dest's 106 // body. 107 static inline void moveLoopBody(AffineForOp src, AffineForOp dest) { 108 moveLoopBody(src, dest, dest.getBody()->begin()); 109 } 110 111 /// Constructs and sets new loop bounds after tiling for the case of 112 /// hyper-rectangular index sets, where the bounds of one dimension do not 113 /// depend on other dimensions. Bounds of each dimension can thus be treated 114 /// independently, and deriving the new bounds is much simpler and faster 115 /// than for the case of tiling arbitrary polyhedral shapes. 116 static void 117 constructTiledIndexSetHyperRect(MutableArrayRef<AffineForOp> origLoops, 118 MutableArrayRef<AffineForOp> newLoops, 119 ArrayRef<unsigned> tileSizes) { 120 assert(!origLoops.empty()); 121 assert(origLoops.size() == tileSizes.size()); 122 123 OpBuilder b(origLoops[0].getOperation()); 124 unsigned width = origLoops.size(); 125 126 // Bounds for tile space loops. 127 for (unsigned i = 0; i < width; i++) { 128 auto lbOperands = origLoops[i].getLowerBoundOperands(); 129 auto ubOperands = origLoops[i].getUpperBoundOperands(); 130 SmallVector<Value, 4> newLbOperands(lbOperands); 131 SmallVector<Value, 4> newUbOperands(ubOperands); 132 newLoops[i].setLowerBound(newLbOperands, origLoops[i].getLowerBoundMap()); 133 newLoops[i].setUpperBound(newUbOperands, origLoops[i].getUpperBoundMap()); 134 newLoops[i].setStep(tileSizes[i]); 135 } 136 // Bounds for intra-tile loops. 137 for (unsigned i = 0; i < width; i++) { 138 int64_t largestDiv = getLargestDivisorOfTripCount(origLoops[i]); 139 auto mayBeConstantCount = getConstantTripCount(origLoops[i]); 140 // The lower bound is just the tile-space loop. 141 AffineMap lbMap = b.getDimIdentityMap(); 142 newLoops[width + i].setLowerBound( 143 /*operands=*/newLoops[i].getInductionVar(), lbMap); 144 145 // Set the upper bound. 146 if (mayBeConstantCount.hasValue() && 147 mayBeConstantCount.getValue() < tileSizes[i]) { 148 // Trip count is less than tile size; upper bound is the trip count. 149 auto ubMap = b.getConstantAffineMap(mayBeConstantCount.getValue()); 150 newLoops[width + i].setUpperBoundMap(ubMap); 151 } else if (largestDiv % tileSizes[i] != 0) { 152 // Intra-tile loop ii goes from i to min(i + tileSize, ub_i). 153 // Construct the upper bound map; the operands are the original operands 154 // with 'i' (tile-space loop) appended to it. The new upper bound map is 155 // the original one with an additional expression i + tileSize appended. 156 auto ub = origLoops[i].getUpperBound(); 157 SmallVector<Value, 4> ubOperands; 158 ubOperands.reserve(ub.getNumOperands() + 1); 159 auto origUbMap = ub.getMap(); 160 // Add dim operands from original upper bound. 161 for (unsigned j = 0, e = origUbMap.getNumDims(); j < e; ++j) { 162 ubOperands.push_back(ub.getOperand(j)); 163 } 164 // Add dim operand for new loop upper bound. 165 ubOperands.push_back(newLoops[i].getInductionVar()); 166 // Add symbol operands from original upper bound. 167 for (unsigned j = 0, e = origUbMap.getNumSymbols(); j < e; ++j) { 168 ubOperands.push_back(ub.getOperand(origUbMap.getNumDims() + j)); 169 } 170 SmallVector<AffineExpr, 4> boundExprs; 171 boundExprs.reserve(1 + origUbMap.getNumResults()); 172 auto dim = b.getAffineDimExpr(origUbMap.getNumDims()); 173 // The new upper bound map is the original one with an additional 174 // expression i + tileSize appended. 175 boundExprs.push_back(dim + tileSizes[i]); 176 boundExprs.append(origUbMap.getResults().begin(), 177 origUbMap.getResults().end()); 178 auto ubMap = AffineMap::get(origUbMap.getNumDims() + 1, 179 origUbMap.getNumSymbols(), boundExprs); 180 newLoops[width + i].setUpperBound(/*operands=*/ubOperands, ubMap); 181 } else { 182 // No need of the min expression. 183 auto dim = b.getAffineDimExpr(0); 184 auto ubMap = AffineMap::get(1, 0, dim + tileSizes[i]); 185 newLoops[width + i].setUpperBound(newLoops[i].getInductionVar(), ubMap); 186 } 187 } 188 } 189 190 /// Tiles the specified band of perfectly nested loops creating tile-space loops 191 /// and intra-tile loops. A band is a contiguous set of loops. 192 // TODO(bondhugula): handle non hyper-rectangular spaces. 193 LogicalResult mlir::tileCodeGen(MutableArrayRef<AffineForOp> band, 194 ArrayRef<unsigned> tileSizes, 195 SmallVectorImpl<AffineForOp> *tiledNest) { 196 // Check if the supplied for op's are all successively nested. 197 assert(!band.empty() && "no loops in band"); 198 assert(band.size() == tileSizes.size() && "Too few/many tile sizes"); 199 200 for (unsigned i = 1, e = band.size(); i < e; i++) 201 assert(band[i].getParentOp() == band[i - 1] && "not a perfect nest / band"); 202 203 auto origLoops = band; 204 205 AffineForOp rootAffineForOp = origLoops[0]; 206 auto loc = rootAffineForOp.getLoc(); 207 // Note that width is at least one since band isn't empty. 208 unsigned width = band.size(); 209 210 SmallVector<AffineForOp, 6> tiledLoops(2 * width); 211 212 // The outermost among the loops as we add more.. 213 auto *topLoop = rootAffineForOp.getOperation(); 214 AffineForOp innermostPointLoop; 215 216 // Add intra-tile (or point) loops. 217 for (unsigned i = 0; i < width; i++) { 218 OpBuilder b(topLoop); 219 // Loop bounds will be set later. 220 auto pointLoop = b.create<AffineForOp>(loc, 0, 0); 221 pointLoop.getBody()->getOperations().splice( 222 pointLoop.getBody()->begin(), topLoop->getBlock()->getOperations(), 223 topLoop); 224 tiledLoops[2 * width - 1 - i] = pointLoop; 225 topLoop = pointLoop.getOperation(); 226 if (i == 0) 227 innermostPointLoop = pointLoop; 228 } 229 230 // Add tile space loops; 231 for (unsigned i = width; i < 2 * width; i++) { 232 OpBuilder b(topLoop); 233 // Loop bounds will be set later. 234 auto tileSpaceLoop = b.create<AffineForOp>(loc, 0, 0); 235 tileSpaceLoop.getBody()->getOperations().splice( 236 tileSpaceLoop.getBody()->begin(), topLoop->getBlock()->getOperations(), 237 topLoop); 238 tiledLoops[2 * width - i - 1] = tileSpaceLoop; 239 topLoop = tileSpaceLoop.getOperation(); 240 } 241 242 // Move the loop body of the original nest to the new one. 243 moveLoopBody(origLoops[origLoops.size() - 1], innermostPointLoop); 244 245 SmallVector<Value, 8> origLoopIVs; 246 extractForInductionVars(band, &origLoopIVs); 247 SmallVector<Optional<Value>, 6> ids(origLoopIVs.begin(), origLoopIVs.end()); 248 FlatAffineConstraints cst; 249 getIndexSet(band, &cst); 250 251 if (!cst.isHyperRectangular(0, width)) { 252 llvm::dbgs() << "tiled code generation unimplemented for the " 253 "non-hyperrectangular case, op:" 254 << *rootAffineForOp << "\n"; 255 return failure(); 256 } 257 258 constructTiledIndexSetHyperRect(origLoops, tiledLoops, tileSizes); 259 260 // Replace original IVs with intra-tile loop IVs. 261 for (unsigned i = 0; i < width; i++) 262 origLoopIVs[i].replaceAllUsesWith(tiledLoops[i + width].getInductionVar()); 263 264 // Erase the old loop nest. 265 rootAffineForOp.erase(); 266 267 if (tiledNest) 268 *tiledNest = std::move(tiledLoops); 269 270 return success(); 271 } 272 273 // Identify valid and profitable bands of loops to tile. This is currently just 274 // a temporary placeholder to test the mechanics of tiled code generation. 275 // Returns all maximal outermost perfect loop nests to tile. 276 static void getTileableBands(FuncOp f, 277 std::vector<SmallVector<AffineForOp, 6>> *bands) { 278 // Get maximal perfect nest of 'affine.for' insts starting from root 279 // (inclusive). 280 auto getMaximalPerfectLoopNest = [&](AffineForOp root) { 281 SmallVector<AffineForOp, 6> band; 282 getPerfectlyNestedLoops(band, root); 283 bands->push_back(band); 284 }; 285 286 for (auto &block : f) 287 for (auto &op : block) 288 if (auto forOp = dyn_cast<AffineForOp>(op)) 289 getMaximalPerfectLoopNest(forOp); 290 } 291 292 // Reduce each tile size to the largest divisor of the corresponding trip count 293 // (if the trip count is known). 294 static void adjustToDivisorsOfTripCounts(ArrayRef<AffineForOp> band, 295 SmallVectorImpl<unsigned> *tileSizes) { 296 assert(band.size() == tileSizes->size() && "invalid tile size count"); 297 for (unsigned i = 0, e = band.size(); i < e; i++) { 298 unsigned &tSizeAdjusted = (*tileSizes)[i]; 299 auto mayConst = getConstantTripCount(band[i]); 300 if (!mayConst.hasValue()) 301 continue; 302 // Adjust the tile size to largest factor of the trip count less than 303 // tSize. 304 uint64_t constTripCount = mayConst.getValue(); 305 if (constTripCount > 1 && tSizeAdjusted > constTripCount / 2) 306 tSizeAdjusted = constTripCount / 2; 307 while (constTripCount % tSizeAdjusted != 0) 308 tSizeAdjusted--; 309 } 310 } 311 312 // Returns tile sizes to use. Checks CL options; if none are specified, sets it 313 // based on a simple model that looks at the memory footprint and determines 314 // tile sizes assuming identity accesses / 1:1 tile size proportional footprint 315 // along each of the dimensions being tiled. 316 // TODO(mlir-team): evolve this model. Tile size determination is a large area 317 // to play with in general. 318 void LoopTiling::getTileSizes(ArrayRef<AffineForOp> band, 319 SmallVectorImpl<unsigned> *tileSizes) { 320 if (band.empty()) 321 return; 322 323 tileSizes->resize(band.size()); 324 325 // Use clTileSize for all loops if specified. 326 if (clTileSize.getNumOccurrences() > 0) { 327 std::fill(tileSizes->begin(), tileSizes->end(), clTileSize); 328 return; 329 } 330 331 // Use clTileSizes and fill them with default tile size if it's short. 332 if (!clTileSizes.empty()) { 333 std::fill(tileSizes->begin(), tileSizes->end(), 334 LoopTiling::kDefaultTileSize); 335 std::copy(clTileSizes.begin(), 336 clTileSizes.begin() + std::min(clTileSizes.size(), band.size()), 337 tileSizes->begin()); 338 return; 339 } 340 341 // The first loop in the band. 342 auto rootForOp = band[0]; 343 (void)rootForOp; 344 345 // Obtain memory footprint and set tile sizes so that a tile fits in 346 // the cache size. This is an approximation with the assumption that the 347 // footprint increases with the tile size linearly in that dimension (i.e., 348 // assumes one-to-one access function). 349 auto fp = getMemoryFootprintBytes(band[0], 0); 350 if (!fp.hasValue()) { 351 // Fill with default tile sizes if footprint is unknown. 352 std::fill(tileSizes->begin(), tileSizes->end(), 353 LoopTiling::kDefaultTileSize); 354 if (avoidMaxMinBounds) 355 adjustToDivisorsOfTripCounts(band, tileSizes); 356 LLVM_DEBUG( 357 rootForOp.emitWarning("memory footprint unknown: using default tile " 358 "sizes adjusted to trip count divisors")); 359 return; 360 } 361 362 // Check how many times larger the cache size is when compared to footprint. 363 uint64_t excessFactor = llvm::divideCeil(fp.getValue(), cacheSizeBytes); 364 if (excessFactor <= 1) { 365 // No need of any tiling - set tile size to 1. 366 std::fill(tileSizes->begin(), tileSizes->end(), 1); 367 return; 368 } 369 370 // Divide all loops equally in an attempt to reduce footprint. 371 // TODO(bondhugula): this is approximate. Ideally, obtain reuse factor / 372 // profitability along each dimension and weight tile sizes based on that as 373 // one possible approach. Or compute a polynomial in tile sizes and solve for 374 // it. 375 376 // For an n-d tileable band, compute n^th root of the excess. 377 unsigned tSize = 378 static_cast<unsigned>(floorl(std::pow(excessFactor, 1.0 / band.size()))); 379 // We'll keep a running product to determine the last tile size better. 380 unsigned cumulProductOfTileSizes = 1; 381 for (unsigned i = 0, e = band.size(); i < e; i++) { 382 if (i < e - 1) 383 (*tileSizes)[i] = tSize; 384 else 385 // Set last tile size to cover the balance. 386 (*tileSizes)[i] = std::max( 387 1U, static_cast<unsigned>(excessFactor / cumulProductOfTileSizes)); 388 cumulProductOfTileSizes *= (*tileSizes)[i]; 389 } 390 if (avoidMaxMinBounds) 391 adjustToDivisorsOfTripCounts(band, tileSizes); 392 } 393 394 void LoopTiling::runOnFunction() { 395 // Override cache size if provided on command line. 396 if (clCacheSizeKiB.getNumOccurrences() > 0) 397 cacheSizeBytes = clCacheSizeKiB * 1024; 398 399 // Bands of loops to tile. 400 std::vector<SmallVector<AffineForOp, 6>> bands; 401 getTileableBands(getFunction(), &bands); 402 403 // Tile each band. 404 for (auto &band : bands) { 405 // Set up tile sizes; fill missing tile sizes at the end with default tile 406 // size or clTileSize if one was provided. 407 SmallVector<unsigned, 6> tileSizes; 408 getTileSizes(band, &tileSizes); 409 if (llvm::DebugFlag) { 410 auto diag = band[0].emitRemark("using tile sizes ["); 411 for (auto tSize : tileSizes) 412 diag << tSize << ' '; 413 diag << "]\n"; 414 } 415 SmallVector<AffineForOp, 6> tiledNest; 416 if (failed(tileCodeGen(band, tileSizes, &tiledNest))) 417 return signalPassFailure(); 418 419 // Separate full and partial tiles. 420 if (clSeparate) { 421 auto intraTileLoops = 422 MutableArrayRef<AffineForOp>(tiledNest).drop_front(band.size()); 423 separateFullTiles(intraTileLoops); 424 } 425 } 426 } 427 428 constexpr unsigned LoopTiling::kDefaultTileSize; 429 constexpr uint64_t LoopTiling::kDefaultCacheMemCapacity; 430