1a70aa7bbSRiver Riddle //===- LoopFusion.cpp - Code to perform loop fusion -----------------------===//
2a70aa7bbSRiver Riddle //
3a70aa7bbSRiver Riddle // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4a70aa7bbSRiver Riddle // See https://llvm.org/LICENSE.txt for license information.
5a70aa7bbSRiver Riddle // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6a70aa7bbSRiver Riddle //
7a70aa7bbSRiver Riddle //===----------------------------------------------------------------------===//
8a70aa7bbSRiver Riddle //
9a70aa7bbSRiver Riddle // This file implements loop fusion.
10a70aa7bbSRiver Riddle //
11a70aa7bbSRiver Riddle //===----------------------------------------------------------------------===//
12a70aa7bbSRiver Riddle
13a70aa7bbSRiver Riddle #include "PassDetail.h"
14a70aa7bbSRiver Riddle #include "mlir/Dialect/Affine/Analysis/AffineAnalysis.h"
15a70aa7bbSRiver Riddle #include "mlir/Dialect/Affine/Analysis/AffineStructures.h"
16a70aa7bbSRiver Riddle #include "mlir/Dialect/Affine/Analysis/LoopAnalysis.h"
17a70aa7bbSRiver Riddle #include "mlir/Dialect/Affine/Analysis/Utils.h"
18a70aa7bbSRiver Riddle #include "mlir/Dialect/Affine/IR/AffineOps.h"
19a70aa7bbSRiver Riddle #include "mlir/Dialect/Affine/LoopFusionUtils.h"
20a70aa7bbSRiver Riddle #include "mlir/Dialect/Affine/LoopUtils.h"
21a70aa7bbSRiver Riddle #include "mlir/Dialect/Affine/Utils.h"
22a70aa7bbSRiver Riddle #include "mlir/Dialect/MemRef/IR/MemRef.h"
23a70aa7bbSRiver Riddle #include "mlir/IR/AffineExpr.h"
24a70aa7bbSRiver Riddle #include "mlir/IR/AffineMap.h"
25a70aa7bbSRiver Riddle #include "mlir/IR/Builders.h"
26a70aa7bbSRiver Riddle #include "mlir/Transforms/Passes.h"
27a70aa7bbSRiver Riddle #include "llvm/ADT/DenseMap.h"
28a70aa7bbSRiver Riddle #include "llvm/ADT/DenseSet.h"
29*aba43035SDmitri Gribenko #include "llvm/ADT/STLExtras.h"
30a70aa7bbSRiver Riddle #include "llvm/ADT/SetVector.h"
31a70aa7bbSRiver Riddle #include "llvm/Support/CommandLine.h"
32a70aa7bbSRiver Riddle #include "llvm/Support/Debug.h"
33a70aa7bbSRiver Riddle #include "llvm/Support/raw_ostream.h"
34a70aa7bbSRiver Riddle #include <iomanip>
35a70aa7bbSRiver Riddle #include <sstream>
36a70aa7bbSRiver Riddle #define DEBUG_TYPE "affine-loop-fusion"
37a70aa7bbSRiver Riddle
38a70aa7bbSRiver Riddle using namespace mlir;
39a70aa7bbSRiver Riddle
40a70aa7bbSRiver Riddle namespace {
41a70aa7bbSRiver Riddle /// Loop fusion pass. This pass currently supports a greedy fusion policy,
42a70aa7bbSRiver Riddle /// which fuses loop nests with single-writer/single-reader memref dependences
43a70aa7bbSRiver Riddle /// with the goal of improving locality.
44a70aa7bbSRiver Riddle
45a70aa7bbSRiver Riddle // TODO: Support fusion of source loop nests which write to multiple
46a70aa7bbSRiver Riddle // memrefs, where each memref can have multiple users (if profitable).
47a70aa7bbSRiver Riddle // TODO: Extend this pass to check for fusion preventing dependences,
48a70aa7bbSRiver Riddle // and add support for more general loop fusion algorithms.
49a70aa7bbSRiver Riddle
50a70aa7bbSRiver Riddle struct LoopFusion : public AffineLoopFusionBase<LoopFusion> {
51a70aa7bbSRiver Riddle LoopFusion() = default;
LoopFusion__anon8a0d4ac20111::LoopFusion52a70aa7bbSRiver Riddle LoopFusion(unsigned fastMemorySpace, uint64_t localBufSizeThresholdBytes,
53a70aa7bbSRiver Riddle bool maximalFusion, enum FusionMode affineFusionMode) {
54a70aa7bbSRiver Riddle this->fastMemorySpace = fastMemorySpace;
55a70aa7bbSRiver Riddle this->localBufSizeThreshold = localBufSizeThresholdBytes / 1024;
56a70aa7bbSRiver Riddle this->maximalFusion = maximalFusion;
57a70aa7bbSRiver Riddle this->affineFusionMode = affineFusionMode;
58a70aa7bbSRiver Riddle }
59a70aa7bbSRiver Riddle
60a70aa7bbSRiver Riddle void runOnOperation() override;
61a70aa7bbSRiver Riddle };
62a70aa7bbSRiver Riddle
63a70aa7bbSRiver Riddle } // namespace
64a70aa7bbSRiver Riddle
6558ceae95SRiver Riddle std::unique_ptr<OperationPass<func::FuncOp>>
createLoopFusionPass(unsigned fastMemorySpace,uint64_t localBufSizeThreshold,bool maximalFusion,enum FusionMode affineFusionMode)66a70aa7bbSRiver Riddle mlir::createLoopFusionPass(unsigned fastMemorySpace,
67a70aa7bbSRiver Riddle uint64_t localBufSizeThreshold, bool maximalFusion,
68a70aa7bbSRiver Riddle enum FusionMode affineFusionMode) {
69a70aa7bbSRiver Riddle return std::make_unique<LoopFusion>(fastMemorySpace, localBufSizeThreshold,
70a70aa7bbSRiver Riddle maximalFusion, affineFusionMode);
71a70aa7bbSRiver Riddle }
72a70aa7bbSRiver Riddle
73a70aa7bbSRiver Riddle namespace {
74a70aa7bbSRiver Riddle
75a70aa7bbSRiver Riddle // LoopNestStateCollector walks loop nests and collects load and store
76a70aa7bbSRiver Riddle // operations, and whether or not a region holding op other than ForOp and IfOp
77a70aa7bbSRiver Riddle // was encountered in the loop nest.
78a70aa7bbSRiver Riddle struct LoopNestStateCollector {
79a70aa7bbSRiver Riddle SmallVector<AffineForOp, 4> forOps;
80a70aa7bbSRiver Riddle SmallVector<Operation *, 4> loadOpInsts;
81a70aa7bbSRiver Riddle SmallVector<Operation *, 4> storeOpInsts;
82a70aa7bbSRiver Riddle bool hasNonAffineRegionOp = false;
83a70aa7bbSRiver Riddle
collect__anon8a0d4ac20211::LoopNestStateCollector84a70aa7bbSRiver Riddle void collect(Operation *opToWalk) {
85a70aa7bbSRiver Riddle opToWalk->walk([&](Operation *op) {
86a70aa7bbSRiver Riddle if (isa<AffineForOp>(op))
87a70aa7bbSRiver Riddle forOps.push_back(cast<AffineForOp>(op));
88a70aa7bbSRiver Riddle else if (op->getNumRegions() != 0 && !isa<AffineIfOp>(op))
89a70aa7bbSRiver Riddle hasNonAffineRegionOp = true;
90a70aa7bbSRiver Riddle else if (isa<AffineReadOpInterface>(op))
91a70aa7bbSRiver Riddle loadOpInsts.push_back(op);
92a70aa7bbSRiver Riddle else if (isa<AffineWriteOpInterface>(op))
93a70aa7bbSRiver Riddle storeOpInsts.push_back(op);
94a70aa7bbSRiver Riddle });
95a70aa7bbSRiver Riddle }
96a70aa7bbSRiver Riddle };
97a70aa7bbSRiver Riddle
98a70aa7bbSRiver Riddle // MemRefDependenceGraph is a graph data structure where graph nodes are
99a70aa7bbSRiver Riddle // top-level operations in a FuncOp which contain load/store ops, and edges
100a70aa7bbSRiver Riddle // are memref dependences between the nodes.
101a70aa7bbSRiver Riddle // TODO: Add a more flexible dependence graph representation.
102a70aa7bbSRiver Riddle // TODO: Add a depth parameter to dependence graph construction.
103a70aa7bbSRiver Riddle struct MemRefDependenceGraph {
104a70aa7bbSRiver Riddle public:
105a70aa7bbSRiver Riddle // Node represents a node in the graph. A Node is either an entire loop nest
106a70aa7bbSRiver Riddle // rooted at the top level which contains loads/stores, or a top level
107a70aa7bbSRiver Riddle // load/store.
108a70aa7bbSRiver Riddle struct Node {
109a70aa7bbSRiver Riddle // The unique identifier of this node in the graph.
110a70aa7bbSRiver Riddle unsigned id;
111a70aa7bbSRiver Riddle // The top-level statement which is (or contains) a load/store.
112a70aa7bbSRiver Riddle Operation *op;
113a70aa7bbSRiver Riddle // List of load operations.
114a70aa7bbSRiver Riddle SmallVector<Operation *, 4> loads;
115a70aa7bbSRiver Riddle // List of store op insts.
116a70aa7bbSRiver Riddle SmallVector<Operation *, 4> stores;
Node__anon8a0d4ac20211::MemRefDependenceGraph::Node117a70aa7bbSRiver Riddle Node(unsigned id, Operation *op) : id(id), op(op) {}
118a70aa7bbSRiver Riddle
119a70aa7bbSRiver Riddle // Returns the load op count for 'memref'.
getLoadOpCount__anon8a0d4ac20211::MemRefDependenceGraph::Node120a70aa7bbSRiver Riddle unsigned getLoadOpCount(Value memref) {
121a70aa7bbSRiver Riddle unsigned loadOpCount = 0;
122a70aa7bbSRiver Riddle for (auto *loadOpInst : loads) {
123a70aa7bbSRiver Riddle if (memref == cast<AffineReadOpInterface>(loadOpInst).getMemRef())
124a70aa7bbSRiver Riddle ++loadOpCount;
125a70aa7bbSRiver Riddle }
126a70aa7bbSRiver Riddle return loadOpCount;
127a70aa7bbSRiver Riddle }
128a70aa7bbSRiver Riddle
129a70aa7bbSRiver Riddle // Returns the store op count for 'memref'.
getStoreOpCount__anon8a0d4ac20211::MemRefDependenceGraph::Node130a70aa7bbSRiver Riddle unsigned getStoreOpCount(Value memref) {
131a70aa7bbSRiver Riddle unsigned storeOpCount = 0;
132a70aa7bbSRiver Riddle for (auto *storeOpInst : stores) {
133a70aa7bbSRiver Riddle if (memref == cast<AffineWriteOpInterface>(storeOpInst).getMemRef())
134a70aa7bbSRiver Riddle ++storeOpCount;
135a70aa7bbSRiver Riddle }
136a70aa7bbSRiver Riddle return storeOpCount;
137a70aa7bbSRiver Riddle }
138a70aa7bbSRiver Riddle
139a70aa7bbSRiver Riddle // Returns all store ops in 'storeOps' which access 'memref'.
getStoreOpsForMemref__anon8a0d4ac20211::MemRefDependenceGraph::Node140a70aa7bbSRiver Riddle void getStoreOpsForMemref(Value memref,
141a70aa7bbSRiver Riddle SmallVectorImpl<Operation *> *storeOps) {
142a70aa7bbSRiver Riddle for (auto *storeOpInst : stores) {
143a70aa7bbSRiver Riddle if (memref == cast<AffineWriteOpInterface>(storeOpInst).getMemRef())
144a70aa7bbSRiver Riddle storeOps->push_back(storeOpInst);
145a70aa7bbSRiver Riddle }
146a70aa7bbSRiver Riddle }
147a70aa7bbSRiver Riddle
148a70aa7bbSRiver Riddle // Returns all load ops in 'loadOps' which access 'memref'.
getLoadOpsForMemref__anon8a0d4ac20211::MemRefDependenceGraph::Node149a70aa7bbSRiver Riddle void getLoadOpsForMemref(Value memref,
150a70aa7bbSRiver Riddle SmallVectorImpl<Operation *> *loadOps) {
151a70aa7bbSRiver Riddle for (auto *loadOpInst : loads) {
152a70aa7bbSRiver Riddle if (memref == cast<AffineReadOpInterface>(loadOpInst).getMemRef())
153a70aa7bbSRiver Riddle loadOps->push_back(loadOpInst);
154a70aa7bbSRiver Riddle }
155a70aa7bbSRiver Riddle }
156a70aa7bbSRiver Riddle
157a70aa7bbSRiver Riddle // Returns all memrefs in 'loadAndStoreMemrefSet' for which this node
158a70aa7bbSRiver Riddle // has at least one load and store operation.
getLoadAndStoreMemrefSet__anon8a0d4ac20211::MemRefDependenceGraph::Node159a70aa7bbSRiver Riddle void getLoadAndStoreMemrefSet(DenseSet<Value> *loadAndStoreMemrefSet) {
160a70aa7bbSRiver Riddle llvm::SmallDenseSet<Value, 2> loadMemrefs;
161a70aa7bbSRiver Riddle for (auto *loadOpInst : loads) {
162a70aa7bbSRiver Riddle loadMemrefs.insert(cast<AffineReadOpInterface>(loadOpInst).getMemRef());
163a70aa7bbSRiver Riddle }
164a70aa7bbSRiver Riddle for (auto *storeOpInst : stores) {
165a70aa7bbSRiver Riddle auto memref = cast<AffineWriteOpInterface>(storeOpInst).getMemRef();
166a70aa7bbSRiver Riddle if (loadMemrefs.count(memref) > 0)
167a70aa7bbSRiver Riddle loadAndStoreMemrefSet->insert(memref);
168a70aa7bbSRiver Riddle }
169a70aa7bbSRiver Riddle }
170a70aa7bbSRiver Riddle };
171a70aa7bbSRiver Riddle
172a70aa7bbSRiver Riddle // Edge represents a data dependence between nodes in the graph.
173a70aa7bbSRiver Riddle struct Edge {
174a70aa7bbSRiver Riddle // The id of the node at the other end of the edge.
175a70aa7bbSRiver Riddle // If this edge is stored in Edge = Node.inEdges[i], then
176a70aa7bbSRiver Riddle // 'Node.inEdges[i].id' is the identifier of the source node of the edge.
177a70aa7bbSRiver Riddle // If this edge is stored in Edge = Node.outEdges[i], then
178a70aa7bbSRiver Riddle // 'Node.outEdges[i].id' is the identifier of the dest node of the edge.
179a70aa7bbSRiver Riddle unsigned id;
180a70aa7bbSRiver Riddle // The SSA value on which this edge represents a dependence.
181a70aa7bbSRiver Riddle // If the value is a memref, then the dependence is between graph nodes
182a70aa7bbSRiver Riddle // which contain accesses to the same memref 'value'. If the value is a
183a70aa7bbSRiver Riddle // non-memref value, then the dependence is between a graph node which
184a70aa7bbSRiver Riddle // defines an SSA value and another graph node which uses the SSA value
185a70aa7bbSRiver Riddle // (e.g. a constant or load operation defining a value which is used inside
186a70aa7bbSRiver Riddle // a loop nest).
187a70aa7bbSRiver Riddle Value value;
188a70aa7bbSRiver Riddle };
189a70aa7bbSRiver Riddle
190a70aa7bbSRiver Riddle // Map from node id to Node.
191a70aa7bbSRiver Riddle DenseMap<unsigned, Node> nodes;
192a70aa7bbSRiver Riddle // Map from node id to list of input edges.
193a70aa7bbSRiver Riddle DenseMap<unsigned, SmallVector<Edge, 2>> inEdges;
194a70aa7bbSRiver Riddle // Map from node id to list of output edges.
195a70aa7bbSRiver Riddle DenseMap<unsigned, SmallVector<Edge, 2>> outEdges;
196a70aa7bbSRiver Riddle // Map from memref to a count on the dependence edges associated with that
197a70aa7bbSRiver Riddle // memref.
198a70aa7bbSRiver Riddle DenseMap<Value, unsigned> memrefEdgeCount;
199a70aa7bbSRiver Riddle // The next unique identifier to use for newly created graph nodes.
200a70aa7bbSRiver Riddle unsigned nextNodeId = 0;
201a70aa7bbSRiver Riddle
202a70aa7bbSRiver Riddle MemRefDependenceGraph() = default;
203a70aa7bbSRiver Riddle
204a70aa7bbSRiver Riddle // Initializes the dependence graph based on operations in 'f'.
205a70aa7bbSRiver Riddle // Returns true on success, false otherwise.
20658ceae95SRiver Riddle bool init(func::FuncOp f);
207a70aa7bbSRiver Riddle
208a70aa7bbSRiver Riddle // Returns the graph node for 'id'.
getNode__anon8a0d4ac20211::MemRefDependenceGraph209a70aa7bbSRiver Riddle Node *getNode(unsigned id) {
210a70aa7bbSRiver Riddle auto it = nodes.find(id);
211a70aa7bbSRiver Riddle assert(it != nodes.end());
212a70aa7bbSRiver Riddle return &it->second;
213a70aa7bbSRiver Riddle }
214a70aa7bbSRiver Riddle
215a70aa7bbSRiver Riddle // Returns the graph node for 'forOp'.
getForOpNode__anon8a0d4ac20211::MemRefDependenceGraph216a70aa7bbSRiver Riddle Node *getForOpNode(AffineForOp forOp) {
217a70aa7bbSRiver Riddle for (auto &idAndNode : nodes)
218a70aa7bbSRiver Riddle if (idAndNode.second.op == forOp.getOperation())
219a70aa7bbSRiver Riddle return &idAndNode.second;
220a70aa7bbSRiver Riddle return nullptr;
221a70aa7bbSRiver Riddle }
222a70aa7bbSRiver Riddle
223a70aa7bbSRiver Riddle // Adds a node with 'op' to the graph and returns its unique identifier.
addNode__anon8a0d4ac20211::MemRefDependenceGraph224a70aa7bbSRiver Riddle unsigned addNode(Operation *op) {
225a70aa7bbSRiver Riddle Node node(nextNodeId++, op);
226a70aa7bbSRiver Riddle nodes.insert({node.id, node});
227a70aa7bbSRiver Riddle return node.id;
228a70aa7bbSRiver Riddle }
229a70aa7bbSRiver Riddle
230a70aa7bbSRiver Riddle // Remove node 'id' (and its associated edges) from graph.
removeNode__anon8a0d4ac20211::MemRefDependenceGraph231a70aa7bbSRiver Riddle void removeNode(unsigned id) {
232a70aa7bbSRiver Riddle // Remove each edge in 'inEdges[id]'.
233a70aa7bbSRiver Riddle if (inEdges.count(id) > 0) {
234a70aa7bbSRiver Riddle SmallVector<Edge, 2> oldInEdges = inEdges[id];
235a70aa7bbSRiver Riddle for (auto &inEdge : oldInEdges) {
236a70aa7bbSRiver Riddle removeEdge(inEdge.id, id, inEdge.value);
237a70aa7bbSRiver Riddle }
238a70aa7bbSRiver Riddle }
239a70aa7bbSRiver Riddle // Remove each edge in 'outEdges[id]'.
240a70aa7bbSRiver Riddle if (outEdges.count(id) > 0) {
241a70aa7bbSRiver Riddle SmallVector<Edge, 2> oldOutEdges = outEdges[id];
242a70aa7bbSRiver Riddle for (auto &outEdge : oldOutEdges) {
243a70aa7bbSRiver Riddle removeEdge(id, outEdge.id, outEdge.value);
244a70aa7bbSRiver Riddle }
245a70aa7bbSRiver Riddle }
246a70aa7bbSRiver Riddle // Erase remaining node state.
247a70aa7bbSRiver Riddle inEdges.erase(id);
248a70aa7bbSRiver Riddle outEdges.erase(id);
249a70aa7bbSRiver Riddle nodes.erase(id);
250a70aa7bbSRiver Riddle }
251a70aa7bbSRiver Riddle
252a70aa7bbSRiver Riddle // Returns true if node 'id' writes to any memref which escapes (or is an
253a70aa7bbSRiver Riddle // argument to) the function/block. Returns false otherwise.
writesToLiveInOrEscapingMemrefs__anon8a0d4ac20211::MemRefDependenceGraph254a70aa7bbSRiver Riddle bool writesToLiveInOrEscapingMemrefs(unsigned id) {
255a70aa7bbSRiver Riddle Node *node = getNode(id);
256a70aa7bbSRiver Riddle for (auto *storeOpInst : node->stores) {
257a70aa7bbSRiver Riddle auto memref = cast<AffineWriteOpInterface>(storeOpInst).getMemRef();
258a70aa7bbSRiver Riddle auto *op = memref.getDefiningOp();
259a70aa7bbSRiver Riddle // Return true if 'memref' is a block argument.
260a70aa7bbSRiver Riddle if (!op)
261a70aa7bbSRiver Riddle return true;
262a70aa7bbSRiver Riddle // Return true if any use of 'memref' escapes the function.
263a70aa7bbSRiver Riddle for (auto *user : memref.getUsers())
264a70aa7bbSRiver Riddle if (!isa<AffineMapAccessInterface>(*user))
265a70aa7bbSRiver Riddle return true;
266a70aa7bbSRiver Riddle }
267a70aa7bbSRiver Riddle return false;
268a70aa7bbSRiver Riddle }
269a70aa7bbSRiver Riddle
270a70aa7bbSRiver Riddle // Returns true iff there is an edge from node 'srcId' to node 'dstId' which
271a70aa7bbSRiver Riddle // is for 'value' if non-null, or for any value otherwise. Returns false
272a70aa7bbSRiver Riddle // otherwise.
hasEdge__anon8a0d4ac20211::MemRefDependenceGraph273a70aa7bbSRiver Riddle bool hasEdge(unsigned srcId, unsigned dstId, Value value = nullptr) {
274a70aa7bbSRiver Riddle if (outEdges.count(srcId) == 0 || inEdges.count(dstId) == 0) {
275a70aa7bbSRiver Riddle return false;
276a70aa7bbSRiver Riddle }
277a70aa7bbSRiver Riddle bool hasOutEdge = llvm::any_of(outEdges[srcId], [=](Edge &edge) {
278a70aa7bbSRiver Riddle return edge.id == dstId && (!value || edge.value == value);
279a70aa7bbSRiver Riddle });
280a70aa7bbSRiver Riddle bool hasInEdge = llvm::any_of(inEdges[dstId], [=](Edge &edge) {
281a70aa7bbSRiver Riddle return edge.id == srcId && (!value || edge.value == value);
282a70aa7bbSRiver Riddle });
283a70aa7bbSRiver Riddle return hasOutEdge && hasInEdge;
284a70aa7bbSRiver Riddle }
285a70aa7bbSRiver Riddle
286a70aa7bbSRiver Riddle // Adds an edge from node 'srcId' to node 'dstId' for 'value'.
addEdge__anon8a0d4ac20211::MemRefDependenceGraph287a70aa7bbSRiver Riddle void addEdge(unsigned srcId, unsigned dstId, Value value) {
288a70aa7bbSRiver Riddle if (!hasEdge(srcId, dstId, value)) {
289a70aa7bbSRiver Riddle outEdges[srcId].push_back({dstId, value});
290a70aa7bbSRiver Riddle inEdges[dstId].push_back({srcId, value});
291a70aa7bbSRiver Riddle if (value.getType().isa<MemRefType>())
292a70aa7bbSRiver Riddle memrefEdgeCount[value]++;
293a70aa7bbSRiver Riddle }
294a70aa7bbSRiver Riddle }
295a70aa7bbSRiver Riddle
296a70aa7bbSRiver Riddle // Removes an edge from node 'srcId' to node 'dstId' for 'value'.
removeEdge__anon8a0d4ac20211::MemRefDependenceGraph297a70aa7bbSRiver Riddle void removeEdge(unsigned srcId, unsigned dstId, Value value) {
298a70aa7bbSRiver Riddle assert(inEdges.count(dstId) > 0);
299a70aa7bbSRiver Riddle assert(outEdges.count(srcId) > 0);
300a70aa7bbSRiver Riddle if (value.getType().isa<MemRefType>()) {
301a70aa7bbSRiver Riddle assert(memrefEdgeCount.count(value) > 0);
302a70aa7bbSRiver Riddle memrefEdgeCount[value]--;
303a70aa7bbSRiver Riddle }
304a70aa7bbSRiver Riddle // Remove 'srcId' from 'inEdges[dstId]'.
305a70aa7bbSRiver Riddle for (auto *it = inEdges[dstId].begin(); it != inEdges[dstId].end(); ++it) {
306a70aa7bbSRiver Riddle if ((*it).id == srcId && (*it).value == value) {
307a70aa7bbSRiver Riddle inEdges[dstId].erase(it);
308a70aa7bbSRiver Riddle break;
309a70aa7bbSRiver Riddle }
310a70aa7bbSRiver Riddle }
311a70aa7bbSRiver Riddle // Remove 'dstId' from 'outEdges[srcId]'.
312a70aa7bbSRiver Riddle for (auto *it = outEdges[srcId].begin(); it != outEdges[srcId].end();
313a70aa7bbSRiver Riddle ++it) {
314a70aa7bbSRiver Riddle if ((*it).id == dstId && (*it).value == value) {
315a70aa7bbSRiver Riddle outEdges[srcId].erase(it);
316a70aa7bbSRiver Riddle break;
317a70aa7bbSRiver Riddle }
318a70aa7bbSRiver Riddle }
319a70aa7bbSRiver Riddle }
320a70aa7bbSRiver Riddle
321a70aa7bbSRiver Riddle // Returns true if there is a path in the dependence graph from node 'srcId'
322a70aa7bbSRiver Riddle // to node 'dstId'. Returns false otherwise.
hasDependencePath__anon8a0d4ac20211::MemRefDependenceGraph323a70aa7bbSRiver Riddle bool hasDependencePath(unsigned srcId, unsigned dstId) {
324a70aa7bbSRiver Riddle // Worklist state is: <node-id, next-output-edge-index-to-visit>
325a70aa7bbSRiver Riddle SmallVector<std::pair<unsigned, unsigned>, 4> worklist;
326a70aa7bbSRiver Riddle worklist.push_back({srcId, 0});
327a70aa7bbSRiver Riddle // Run DFS traversal to see if 'dstId' is reachable from 'srcId'.
328a70aa7bbSRiver Riddle while (!worklist.empty()) {
329a70aa7bbSRiver Riddle auto &idAndIndex = worklist.back();
330a70aa7bbSRiver Riddle // Return true if we have reached 'dstId'.
331a70aa7bbSRiver Riddle if (idAndIndex.first == dstId)
332a70aa7bbSRiver Riddle return true;
333a70aa7bbSRiver Riddle // Pop and continue if node has no out edges, or if all out edges have
334a70aa7bbSRiver Riddle // already been visited.
335a70aa7bbSRiver Riddle if (outEdges.count(idAndIndex.first) == 0 ||
336a70aa7bbSRiver Riddle idAndIndex.second == outEdges[idAndIndex.first].size()) {
337a70aa7bbSRiver Riddle worklist.pop_back();
338a70aa7bbSRiver Riddle continue;
339a70aa7bbSRiver Riddle }
340a70aa7bbSRiver Riddle // Get graph edge to traverse.
341a70aa7bbSRiver Riddle Edge edge = outEdges[idAndIndex.first][idAndIndex.second];
342a70aa7bbSRiver Riddle // Increment next output edge index for 'idAndIndex'.
343a70aa7bbSRiver Riddle ++idAndIndex.second;
344a70aa7bbSRiver Riddle // Add node at 'edge.id' to worklist.
345a70aa7bbSRiver Riddle worklist.push_back({edge.id, 0});
346a70aa7bbSRiver Riddle }
347a70aa7bbSRiver Riddle return false;
348a70aa7bbSRiver Riddle }
349a70aa7bbSRiver Riddle
350a70aa7bbSRiver Riddle // Returns the input edge count for node 'id' and 'memref' from src nodes
351a70aa7bbSRiver Riddle // which access 'memref' with a store operation.
getIncomingMemRefAccesses__anon8a0d4ac20211::MemRefDependenceGraph352a70aa7bbSRiver Riddle unsigned getIncomingMemRefAccesses(unsigned id, Value memref) {
353a70aa7bbSRiver Riddle unsigned inEdgeCount = 0;
354a70aa7bbSRiver Riddle if (inEdges.count(id) > 0)
355a70aa7bbSRiver Riddle for (auto &inEdge : inEdges[id])
356a70aa7bbSRiver Riddle if (inEdge.value == memref) {
357a70aa7bbSRiver Riddle Node *srcNode = getNode(inEdge.id);
358a70aa7bbSRiver Riddle // Only count in edges from 'srcNode' if 'srcNode' accesses 'memref'
359a70aa7bbSRiver Riddle if (srcNode->getStoreOpCount(memref) > 0)
360a70aa7bbSRiver Riddle ++inEdgeCount;
361a70aa7bbSRiver Riddle }
362a70aa7bbSRiver Riddle return inEdgeCount;
363a70aa7bbSRiver Riddle }
364a70aa7bbSRiver Riddle
365a70aa7bbSRiver Riddle // Returns the output edge count for node 'id' and 'memref' (if non-null),
366a70aa7bbSRiver Riddle // otherwise returns the total output edge count from node 'id'.
getOutEdgeCount__anon8a0d4ac20211::MemRefDependenceGraph367a70aa7bbSRiver Riddle unsigned getOutEdgeCount(unsigned id, Value memref = nullptr) {
368a70aa7bbSRiver Riddle unsigned outEdgeCount = 0;
369a70aa7bbSRiver Riddle if (outEdges.count(id) > 0)
370a70aa7bbSRiver Riddle for (auto &outEdge : outEdges[id])
371a70aa7bbSRiver Riddle if (!memref || outEdge.value == memref)
372a70aa7bbSRiver Riddle ++outEdgeCount;
373a70aa7bbSRiver Riddle return outEdgeCount;
374a70aa7bbSRiver Riddle }
375a70aa7bbSRiver Riddle
376a70aa7bbSRiver Riddle /// Return all nodes which define SSA values used in node 'id'.
gatherDefiningNodes__anon8a0d4ac20211::MemRefDependenceGraph377a70aa7bbSRiver Riddle void gatherDefiningNodes(unsigned id, DenseSet<unsigned> &definingNodes) {
378a70aa7bbSRiver Riddle for (MemRefDependenceGraph::Edge edge : inEdges[id])
379a70aa7bbSRiver Riddle // By definition of edge, if the edge value is a non-memref value,
380a70aa7bbSRiver Riddle // then the dependence is between a graph node which defines an SSA value
381a70aa7bbSRiver Riddle // and another graph node which uses the SSA value.
382a70aa7bbSRiver Riddle if (!edge.value.getType().isa<MemRefType>())
383a70aa7bbSRiver Riddle definingNodes.insert(edge.id);
384a70aa7bbSRiver Riddle }
385a70aa7bbSRiver Riddle
386a70aa7bbSRiver Riddle // Computes and returns an insertion point operation, before which the
387a70aa7bbSRiver Riddle // the fused <srcId, dstId> loop nest can be inserted while preserving
388a70aa7bbSRiver Riddle // dependences. Returns nullptr if no such insertion point is found.
getFusedLoopNestInsertionPoint__anon8a0d4ac20211::MemRefDependenceGraph389a70aa7bbSRiver Riddle Operation *getFusedLoopNestInsertionPoint(unsigned srcId, unsigned dstId) {
390a70aa7bbSRiver Riddle if (outEdges.count(srcId) == 0)
391a70aa7bbSRiver Riddle return getNode(dstId)->op;
392a70aa7bbSRiver Riddle
393a70aa7bbSRiver Riddle // Skip if there is any defining node of 'dstId' that depends on 'srcId'.
394a70aa7bbSRiver Riddle DenseSet<unsigned> definingNodes;
395a70aa7bbSRiver Riddle gatherDefiningNodes(dstId, definingNodes);
396a70aa7bbSRiver Riddle if (llvm::any_of(definingNodes, [&](unsigned id) {
397a70aa7bbSRiver Riddle return hasDependencePath(srcId, id);
398a70aa7bbSRiver Riddle })) {
399a70aa7bbSRiver Riddle LLVM_DEBUG(llvm::dbgs()
400a70aa7bbSRiver Riddle << "Can't fuse: a defining op with a user in the dst "
401a70aa7bbSRiver Riddle "loop has dependence from the src loop\n");
402a70aa7bbSRiver Riddle return nullptr;
403a70aa7bbSRiver Riddle }
404a70aa7bbSRiver Riddle
405a70aa7bbSRiver Riddle // Build set of insts in range (srcId, dstId) which depend on 'srcId'.
406a70aa7bbSRiver Riddle SmallPtrSet<Operation *, 2> srcDepInsts;
407a70aa7bbSRiver Riddle for (auto &outEdge : outEdges[srcId])
408a70aa7bbSRiver Riddle if (outEdge.id != dstId)
409a70aa7bbSRiver Riddle srcDepInsts.insert(getNode(outEdge.id)->op);
410a70aa7bbSRiver Riddle
411a70aa7bbSRiver Riddle // Build set of insts in range (srcId, dstId) on which 'dstId' depends.
412a70aa7bbSRiver Riddle SmallPtrSet<Operation *, 2> dstDepInsts;
413a70aa7bbSRiver Riddle for (auto &inEdge : inEdges[dstId])
414a70aa7bbSRiver Riddle if (inEdge.id != srcId)
415a70aa7bbSRiver Riddle dstDepInsts.insert(getNode(inEdge.id)->op);
416a70aa7bbSRiver Riddle
417a70aa7bbSRiver Riddle Operation *srcNodeInst = getNode(srcId)->op;
418a70aa7bbSRiver Riddle Operation *dstNodeInst = getNode(dstId)->op;
419a70aa7bbSRiver Riddle
420a70aa7bbSRiver Riddle // Computing insertion point:
421a70aa7bbSRiver Riddle // *) Walk all operation positions in Block operation list in the
422a70aa7bbSRiver Riddle // range (src, dst). For each operation 'op' visited in this search:
423a70aa7bbSRiver Riddle // *) Store in 'firstSrcDepPos' the first position where 'op' has a
424a70aa7bbSRiver Riddle // dependence edge from 'srcNode'.
425a70aa7bbSRiver Riddle // *) Store in 'lastDstDepPost' the last position where 'op' has a
426a70aa7bbSRiver Riddle // dependence edge to 'dstNode'.
427a70aa7bbSRiver Riddle // *) Compare 'firstSrcDepPos' and 'lastDstDepPost' to determine the
428a70aa7bbSRiver Riddle // operation insertion point (or return null pointer if no such
429a70aa7bbSRiver Riddle // insertion point exists: 'firstSrcDepPos' <= 'lastDstDepPos').
430a70aa7bbSRiver Riddle SmallVector<Operation *, 2> depInsts;
431a70aa7bbSRiver Riddle Optional<unsigned> firstSrcDepPos;
432a70aa7bbSRiver Riddle Optional<unsigned> lastDstDepPos;
433a70aa7bbSRiver Riddle unsigned pos = 0;
434a70aa7bbSRiver Riddle for (Block::iterator it = std::next(Block::iterator(srcNodeInst));
435a70aa7bbSRiver Riddle it != Block::iterator(dstNodeInst); ++it) {
436a70aa7bbSRiver Riddle Operation *op = &(*it);
437a70aa7bbSRiver Riddle if (srcDepInsts.count(op) > 0 && firstSrcDepPos == None)
438a70aa7bbSRiver Riddle firstSrcDepPos = pos;
439a70aa7bbSRiver Riddle if (dstDepInsts.count(op) > 0)
440a70aa7bbSRiver Riddle lastDstDepPos = pos;
441a70aa7bbSRiver Riddle depInsts.push_back(op);
442a70aa7bbSRiver Riddle ++pos;
443a70aa7bbSRiver Riddle }
444a70aa7bbSRiver Riddle
445491d2701SKazu Hirata if (firstSrcDepPos.has_value()) {
446491d2701SKazu Hirata if (lastDstDepPos.has_value()) {
447c27d8152SKazu Hirata if (firstSrcDepPos.value() <= lastDstDepPos.value()) {
448a70aa7bbSRiver Riddle // No valid insertion point exists which preserves dependences.
449a70aa7bbSRiver Riddle return nullptr;
450a70aa7bbSRiver Riddle }
451a70aa7bbSRiver Riddle }
452a70aa7bbSRiver Riddle // Return the insertion point at 'firstSrcDepPos'.
453c27d8152SKazu Hirata return depInsts[firstSrcDepPos.value()];
454a70aa7bbSRiver Riddle }
455a70aa7bbSRiver Riddle // No dependence targets in range (or only dst deps in range), return
456a70aa7bbSRiver Riddle // 'dstNodInst' insertion point.
457a70aa7bbSRiver Riddle return dstNodeInst;
458a70aa7bbSRiver Riddle }
459a70aa7bbSRiver Riddle
460a70aa7bbSRiver Riddle // Updates edge mappings from node 'srcId' to node 'dstId' after fusing them,
461a70aa7bbSRiver Riddle // taking into account that:
462a70aa7bbSRiver Riddle // *) if 'removeSrcId' is true, 'srcId' will be removed after fusion,
463a70aa7bbSRiver Riddle // *) memrefs in 'privateMemRefs' has been replaced in node at 'dstId' by a
464a70aa7bbSRiver Riddle // private memref.
updateEdges__anon8a0d4ac20211::MemRefDependenceGraph465a70aa7bbSRiver Riddle void updateEdges(unsigned srcId, unsigned dstId,
466a70aa7bbSRiver Riddle const DenseSet<Value> &privateMemRefs, bool removeSrcId) {
467a70aa7bbSRiver Riddle // For each edge in 'inEdges[srcId]': add new edge remapping to 'dstId'.
468a70aa7bbSRiver Riddle if (inEdges.count(srcId) > 0) {
469a70aa7bbSRiver Riddle SmallVector<Edge, 2> oldInEdges = inEdges[srcId];
470a70aa7bbSRiver Riddle for (auto &inEdge : oldInEdges) {
471a70aa7bbSRiver Riddle // Add edge from 'inEdge.id' to 'dstId' if it's not a private memref.
472a70aa7bbSRiver Riddle if (privateMemRefs.count(inEdge.value) == 0)
473a70aa7bbSRiver Riddle addEdge(inEdge.id, dstId, inEdge.value);
474a70aa7bbSRiver Riddle }
475a70aa7bbSRiver Riddle }
476a70aa7bbSRiver Riddle // For each edge in 'outEdges[srcId]': remove edge from 'srcId' to 'dstId'.
477a70aa7bbSRiver Riddle // If 'srcId' is going to be removed, remap all the out edges to 'dstId'.
478a70aa7bbSRiver Riddle if (outEdges.count(srcId) > 0) {
479a70aa7bbSRiver Riddle SmallVector<Edge, 2> oldOutEdges = outEdges[srcId];
480a70aa7bbSRiver Riddle for (auto &outEdge : oldOutEdges) {
481a70aa7bbSRiver Riddle // Remove any out edges from 'srcId' to 'dstId' across memrefs.
482a70aa7bbSRiver Riddle if (outEdge.id == dstId)
483a70aa7bbSRiver Riddle removeEdge(srcId, outEdge.id, outEdge.value);
484a70aa7bbSRiver Riddle else if (removeSrcId) {
485a70aa7bbSRiver Riddle addEdge(dstId, outEdge.id, outEdge.value);
486a70aa7bbSRiver Riddle removeEdge(srcId, outEdge.id, outEdge.value);
487a70aa7bbSRiver Riddle }
488a70aa7bbSRiver Riddle }
489a70aa7bbSRiver Riddle }
490a70aa7bbSRiver Riddle // Remove any edges in 'inEdges[dstId]' on 'oldMemRef' (which is being
491a70aa7bbSRiver Riddle // replaced by a private memref). These edges could come from nodes
492a70aa7bbSRiver Riddle // other than 'srcId' which were removed in the previous step.
493a70aa7bbSRiver Riddle if (inEdges.count(dstId) > 0 && !privateMemRefs.empty()) {
494a70aa7bbSRiver Riddle SmallVector<Edge, 2> oldInEdges = inEdges[dstId];
495a70aa7bbSRiver Riddle for (auto &inEdge : oldInEdges)
496a70aa7bbSRiver Riddle if (privateMemRefs.count(inEdge.value) > 0)
497a70aa7bbSRiver Riddle removeEdge(inEdge.id, dstId, inEdge.value);
498a70aa7bbSRiver Riddle }
499a70aa7bbSRiver Riddle }
500a70aa7bbSRiver Riddle
501a70aa7bbSRiver Riddle // Update edge mappings for nodes 'sibId' and 'dstId' to reflect fusion
502a70aa7bbSRiver Riddle // of sibling node 'sibId' into node 'dstId'.
updateEdges__anon8a0d4ac20211::MemRefDependenceGraph503a70aa7bbSRiver Riddle void updateEdges(unsigned sibId, unsigned dstId) {
504a70aa7bbSRiver Riddle // For each edge in 'inEdges[sibId]':
505a70aa7bbSRiver Riddle // *) Add new edge from source node 'inEdge.id' to 'dstNode'.
506a70aa7bbSRiver Riddle // *) Remove edge from source node 'inEdge.id' to 'sibNode'.
507a70aa7bbSRiver Riddle if (inEdges.count(sibId) > 0) {
508a70aa7bbSRiver Riddle SmallVector<Edge, 2> oldInEdges = inEdges[sibId];
509a70aa7bbSRiver Riddle for (auto &inEdge : oldInEdges) {
510a70aa7bbSRiver Riddle addEdge(inEdge.id, dstId, inEdge.value);
511a70aa7bbSRiver Riddle removeEdge(inEdge.id, sibId, inEdge.value);
512a70aa7bbSRiver Riddle }
513a70aa7bbSRiver Riddle }
514a70aa7bbSRiver Riddle
515a70aa7bbSRiver Riddle // For each edge in 'outEdges[sibId]' to node 'id'
516a70aa7bbSRiver Riddle // *) Add new edge from 'dstId' to 'outEdge.id'.
517a70aa7bbSRiver Riddle // *) Remove edge from 'sibId' to 'outEdge.id'.
518a70aa7bbSRiver Riddle if (outEdges.count(sibId) > 0) {
519a70aa7bbSRiver Riddle SmallVector<Edge, 2> oldOutEdges = outEdges[sibId];
520a70aa7bbSRiver Riddle for (auto &outEdge : oldOutEdges) {
521a70aa7bbSRiver Riddle addEdge(dstId, outEdge.id, outEdge.value);
522a70aa7bbSRiver Riddle removeEdge(sibId, outEdge.id, outEdge.value);
523a70aa7bbSRiver Riddle }
524a70aa7bbSRiver Riddle }
525a70aa7bbSRiver Riddle }
526a70aa7bbSRiver Riddle
527a70aa7bbSRiver Riddle // Adds ops in 'loads' and 'stores' to node at 'id'.
addToNode__anon8a0d4ac20211::MemRefDependenceGraph528a70aa7bbSRiver Riddle void addToNode(unsigned id, const SmallVectorImpl<Operation *> &loads,
529a70aa7bbSRiver Riddle const SmallVectorImpl<Operation *> &stores) {
530a70aa7bbSRiver Riddle Node *node = getNode(id);
53189d8035eSBenjamin Kramer llvm::append_range(node->loads, loads);
53289d8035eSBenjamin Kramer llvm::append_range(node->stores, stores);
533a70aa7bbSRiver Riddle }
534a70aa7bbSRiver Riddle
clearNodeLoadAndStores__anon8a0d4ac20211::MemRefDependenceGraph535a70aa7bbSRiver Riddle void clearNodeLoadAndStores(unsigned id) {
536a70aa7bbSRiver Riddle Node *node = getNode(id);
537a70aa7bbSRiver Riddle node->loads.clear();
538a70aa7bbSRiver Riddle node->stores.clear();
539a70aa7bbSRiver Riddle }
540a70aa7bbSRiver Riddle
541a70aa7bbSRiver Riddle // Calls 'callback' for each input edge incident to node 'id' which carries a
542a70aa7bbSRiver Riddle // memref dependence.
forEachMemRefInputEdge__anon8a0d4ac20211::MemRefDependenceGraph543a70aa7bbSRiver Riddle void forEachMemRefInputEdge(unsigned id,
544a70aa7bbSRiver Riddle const std::function<void(Edge)> &callback) {
545a70aa7bbSRiver Riddle if (inEdges.count(id) > 0)
546a70aa7bbSRiver Riddle forEachMemRefEdge(inEdges[id], callback);
547a70aa7bbSRiver Riddle }
548a70aa7bbSRiver Riddle
549a70aa7bbSRiver Riddle // Calls 'callback' for each output edge from node 'id' which carries a
550a70aa7bbSRiver Riddle // memref dependence.
forEachMemRefOutputEdge__anon8a0d4ac20211::MemRefDependenceGraph551a70aa7bbSRiver Riddle void forEachMemRefOutputEdge(unsigned id,
552a70aa7bbSRiver Riddle const std::function<void(Edge)> &callback) {
553a70aa7bbSRiver Riddle if (outEdges.count(id) > 0)
554a70aa7bbSRiver Riddle forEachMemRefEdge(outEdges[id], callback);
555a70aa7bbSRiver Riddle }
556a70aa7bbSRiver Riddle
557a70aa7bbSRiver Riddle // Calls 'callback' for each edge in 'edges' which carries a memref
558a70aa7bbSRiver Riddle // dependence.
forEachMemRefEdge__anon8a0d4ac20211::MemRefDependenceGraph559a70aa7bbSRiver Riddle void forEachMemRefEdge(ArrayRef<Edge> edges,
560a70aa7bbSRiver Riddle const std::function<void(Edge)> &callback) {
561a70aa7bbSRiver Riddle for (const auto &edge : edges) {
562a70aa7bbSRiver Riddle // Skip if 'edge' is not a memref dependence edge.
563a70aa7bbSRiver Riddle if (!edge.value.getType().isa<MemRefType>())
564a70aa7bbSRiver Riddle continue;
565a70aa7bbSRiver Riddle assert(nodes.count(edge.id) > 0);
566a70aa7bbSRiver Riddle // Skip if 'edge.id' is not a loop nest.
567a70aa7bbSRiver Riddle if (!isa<AffineForOp>(getNode(edge.id)->op))
568a70aa7bbSRiver Riddle continue;
569a70aa7bbSRiver Riddle // Visit current input edge 'edge'.
570a70aa7bbSRiver Riddle callback(edge);
571a70aa7bbSRiver Riddle }
572a70aa7bbSRiver Riddle }
573a70aa7bbSRiver Riddle
print__anon8a0d4ac20211::MemRefDependenceGraph574a70aa7bbSRiver Riddle void print(raw_ostream &os) const {
575a70aa7bbSRiver Riddle os << "\nMemRefDependenceGraph\n";
576a70aa7bbSRiver Riddle os << "\nNodes:\n";
577a70aa7bbSRiver Riddle for (const auto &idAndNode : nodes) {
578a70aa7bbSRiver Riddle os << "Node: " << idAndNode.first << "\n";
579a70aa7bbSRiver Riddle auto it = inEdges.find(idAndNode.first);
580a70aa7bbSRiver Riddle if (it != inEdges.end()) {
581a70aa7bbSRiver Riddle for (const auto &e : it->second)
582a70aa7bbSRiver Riddle os << " InEdge: " << e.id << " " << e.value << "\n";
583a70aa7bbSRiver Riddle }
584a70aa7bbSRiver Riddle it = outEdges.find(idAndNode.first);
585a70aa7bbSRiver Riddle if (it != outEdges.end()) {
586a70aa7bbSRiver Riddle for (const auto &e : it->second)
587a70aa7bbSRiver Riddle os << " OutEdge: " << e.id << " " << e.value << "\n";
588a70aa7bbSRiver Riddle }
589a70aa7bbSRiver Riddle }
590a70aa7bbSRiver Riddle }
dump__anon8a0d4ac20211::MemRefDependenceGraph591a70aa7bbSRiver Riddle void dump() const { print(llvm::errs()); }
592a70aa7bbSRiver Riddle };
593a70aa7bbSRiver Riddle
594a70aa7bbSRiver Riddle /// Returns true if node 'srcId' can be removed after fusing it with node
595a70aa7bbSRiver Riddle /// 'dstId'. The node can be removed if any of the following conditions are met:
596a70aa7bbSRiver Riddle /// 1. 'srcId' has no output dependences after fusion and no escaping memrefs.
597a70aa7bbSRiver Riddle /// 2. 'srcId' has no output dependences after fusion, has escaping memrefs
598a70aa7bbSRiver Riddle /// and the fusion slice is maximal.
599a70aa7bbSRiver Riddle /// 3. 'srcId' has output dependences after fusion, the fusion slice is
600a70aa7bbSRiver Riddle /// maximal and the fusion insertion point dominates all the dependences.
canRemoveSrcNodeAfterFusion(unsigned srcId,unsigned dstId,const ComputationSliceState & fusionSlice,Operation * fusedLoopInsPoint,const DenseSet<Value> & escapingMemRefs,MemRefDependenceGraph * mdg)601a70aa7bbSRiver Riddle static bool canRemoveSrcNodeAfterFusion(
602a70aa7bbSRiver Riddle unsigned srcId, unsigned dstId, const ComputationSliceState &fusionSlice,
603a70aa7bbSRiver Riddle Operation *fusedLoopInsPoint, const DenseSet<Value> &escapingMemRefs,
604a70aa7bbSRiver Riddle MemRefDependenceGraph *mdg) {
605a70aa7bbSRiver Riddle
606a70aa7bbSRiver Riddle Operation *dstNodeOp = mdg->getNode(dstId)->op;
607a70aa7bbSRiver Riddle bool hasOutDepsAfterFusion = false;
608a70aa7bbSRiver Riddle
609a70aa7bbSRiver Riddle for (auto &outEdge : mdg->outEdges[srcId]) {
610a70aa7bbSRiver Riddle Operation *depNodeOp = mdg->getNode(outEdge.id)->op;
611a70aa7bbSRiver Riddle // Skip dependence with dstOp since it will be removed after fusion.
612a70aa7bbSRiver Riddle if (depNodeOp == dstNodeOp)
613a70aa7bbSRiver Riddle continue;
614a70aa7bbSRiver Riddle
615a70aa7bbSRiver Riddle // Only fusion within the same block is supported. Use domination analysis
616a70aa7bbSRiver Riddle // when needed.
617a70aa7bbSRiver Riddle if (depNodeOp->getBlock() != dstNodeOp->getBlock())
618a70aa7bbSRiver Riddle return false;
619a70aa7bbSRiver Riddle
620a70aa7bbSRiver Riddle // Check if the insertion point of the fused loop dominates the dependence.
621a70aa7bbSRiver Riddle // Otherwise, the src loop can't be removed.
622a70aa7bbSRiver Riddle if (fusedLoopInsPoint != depNodeOp &&
623a70aa7bbSRiver Riddle !fusedLoopInsPoint->isBeforeInBlock(depNodeOp)) {
624a70aa7bbSRiver Riddle LLVM_DEBUG(llvm::dbgs() << "Src loop can't be removed: dst loop doesn't "
625a70aa7bbSRiver Riddle "dominate dependence\n");
626a70aa7bbSRiver Riddle return false;
627a70aa7bbSRiver Riddle }
628a70aa7bbSRiver Riddle
629a70aa7bbSRiver Riddle hasOutDepsAfterFusion = true;
630a70aa7bbSRiver Riddle }
631a70aa7bbSRiver Riddle
632a70aa7bbSRiver Riddle // If src loop has dependences after fusion or it writes to an live-out or
633a70aa7bbSRiver Riddle // escaping memref, we can only remove it if the fusion slice is maximal so
634a70aa7bbSRiver Riddle // that all the dependences are preserved.
635a70aa7bbSRiver Riddle if (hasOutDepsAfterFusion || !escapingMemRefs.empty()) {
636a70aa7bbSRiver Riddle Optional<bool> isMaximal = fusionSlice.isMaximal();
637037f0995SKazu Hirata if (!isMaximal) {
638a70aa7bbSRiver Riddle LLVM_DEBUG(llvm::dbgs() << "Src loop can't be removed: can't determine "
639a70aa7bbSRiver Riddle "if fusion is maximal\n");
640a70aa7bbSRiver Riddle return false;
641a70aa7bbSRiver Riddle }
642a70aa7bbSRiver Riddle
6436d5fc1e3SKazu Hirata if (!*isMaximal) {
644a70aa7bbSRiver Riddle LLVM_DEBUG(llvm::dbgs()
645a70aa7bbSRiver Riddle << "Src loop can't be removed: fusion is not maximal\n");
646a70aa7bbSRiver Riddle return false;
647a70aa7bbSRiver Riddle }
648a70aa7bbSRiver Riddle }
649a70aa7bbSRiver Riddle
650a70aa7bbSRiver Riddle return true;
651a70aa7bbSRiver Riddle }
652a70aa7bbSRiver Riddle
653a70aa7bbSRiver Riddle /// Returns in 'srcIdCandidates' the producer fusion candidates for consumer
654a70aa7bbSRiver Riddle /// 'dstId'. Candidates are sorted by node id order. This order corresponds to
655a70aa7bbSRiver Riddle /// the program order when the 'mdg' is created. However, program order is not
656a70aa7bbSRiver Riddle /// guaranteed and must not be required by the client. Program order won't be
657a70aa7bbSRiver Riddle /// held if the 'mdg' is reused from a previous fusion step or if the node
658a70aa7bbSRiver Riddle /// creation order changes in the future to support more advance cases.
659a70aa7bbSRiver Riddle // TODO: Move this to a loop fusion utility once 'mdg' is also moved.
getProducerCandidates(unsigned dstId,MemRefDependenceGraph * mdg,SmallVectorImpl<unsigned> & srcIdCandidates)660a70aa7bbSRiver Riddle static void getProducerCandidates(unsigned dstId, MemRefDependenceGraph *mdg,
661a70aa7bbSRiver Riddle SmallVectorImpl<unsigned> &srcIdCandidates) {
662a70aa7bbSRiver Riddle // Skip if no input edges along which to fuse.
663a70aa7bbSRiver Riddle if (mdg->inEdges.count(dstId) == 0)
664a70aa7bbSRiver Riddle return;
665a70aa7bbSRiver Riddle
666a70aa7bbSRiver Riddle // Gather memrefs from loads in 'dstId'.
667a70aa7bbSRiver Riddle auto *dstNode = mdg->getNode(dstId);
668a70aa7bbSRiver Riddle DenseSet<Value> consumedMemrefs;
669a70aa7bbSRiver Riddle for (Operation *load : dstNode->loads)
670a70aa7bbSRiver Riddle consumedMemrefs.insert(cast<AffineReadOpInterface>(load).getMemRef());
671a70aa7bbSRiver Riddle
672a70aa7bbSRiver Riddle // Traverse 'dstId' incoming edges and gather the nodes that contain a store
673a70aa7bbSRiver Riddle // to one of the consumed memrefs.
674a70aa7bbSRiver Riddle for (auto &srcEdge : mdg->inEdges[dstId]) {
675a70aa7bbSRiver Riddle auto *srcNode = mdg->getNode(srcEdge.id);
676a70aa7bbSRiver Riddle // Skip if 'srcNode' is not a loop nest.
677a70aa7bbSRiver Riddle if (!isa<AffineForOp>(srcNode->op))
678a70aa7bbSRiver Riddle continue;
679a70aa7bbSRiver Riddle
680a70aa7bbSRiver Riddle if (any_of(srcNode->stores, [&](Operation *op) {
681a70aa7bbSRiver Riddle auto storeOp = cast<AffineWriteOpInterface>(op);
682a70aa7bbSRiver Riddle return consumedMemrefs.count(storeOp.getMemRef()) > 0;
683a70aa7bbSRiver Riddle }))
684a70aa7bbSRiver Riddle srcIdCandidates.push_back(srcNode->id);
685a70aa7bbSRiver Riddle }
686a70aa7bbSRiver Riddle
687*aba43035SDmitri Gribenko llvm::sort(srcIdCandidates);
688a70aa7bbSRiver Riddle srcIdCandidates.erase(
689a70aa7bbSRiver Riddle std::unique(srcIdCandidates.begin(), srcIdCandidates.end()),
690a70aa7bbSRiver Riddle srcIdCandidates.end());
691a70aa7bbSRiver Riddle }
692a70aa7bbSRiver Riddle
693a70aa7bbSRiver Riddle /// Returns in 'producerConsumerMemrefs' the memrefs involved in a
694a70aa7bbSRiver Riddle /// producer-consumer dependence between 'srcId' and 'dstId'.
695a70aa7bbSRiver Riddle static void
gatherProducerConsumerMemrefs(unsigned srcId,unsigned dstId,MemRefDependenceGraph * mdg,DenseSet<Value> & producerConsumerMemrefs)696a70aa7bbSRiver Riddle gatherProducerConsumerMemrefs(unsigned srcId, unsigned dstId,
697a70aa7bbSRiver Riddle MemRefDependenceGraph *mdg,
698a70aa7bbSRiver Riddle DenseSet<Value> &producerConsumerMemrefs) {
699a70aa7bbSRiver Riddle auto *dstNode = mdg->getNode(dstId);
700a70aa7bbSRiver Riddle auto *srcNode = mdg->getNode(srcId);
701a70aa7bbSRiver Riddle gatherProducerConsumerMemrefs(srcNode->stores, dstNode->loads,
702a70aa7bbSRiver Riddle producerConsumerMemrefs);
703a70aa7bbSRiver Riddle }
704a70aa7bbSRiver Riddle
705a70aa7bbSRiver Riddle /// Returns in 'escapingMemRefs' the memrefs from affine store ops in node 'id'
706a70aa7bbSRiver Riddle /// that escape the function. A memref escapes the function if either:
707a70aa7bbSRiver Riddle /// 1. It's a function argument, or
708a70aa7bbSRiver Riddle /// 2. It's used by a non-affine op (e.g., std load/store, std call, etc.)
gatherEscapingMemrefs(unsigned id,MemRefDependenceGraph * mdg,DenseSet<Value> & escapingMemRefs)709a70aa7bbSRiver Riddle void gatherEscapingMemrefs(unsigned id, MemRefDependenceGraph *mdg,
710a70aa7bbSRiver Riddle DenseSet<Value> &escapingMemRefs) {
711a70aa7bbSRiver Riddle auto *node = mdg->getNode(id);
712a70aa7bbSRiver Riddle for (auto *storeOpInst : node->stores) {
713a70aa7bbSRiver Riddle auto memref = cast<AffineWriteOpInterface>(storeOpInst).getMemRef();
714a70aa7bbSRiver Riddle if (escapingMemRefs.count(memref))
715a70aa7bbSRiver Riddle continue;
716a70aa7bbSRiver Riddle // Check if 'memref' escapes because it's a block argument.
717a70aa7bbSRiver Riddle if (memref.isa<BlockArgument>()) {
718a70aa7bbSRiver Riddle escapingMemRefs.insert(memref);
719a70aa7bbSRiver Riddle continue;
720a70aa7bbSRiver Riddle }
721a70aa7bbSRiver Riddle // Check if 'memref' escapes through a non-affine op (e.g., std load/store,
722a70aa7bbSRiver Riddle // call op, etc.).
723a70aa7bbSRiver Riddle for (Operation *user : memref.getUsers())
724a70aa7bbSRiver Riddle if (!isa<AffineMapAccessInterface>(*user))
725a70aa7bbSRiver Riddle escapingMemRefs.insert(memref);
726a70aa7bbSRiver Riddle }
727a70aa7bbSRiver Riddle }
728a70aa7bbSRiver Riddle
729a70aa7bbSRiver Riddle } // namespace
730a70aa7bbSRiver Riddle
731a70aa7bbSRiver Riddle // Initializes the data dependence graph by walking operations in 'f'.
732a70aa7bbSRiver Riddle // Assigns each node in the graph a node id based on program order in 'f'.
733a70aa7bbSRiver Riddle // TODO: Add support for taking a Block arg to construct the
734a70aa7bbSRiver Riddle // dependence graph at a different depth.
init(func::FuncOp f)73558ceae95SRiver Riddle bool MemRefDependenceGraph::init(func::FuncOp f) {
736a70aa7bbSRiver Riddle LLVM_DEBUG(llvm::dbgs() << "--- Initializing MDG ---\n");
737a70aa7bbSRiver Riddle DenseMap<Value, SetVector<unsigned>> memrefAccesses;
738a70aa7bbSRiver Riddle
739a70aa7bbSRiver Riddle // TODO: support multi-block functions.
740a70aa7bbSRiver Riddle if (!llvm::hasSingleElement(f))
741a70aa7bbSRiver Riddle return false;
742a70aa7bbSRiver Riddle
743a70aa7bbSRiver Riddle DenseMap<Operation *, unsigned> forToNodeMap;
744a70aa7bbSRiver Riddle for (auto &op : f.front()) {
745a70aa7bbSRiver Riddle if (auto forOp = dyn_cast<AffineForOp>(op)) {
746a70aa7bbSRiver Riddle // Create graph node 'id' to represent top-level 'forOp' and record
747a70aa7bbSRiver Riddle // all loads and store accesses it contains.
748a70aa7bbSRiver Riddle LoopNestStateCollector collector;
749a70aa7bbSRiver Riddle collector.collect(&op);
750a70aa7bbSRiver Riddle // Return false if a region holding op other than 'affine.for' and
751a70aa7bbSRiver Riddle // 'affine.if' was found (not currently supported).
752a70aa7bbSRiver Riddle if (collector.hasNonAffineRegionOp)
753a70aa7bbSRiver Riddle return false;
754a70aa7bbSRiver Riddle Node node(nextNodeId++, &op);
755a70aa7bbSRiver Riddle for (auto *opInst : collector.loadOpInsts) {
756a70aa7bbSRiver Riddle node.loads.push_back(opInst);
757a70aa7bbSRiver Riddle auto memref = cast<AffineReadOpInterface>(opInst).getMemRef();
758a70aa7bbSRiver Riddle memrefAccesses[memref].insert(node.id);
759a70aa7bbSRiver Riddle }
760a70aa7bbSRiver Riddle for (auto *opInst : collector.storeOpInsts) {
761a70aa7bbSRiver Riddle node.stores.push_back(opInst);
762a70aa7bbSRiver Riddle auto memref = cast<AffineWriteOpInterface>(opInst).getMemRef();
763a70aa7bbSRiver Riddle memrefAccesses[memref].insert(node.id);
764a70aa7bbSRiver Riddle }
765a70aa7bbSRiver Riddle forToNodeMap[&op] = node.id;
766a70aa7bbSRiver Riddle nodes.insert({node.id, node});
767a70aa7bbSRiver Riddle } else if (auto loadOp = dyn_cast<AffineReadOpInterface>(op)) {
768a70aa7bbSRiver Riddle // Create graph node for top-level load op.
769a70aa7bbSRiver Riddle Node node(nextNodeId++, &op);
770a70aa7bbSRiver Riddle node.loads.push_back(&op);
771a70aa7bbSRiver Riddle auto memref = cast<AffineReadOpInterface>(op).getMemRef();
772a70aa7bbSRiver Riddle memrefAccesses[memref].insert(node.id);
773a70aa7bbSRiver Riddle nodes.insert({node.id, node});
774a70aa7bbSRiver Riddle } else if (auto storeOp = dyn_cast<AffineWriteOpInterface>(op)) {
775a70aa7bbSRiver Riddle // Create graph node for top-level store op.
776a70aa7bbSRiver Riddle Node node(nextNodeId++, &op);
777a70aa7bbSRiver Riddle node.stores.push_back(&op);
778a70aa7bbSRiver Riddle auto memref = cast<AffineWriteOpInterface>(op).getMemRef();
779a70aa7bbSRiver Riddle memrefAccesses[memref].insert(node.id);
780a70aa7bbSRiver Riddle nodes.insert({node.id, node});
781a70aa7bbSRiver Riddle } else if (op.getNumRegions() != 0) {
782a70aa7bbSRiver Riddle // Return false if another region is found (not currently supported).
783a70aa7bbSRiver Riddle return false;
784a70aa7bbSRiver Riddle } else if (op.getNumResults() > 0 && !op.use_empty()) {
785a70aa7bbSRiver Riddle // Create graph node for top-level producer of SSA values, which
786a70aa7bbSRiver Riddle // could be used by loop nest nodes.
787a70aa7bbSRiver Riddle Node node(nextNodeId++, &op);
788a70aa7bbSRiver Riddle nodes.insert({node.id, node});
789a70aa7bbSRiver Riddle } else if (isa<CallOpInterface>(op)) {
790a70aa7bbSRiver Riddle // Create graph node for top-level Call Op that takes any argument of
791a70aa7bbSRiver Riddle // memref type. Call Op that returns one or more memref type results
792a70aa7bbSRiver Riddle // is already taken care of, by the previous conditions.
793a70aa7bbSRiver Riddle if (llvm::any_of(op.getOperandTypes(),
794a70aa7bbSRiver Riddle [&](Type t) { return t.isa<MemRefType>(); })) {
795a70aa7bbSRiver Riddle Node node(nextNodeId++, &op);
796a70aa7bbSRiver Riddle nodes.insert({node.id, node});
797a70aa7bbSRiver Riddle }
798a70aa7bbSRiver Riddle } else if (auto effectInterface = dyn_cast<MemoryEffectOpInterface>(op)) {
799a70aa7bbSRiver Riddle // Create graph node for top-level op, which could have a memory write
800a70aa7bbSRiver Riddle // side effect.
801a70aa7bbSRiver Riddle SmallVector<MemoryEffects::EffectInstance, 1> effects;
802a70aa7bbSRiver Riddle effectInterface.getEffects(effects);
803a70aa7bbSRiver Riddle if (llvm::any_of(effects, [](const MemoryEffects::EffectInstance &it) {
804a70aa7bbSRiver Riddle return isa<MemoryEffects::Write, MemoryEffects::Free>(
805a70aa7bbSRiver Riddle it.getEffect());
806a70aa7bbSRiver Riddle })) {
807a70aa7bbSRiver Riddle Node node(nextNodeId++, &op);
808a70aa7bbSRiver Riddle nodes.insert({node.id, node});
809a70aa7bbSRiver Riddle }
810a70aa7bbSRiver Riddle }
811a70aa7bbSRiver Riddle }
812a70aa7bbSRiver Riddle
813a70aa7bbSRiver Riddle for (auto &idAndNode : nodes) {
814a70aa7bbSRiver Riddle LLVM_DEBUG(llvm::dbgs() << "Create node " << idAndNode.first << " for:\n"
815a70aa7bbSRiver Riddle << *(idAndNode.second.op) << "\n");
816a70aa7bbSRiver Riddle (void)idAndNode;
817a70aa7bbSRiver Riddle }
818a70aa7bbSRiver Riddle
819a70aa7bbSRiver Riddle // Add dependence edges between nodes which produce SSA values and their
820a70aa7bbSRiver Riddle // users. Load ops can be considered as the ones producing SSA values.
821a70aa7bbSRiver Riddle for (auto &idAndNode : nodes) {
822a70aa7bbSRiver Riddle const Node &node = idAndNode.second;
823a70aa7bbSRiver Riddle // Stores don't define SSA values, skip them.
824a70aa7bbSRiver Riddle if (!node.stores.empty())
825a70aa7bbSRiver Riddle continue;
826a70aa7bbSRiver Riddle auto *opInst = node.op;
827a70aa7bbSRiver Riddle for (auto value : opInst->getResults()) {
828a70aa7bbSRiver Riddle for (auto *user : value.getUsers()) {
829a70aa7bbSRiver Riddle SmallVector<AffineForOp, 4> loops;
830a70aa7bbSRiver Riddle getLoopIVs(*user, &loops);
831a70aa7bbSRiver Riddle if (loops.empty())
832a70aa7bbSRiver Riddle continue;
833a70aa7bbSRiver Riddle assert(forToNodeMap.count(loops[0].getOperation()) > 0);
834a70aa7bbSRiver Riddle unsigned userLoopNestId = forToNodeMap[loops[0].getOperation()];
835a70aa7bbSRiver Riddle addEdge(node.id, userLoopNestId, value);
836a70aa7bbSRiver Riddle }
837a70aa7bbSRiver Riddle }
838a70aa7bbSRiver Riddle }
839a70aa7bbSRiver Riddle
840a70aa7bbSRiver Riddle // Walk memref access lists and add graph edges between dependent nodes.
841a70aa7bbSRiver Riddle for (auto &memrefAndList : memrefAccesses) {
842a70aa7bbSRiver Riddle unsigned n = memrefAndList.second.size();
843a70aa7bbSRiver Riddle for (unsigned i = 0; i < n; ++i) {
844a70aa7bbSRiver Riddle unsigned srcId = memrefAndList.second[i];
845a70aa7bbSRiver Riddle bool srcHasStore =
846a70aa7bbSRiver Riddle getNode(srcId)->getStoreOpCount(memrefAndList.first) > 0;
847a70aa7bbSRiver Riddle for (unsigned j = i + 1; j < n; ++j) {
848a70aa7bbSRiver Riddle unsigned dstId = memrefAndList.second[j];
849a70aa7bbSRiver Riddle bool dstHasStore =
850a70aa7bbSRiver Riddle getNode(dstId)->getStoreOpCount(memrefAndList.first) > 0;
851a70aa7bbSRiver Riddle if (srcHasStore || dstHasStore)
852a70aa7bbSRiver Riddle addEdge(srcId, dstId, memrefAndList.first);
853a70aa7bbSRiver Riddle }
854a70aa7bbSRiver Riddle }
855a70aa7bbSRiver Riddle }
856a70aa7bbSRiver Riddle return true;
857a70aa7bbSRiver Riddle }
858a70aa7bbSRiver Riddle
859a70aa7bbSRiver Riddle // Sinks all sequential loops to the innermost levels (while preserving
860a70aa7bbSRiver Riddle // relative order among them) and moves all parallel loops to the
861a70aa7bbSRiver Riddle // outermost (while again preserving relative order among them).
862a70aa7bbSRiver Riddle // This can increase the loop depth at which we can fuse a slice, since we are
863a70aa7bbSRiver Riddle // pushing loop carried dependence to a greater depth in the loop nest.
sinkSequentialLoops(MemRefDependenceGraph::Node * node)864a70aa7bbSRiver Riddle static void sinkSequentialLoops(MemRefDependenceGraph::Node *node) {
865a70aa7bbSRiver Riddle assert(isa<AffineForOp>(node->op));
866a70aa7bbSRiver Riddle AffineForOp newRootForOp = sinkSequentialLoops(cast<AffineForOp>(node->op));
867a70aa7bbSRiver Riddle node->op = newRootForOp.getOperation();
868a70aa7bbSRiver Riddle }
869a70aa7bbSRiver Riddle
870a70aa7bbSRiver Riddle // TODO: improve/complete this when we have target data.
getMemRefEltSizeInBytes(MemRefType memRefType)871a70aa7bbSRiver Riddle static unsigned getMemRefEltSizeInBytes(MemRefType memRefType) {
872a70aa7bbSRiver Riddle auto elementType = memRefType.getElementType();
873a70aa7bbSRiver Riddle
874a70aa7bbSRiver Riddle unsigned sizeInBits;
875a70aa7bbSRiver Riddle if (elementType.isIntOrFloat()) {
876a70aa7bbSRiver Riddle sizeInBits = elementType.getIntOrFloatBitWidth();
877a70aa7bbSRiver Riddle } else {
878a70aa7bbSRiver Riddle auto vectorType = elementType.cast<VectorType>();
879a70aa7bbSRiver Riddle sizeInBits =
880a70aa7bbSRiver Riddle vectorType.getElementTypeBitWidth() * vectorType.getNumElements();
881a70aa7bbSRiver Riddle }
882a70aa7bbSRiver Riddle return llvm::divideCeil(sizeInBits, 8);
883a70aa7bbSRiver Riddle }
884a70aa7bbSRiver Riddle
885a70aa7bbSRiver Riddle // Creates and returns a private (single-user) memref for fused loop rooted
886a70aa7bbSRiver Riddle // at 'forOp', with (potentially reduced) memref size based on the
887a70aa7bbSRiver Riddle // MemRefRegion written to by 'srcStoreOpInst' at depth 'dstLoopDepth'.
888a70aa7bbSRiver Riddle // TODO: consider refactoring the common code from generateDma and
889a70aa7bbSRiver Riddle // this one.
createPrivateMemRef(AffineForOp forOp,Operation * srcStoreOpInst,unsigned dstLoopDepth,Optional<unsigned> fastMemorySpace,uint64_t localBufSizeThreshold)890a70aa7bbSRiver Riddle static Value createPrivateMemRef(AffineForOp forOp, Operation *srcStoreOpInst,
891a70aa7bbSRiver Riddle unsigned dstLoopDepth,
892a70aa7bbSRiver Riddle Optional<unsigned> fastMemorySpace,
893a70aa7bbSRiver Riddle uint64_t localBufSizeThreshold) {
894a70aa7bbSRiver Riddle auto *forInst = forOp.getOperation();
895a70aa7bbSRiver Riddle
896a70aa7bbSRiver Riddle // Create builder to insert alloc op just before 'forOp'.
897a70aa7bbSRiver Riddle OpBuilder b(forInst);
898a70aa7bbSRiver Riddle // Builder to create constants at the top level.
89958ceae95SRiver Riddle OpBuilder top(forInst->getParentOfType<func::FuncOp>().getBody());
900a70aa7bbSRiver Riddle // Create new memref type based on slice bounds.
901a70aa7bbSRiver Riddle auto oldMemRef = cast<AffineWriteOpInterface>(srcStoreOpInst).getMemRef();
902a70aa7bbSRiver Riddle auto oldMemRefType = oldMemRef.getType().cast<MemRefType>();
903a70aa7bbSRiver Riddle unsigned rank = oldMemRefType.getRank();
904a70aa7bbSRiver Riddle
905a70aa7bbSRiver Riddle // Compute MemRefRegion for 'srcStoreOpInst' at depth 'dstLoopDepth'.
906a70aa7bbSRiver Riddle MemRefRegion region(srcStoreOpInst->getLoc());
907a70aa7bbSRiver Riddle bool validRegion = succeeded(region.compute(srcStoreOpInst, dstLoopDepth));
908a70aa7bbSRiver Riddle (void)validRegion;
909a70aa7bbSRiver Riddle assert(validRegion && "unexpected memref region failure");
910a70aa7bbSRiver Riddle SmallVector<int64_t, 4> newShape;
911a70aa7bbSRiver Riddle std::vector<SmallVector<int64_t, 4>> lbs;
912a70aa7bbSRiver Riddle SmallVector<int64_t, 8> lbDivisors;
913a70aa7bbSRiver Riddle lbs.reserve(rank);
914a70aa7bbSRiver Riddle // Query 'region' for 'newShape' and lower bounds of MemRefRegion accessed
915a70aa7bbSRiver Riddle // by 'srcStoreOpInst' at depth 'dstLoopDepth'.
916a70aa7bbSRiver Riddle Optional<int64_t> numElements =
917a70aa7bbSRiver Riddle region.getConstantBoundingSizeAndShape(&newShape, &lbs, &lbDivisors);
918ad7ce1e7SKazu Hirata assert(numElements && "non-constant number of elts in local buffer");
919a70aa7bbSRiver Riddle
920a70aa7bbSRiver Riddle const FlatAffineValueConstraints *cst = region.getConstraints();
921a70aa7bbSRiver Riddle // 'outerIVs' holds the values that this memory region is symbolic/parametric
922a70aa7bbSRiver Riddle // on; this would correspond to loop IVs surrounding the level at which the
923a70aa7bbSRiver Riddle // slice is being materialized.
924a70aa7bbSRiver Riddle SmallVector<Value, 8> outerIVs;
925d95140a5SGroverkss cst->getValues(rank, cst->getNumVars(), &outerIVs);
926a70aa7bbSRiver Riddle
927a70aa7bbSRiver Riddle // Build 'rank' AffineExprs from MemRefRegion 'lbs'
928a70aa7bbSRiver Riddle SmallVector<AffineExpr, 4> offsets;
929a70aa7bbSRiver Riddle offsets.reserve(rank);
930a70aa7bbSRiver Riddle for (unsigned d = 0; d < rank; ++d) {
931a70aa7bbSRiver Riddle assert(lbs[d].size() == cst->getNumCols() - rank && "incorrect bound size");
932a70aa7bbSRiver Riddle
933a70aa7bbSRiver Riddle AffineExpr offset = top.getAffineConstantExpr(0);
934a70aa7bbSRiver Riddle for (unsigned j = 0, e = cst->getNumCols() - rank - 1; j < e; j++) {
935a70aa7bbSRiver Riddle offset = offset + lbs[d][j] * top.getAffineDimExpr(j);
936a70aa7bbSRiver Riddle }
937a70aa7bbSRiver Riddle assert(lbDivisors[d] > 0);
938a70aa7bbSRiver Riddle offset =
939a70aa7bbSRiver Riddle (offset + lbs[d][cst->getNumCols() - 1 - rank]).floorDiv(lbDivisors[d]);
940a70aa7bbSRiver Riddle offsets.push_back(offset);
941a70aa7bbSRiver Riddle }
942a70aa7bbSRiver Riddle
943a70aa7bbSRiver Riddle // Create 'newMemRefType' using 'newShape' from MemRefRegion accessed
944a70aa7bbSRiver Riddle // by 'srcStoreOpInst'.
945a70aa7bbSRiver Riddle uint64_t bufSize =
946c27d8152SKazu Hirata getMemRefEltSizeInBytes(oldMemRefType) * numElements.value();
947a70aa7bbSRiver Riddle unsigned newMemSpace;
948491d2701SKazu Hirata if (bufSize <= localBufSizeThreshold && fastMemorySpace.has_value()) {
949c27d8152SKazu Hirata newMemSpace = fastMemorySpace.value();
950a70aa7bbSRiver Riddle } else {
951a70aa7bbSRiver Riddle newMemSpace = oldMemRefType.getMemorySpaceAsInt();
952a70aa7bbSRiver Riddle }
953a70aa7bbSRiver Riddle auto newMemRefType = MemRefType::get(newShape, oldMemRefType.getElementType(),
954a70aa7bbSRiver Riddle {}, newMemSpace);
955a70aa7bbSRiver Riddle
956a70aa7bbSRiver Riddle // Create new private memref for fused loop 'forOp'. 'newShape' is always
957a70aa7bbSRiver Riddle // a constant shape.
958a70aa7bbSRiver Riddle // TODO: Create/move alloc ops for private memrefs closer to their
959a70aa7bbSRiver Riddle // consumer loop nests to reduce their live range. Currently they are added
960a70aa7bbSRiver Riddle // at the beginning of the function, because loop nests can be reordered
961a70aa7bbSRiver Riddle // during the fusion pass.
962a70aa7bbSRiver Riddle Value newMemRef = top.create<memref::AllocOp>(forOp.getLoc(), newMemRefType);
963a70aa7bbSRiver Riddle
964a70aa7bbSRiver Riddle // Build an AffineMap to remap access functions based on lower bound offsets.
965a70aa7bbSRiver Riddle SmallVector<AffineExpr, 4> remapExprs;
966a70aa7bbSRiver Riddle remapExprs.reserve(rank);
967a70aa7bbSRiver Riddle for (unsigned i = 0; i < rank; i++) {
968a70aa7bbSRiver Riddle auto dimExpr = b.getAffineDimExpr(outerIVs.size() + i);
969a70aa7bbSRiver Riddle
970a70aa7bbSRiver Riddle auto remapExpr =
971a70aa7bbSRiver Riddle simplifyAffineExpr(dimExpr - offsets[i], outerIVs.size() + rank, 0);
972a70aa7bbSRiver Riddle remapExprs.push_back(remapExpr);
973a70aa7bbSRiver Riddle }
974a70aa7bbSRiver Riddle
975a70aa7bbSRiver Riddle auto indexRemap =
976a70aa7bbSRiver Riddle AffineMap::get(outerIVs.size() + rank, 0, remapExprs, forOp.getContext());
977a70aa7bbSRiver Riddle
978a70aa7bbSRiver Riddle // Replace all users of 'oldMemRef' with 'newMemRef'.
979a70aa7bbSRiver Riddle LogicalResult res =
980a70aa7bbSRiver Riddle replaceAllMemRefUsesWith(oldMemRef, newMemRef, {}, indexRemap,
981a70aa7bbSRiver Riddle /*extraOperands=*/outerIVs,
982a70aa7bbSRiver Riddle /*symbolOperands=*/{},
983a70aa7bbSRiver Riddle /*domOpFilter=*/&*forOp.getBody()->begin());
984a70aa7bbSRiver Riddle assert(succeeded(res) &&
985a70aa7bbSRiver Riddle "replaceAllMemrefUsesWith should always succeed here");
986a70aa7bbSRiver Riddle (void)res;
987a70aa7bbSRiver Riddle return newMemRef;
988a70aa7bbSRiver Riddle }
989a70aa7bbSRiver Riddle
990a70aa7bbSRiver Riddle /// Walking from node 'srcId' to node 'dstId' (exclusive of 'srcId' and
991a70aa7bbSRiver Riddle /// 'dstId'), if there is any non-affine operation accessing 'memref', return
992a70aa7bbSRiver Riddle /// true. Otherwise, return false.
hasNonAffineUsersOnThePath(unsigned srcId,unsigned dstId,Value memref,MemRefDependenceGraph * mdg)993a70aa7bbSRiver Riddle static bool hasNonAffineUsersOnThePath(unsigned srcId, unsigned dstId,
994a70aa7bbSRiver Riddle Value memref,
995a70aa7bbSRiver Riddle MemRefDependenceGraph *mdg) {
996a70aa7bbSRiver Riddle auto *srcNode = mdg->getNode(srcId);
997a70aa7bbSRiver Riddle auto *dstNode = mdg->getNode(dstId);
998a70aa7bbSRiver Riddle Value::user_range users = memref.getUsers();
999a70aa7bbSRiver Riddle // For each MemRefDependenceGraph's node that is between 'srcNode' and
1000a70aa7bbSRiver Riddle // 'dstNode' (exclusive of 'srcNodes' and 'dstNode'), check whether any
1001a70aa7bbSRiver Riddle // non-affine operation in the node accesses the 'memref'.
1002a70aa7bbSRiver Riddle for (auto &idAndNode : mdg->nodes) {
1003a70aa7bbSRiver Riddle Operation *op = idAndNode.second.op;
1004a70aa7bbSRiver Riddle // Take care of operations between 'srcNode' and 'dstNode'.
1005a70aa7bbSRiver Riddle if (srcNode->op->isBeforeInBlock(op) && op->isBeforeInBlock(dstNode->op)) {
1006a70aa7bbSRiver Riddle // Walk inside the operation to find any use of the memref.
1007a70aa7bbSRiver Riddle // Interrupt the walk if found.
1008a70aa7bbSRiver Riddle auto walkResult = op->walk([&](Operation *user) {
1009a70aa7bbSRiver Riddle // Skip affine ops.
1010a70aa7bbSRiver Riddle if (isa<AffineMapAccessInterface>(*user))
1011a70aa7bbSRiver Riddle return WalkResult::advance();
1012a70aa7bbSRiver Riddle // Find a non-affine op that uses the memref.
1013a70aa7bbSRiver Riddle if (llvm::is_contained(users, user))
1014a70aa7bbSRiver Riddle return WalkResult::interrupt();
1015a70aa7bbSRiver Riddle return WalkResult::advance();
1016a70aa7bbSRiver Riddle });
1017a70aa7bbSRiver Riddle if (walkResult.wasInterrupted())
1018a70aa7bbSRiver Riddle return true;
1019a70aa7bbSRiver Riddle }
1020a70aa7bbSRiver Riddle }
1021a70aa7bbSRiver Riddle return false;
1022a70aa7bbSRiver Riddle }
1023a70aa7bbSRiver Riddle
1024a70aa7bbSRiver Riddle /// Check whether a memref value in node 'srcId' has a non-affine that
1025a70aa7bbSRiver Riddle /// is between node 'srcId' and node 'dstId' (exclusive of 'srcNode' and
1026a70aa7bbSRiver Riddle /// 'dstNode').
hasNonAffineUsersOnThePath(unsigned srcId,unsigned dstId,MemRefDependenceGraph * mdg)1027a70aa7bbSRiver Riddle static bool hasNonAffineUsersOnThePath(unsigned srcId, unsigned dstId,
1028a70aa7bbSRiver Riddle MemRefDependenceGraph *mdg) {
1029a70aa7bbSRiver Riddle // Collect memref values in node 'srcId'.
1030a70aa7bbSRiver Riddle auto *srcNode = mdg->getNode(srcId);
1031a70aa7bbSRiver Riddle llvm::SmallDenseSet<Value, 2> memRefValues;
1032a70aa7bbSRiver Riddle srcNode->op->walk([&](Operation *op) {
1033a70aa7bbSRiver Riddle // Skip affine ops.
1034a70aa7bbSRiver Riddle if (isa<AffineForOp>(op))
1035a70aa7bbSRiver Riddle return WalkResult::advance();
1036a70aa7bbSRiver Riddle for (Value v : op->getOperands())
1037a70aa7bbSRiver Riddle // Collect memref values only.
1038a70aa7bbSRiver Riddle if (v.getType().isa<MemRefType>())
1039a70aa7bbSRiver Riddle memRefValues.insert(v);
1040a70aa7bbSRiver Riddle return WalkResult::advance();
1041a70aa7bbSRiver Riddle });
1042a70aa7bbSRiver Riddle // Looking for users between node 'srcId' and node 'dstId'.
1043a70aa7bbSRiver Riddle for (Value memref : memRefValues)
1044a70aa7bbSRiver Riddle if (hasNonAffineUsersOnThePath(srcId, dstId, memref, mdg))
1045a70aa7bbSRiver Riddle return true;
1046a70aa7bbSRiver Riddle return false;
1047a70aa7bbSRiver Riddle }
1048a70aa7bbSRiver Riddle
1049a70aa7bbSRiver Riddle // Checks the profitability of fusing a backwards slice of the loop nest
1050a70aa7bbSRiver Riddle // surrounding 'srcOpInst' into the loop nest surrounding 'dstLoadOpInsts'.
1051a70aa7bbSRiver Riddle // The argument 'srcStoreOpInst' is used to calculate the storage reduction on
1052a70aa7bbSRiver Riddle // the memref being produced and consumed, which is an input to the cost model.
1053a70aa7bbSRiver Riddle // For producer-consumer fusion, 'srcStoreOpInst' will be the same as
1054a70aa7bbSRiver Riddle // 'srcOpInst', as we are slicing w.r.t to that producer. For input-reuse
1055a70aa7bbSRiver Riddle // fusion, 'srcOpInst' will be the src loop nest LoadOp which reads from the
1056a70aa7bbSRiver Riddle // same memref as dst loop nest load ops, and 'srcStoreOpInst' will be the
1057a70aa7bbSRiver Riddle // unique store op in the src node, which will be used to check that the write
1058a70aa7bbSRiver Riddle // region is the same after input-reuse fusion. Computation slices are provided
1059a70aa7bbSRiver Riddle // in 'depthSliceUnions' for each legal fusion depth. The maximal depth at which
1060a70aa7bbSRiver Riddle // fusion is legal is provided in 'maxLegalFusionDepth'. Returns true if it is
1061a70aa7bbSRiver Riddle // profitable to fuse the candidate loop nests. Returns false otherwise.
1062a70aa7bbSRiver Riddle // `dstLoopDepth` is set to the most profitable depth at which to materialize
1063a70aa7bbSRiver Riddle // the source loop nest slice.
1064a70aa7bbSRiver Riddle // The profitability model executes the following steps:
1065a70aa7bbSRiver Riddle // *) Computes the backward computation slice at 'srcOpInst'. This
1066a70aa7bbSRiver Riddle // computation slice of the loop nest surrounding 'srcOpInst' is
1067a70aa7bbSRiver Riddle // represented by modified src loop bounds in 'sliceState', which are
1068a70aa7bbSRiver Riddle // functions of loop IVs in the loop nest surrounding 'srcOpInst'.
1069a70aa7bbSRiver Riddle // *) Computes the cost of unfused src/dst loop nests (currently the cost of a
1070a70aa7bbSRiver Riddle // loop nest is the total number of dynamic operation instances in the loop
1071a70aa7bbSRiver Riddle // nest).
1072a70aa7bbSRiver Riddle // *) Computes the cost of fusing a slice of the src loop nest into the dst
1073a70aa7bbSRiver Riddle // loop nest at various values of dst loop depth, attempting to fuse
1074a70aa7bbSRiver Riddle // the largest computation slice at the maximal dst loop depth (closest to
1075a70aa7bbSRiver Riddle // the load) to minimize reuse distance and potentially enable subsequent
1076a70aa7bbSRiver Riddle // load/store forwarding.
1077a70aa7bbSRiver Riddle // NOTE: 'dstLoopDepth' refers to the loop depth within the destination loop
1078a70aa7bbSRiver Riddle // nest, at which the src computation slice is inserted/fused.
1079a70aa7bbSRiver Riddle // NOTE: We attempt to maximize the dst loop depth, but there are cases
1080a70aa7bbSRiver Riddle // where a particular setting for 'dstLoopNest' might fuse an unsliced
1081a70aa7bbSRiver Riddle // loop (within the src computation slice) at a depth which results in
1082a70aa7bbSRiver Riddle // excessive recomputation (see unit tests for examples).
1083a70aa7bbSRiver Riddle // *) Compares the total cost of the unfused loop nests to the min cost fused
1084a70aa7bbSRiver Riddle // loop nest computed in the previous step, and returns true if the latter
1085a70aa7bbSRiver Riddle // is lower.
1086a70aa7bbSRiver Riddle // TODO: Extend profitability analysis to support scenarios with multiple
1087a70aa7bbSRiver Riddle // stores.
isFusionProfitable(Operation * srcOpInst,Operation * srcStoreOpInst,AffineForOp dstForOp,ArrayRef<ComputationSliceState> depthSliceUnions,unsigned maxLegalFusionDepth,unsigned * dstLoopDepth,double computeToleranceThreshold)1088a70aa7bbSRiver Riddle static bool isFusionProfitable(Operation *srcOpInst, Operation *srcStoreOpInst,
1089a70aa7bbSRiver Riddle AffineForOp dstForOp,
1090a70aa7bbSRiver Riddle ArrayRef<ComputationSliceState> depthSliceUnions,
1091a70aa7bbSRiver Riddle unsigned maxLegalFusionDepth,
1092a70aa7bbSRiver Riddle unsigned *dstLoopDepth,
1093a70aa7bbSRiver Riddle double computeToleranceThreshold) {
1094a70aa7bbSRiver Riddle LLVM_DEBUG({
1095a70aa7bbSRiver Riddle llvm::dbgs() << "Checking whether fusion is profitable between src op:\n";
1096a70aa7bbSRiver Riddle llvm::dbgs() << ' ' << *srcOpInst << " and destination loop:\n";
1097a70aa7bbSRiver Riddle llvm::dbgs() << dstForOp << "\n";
1098a70aa7bbSRiver Riddle });
1099a70aa7bbSRiver Riddle
1100a70aa7bbSRiver Riddle if (maxLegalFusionDepth == 0) {
1101a70aa7bbSRiver Riddle LLVM_DEBUG(llvm::dbgs() << "Can't fuse: maxLegalFusionDepth == 0 .\n");
1102a70aa7bbSRiver Riddle return false;
1103a70aa7bbSRiver Riddle }
1104a70aa7bbSRiver Riddle
1105a70aa7bbSRiver Riddle // Compute cost of sliced and unsliced src loop nest.
1106a70aa7bbSRiver Riddle SmallVector<AffineForOp, 4> srcLoopIVs;
1107a70aa7bbSRiver Riddle getLoopIVs(*srcOpInst, &srcLoopIVs);
1108a70aa7bbSRiver Riddle
1109a70aa7bbSRiver Riddle // Walk src loop nest and collect stats.
1110a70aa7bbSRiver Riddle LoopNestStats srcLoopNestStats;
1111a70aa7bbSRiver Riddle if (!getLoopNestStats(srcLoopIVs[0], &srcLoopNestStats))
1112a70aa7bbSRiver Riddle return false;
1113a70aa7bbSRiver Riddle
1114a70aa7bbSRiver Riddle // Compute cost of dst loop nest.
1115a70aa7bbSRiver Riddle LoopNestStats dstLoopNestStats;
1116a70aa7bbSRiver Riddle if (!getLoopNestStats(dstForOp, &dstLoopNestStats))
1117a70aa7bbSRiver Riddle return false;
1118a70aa7bbSRiver Riddle
1119a70aa7bbSRiver Riddle // Search for min cost value for 'dstLoopDepth'. At each value of
1120a70aa7bbSRiver Riddle // 'dstLoopDepth' from 'maxLegalLoopDepth' to '1', compute computation slice
1121a70aa7bbSRiver Riddle // bounds between 'srcOpInst' and each op in 'dstOpinsts' (taking the union
1122a70aa7bbSRiver Riddle // of these bounds). Next the union slice bounds are used to calculate
1123a70aa7bbSRiver Riddle // the cost of the slice and the cost of the slice inserted into the dst
1124a70aa7bbSRiver Riddle // loop nest at 'dstLoopDepth'.
1125a70aa7bbSRiver Riddle uint64_t minFusedLoopNestComputeCost = std::numeric_limits<uint64_t>::max();
1126a70aa7bbSRiver Riddle double maxStorageReduction = 0.0;
1127a70aa7bbSRiver Riddle Optional<uint64_t> sliceMemEstimate = None;
1128a70aa7bbSRiver Riddle
1129a70aa7bbSRiver Riddle // The best loop depth at which to materialize the slice.
1130a70aa7bbSRiver Riddle Optional<unsigned> bestDstLoopDepth = None;
1131a70aa7bbSRiver Riddle
1132a70aa7bbSRiver Riddle // Compute op instance count for the src loop nest without iteration slicing.
1133a70aa7bbSRiver Riddle uint64_t srcLoopNestCost = getComputeCost(srcLoopIVs[0], srcLoopNestStats);
1134a70aa7bbSRiver Riddle
1135a70aa7bbSRiver Riddle // Compute src loop nest write region size.
1136a70aa7bbSRiver Riddle MemRefRegion srcWriteRegion(srcStoreOpInst->getLoc());
1137a70aa7bbSRiver Riddle if (failed(srcWriteRegion.compute(srcStoreOpInst, /*loopDepth=*/0))) {
1138a70aa7bbSRiver Riddle LLVM_DEBUG(llvm::dbgs()
1139a70aa7bbSRiver Riddle << "Unable to compute MemRefRegion for source operation\n.");
1140a70aa7bbSRiver Riddle return false;
1141a70aa7bbSRiver Riddle }
1142a70aa7bbSRiver Riddle
1143a70aa7bbSRiver Riddle Optional<int64_t> maybeSrcWriteRegionSizeBytes =
1144a70aa7bbSRiver Riddle srcWriteRegion.getRegionSize();
1145491d2701SKazu Hirata if (!maybeSrcWriteRegionSizeBytes.has_value())
1146a70aa7bbSRiver Riddle return false;
1147c27d8152SKazu Hirata int64_t srcWriteRegionSizeBytes = maybeSrcWriteRegionSizeBytes.value();
1148a70aa7bbSRiver Riddle
1149a70aa7bbSRiver Riddle // Compute op instance count for the src loop nest.
1150a70aa7bbSRiver Riddle uint64_t dstLoopNestCost = getComputeCost(dstForOp, dstLoopNestStats);
1151a70aa7bbSRiver Riddle
1152a70aa7bbSRiver Riddle // Evaluate all depth choices for materializing the slice in the destination
1153a70aa7bbSRiver Riddle // loop nest.
1154a70aa7bbSRiver Riddle for (unsigned i = maxLegalFusionDepth; i >= 1; --i) {
1155a70aa7bbSRiver Riddle const ComputationSliceState &slice = depthSliceUnions[i - 1];
1156a70aa7bbSRiver Riddle // Skip slice union if it wasn't computed for this depth.
1157a70aa7bbSRiver Riddle if (slice.isEmpty())
1158a70aa7bbSRiver Riddle continue;
1159a70aa7bbSRiver Riddle
1160a70aa7bbSRiver Riddle int64_t fusedLoopNestComputeCost;
1161a70aa7bbSRiver Riddle if (!getFusionComputeCost(srcLoopIVs[0], srcLoopNestStats, dstForOp,
1162a70aa7bbSRiver Riddle dstLoopNestStats, slice,
1163a70aa7bbSRiver Riddle &fusedLoopNestComputeCost)) {
1164a70aa7bbSRiver Riddle LLVM_DEBUG(llvm::dbgs() << "Unable to compute fusion compute cost.\n.");
1165a70aa7bbSRiver Riddle continue;
1166a70aa7bbSRiver Riddle }
1167a70aa7bbSRiver Riddle
1168a70aa7bbSRiver Riddle double additionalComputeFraction =
1169a70aa7bbSRiver Riddle fusedLoopNestComputeCost /
1170a70aa7bbSRiver Riddle (static_cast<double>(srcLoopNestCost) + dstLoopNestCost) -
1171a70aa7bbSRiver Riddle 1;
1172a70aa7bbSRiver Riddle
1173a70aa7bbSRiver Riddle // Determine what the slice write MemRefRegion would be, if the src loop
1174a70aa7bbSRiver Riddle // nest slice 'slice' were to be inserted into the dst loop nest at loop
1175a70aa7bbSRiver Riddle // depth 'i'.
1176a70aa7bbSRiver Riddle MemRefRegion sliceWriteRegion(srcStoreOpInst->getLoc());
1177a70aa7bbSRiver Riddle if (failed(sliceWriteRegion.compute(srcStoreOpInst, /*loopDepth=*/0,
1178a70aa7bbSRiver Riddle &slice))) {
1179a70aa7bbSRiver Riddle LLVM_DEBUG(llvm::dbgs()
1180a70aa7bbSRiver Riddle << "Failed to compute slice write region at loopDepth: " << i
1181a70aa7bbSRiver Riddle << "\n");
1182a70aa7bbSRiver Riddle continue;
1183a70aa7bbSRiver Riddle }
1184a70aa7bbSRiver Riddle
1185a70aa7bbSRiver Riddle Optional<int64_t> maybeSliceWriteRegionSizeBytes =
1186a70aa7bbSRiver Riddle sliceWriteRegion.getRegionSize();
1187491d2701SKazu Hirata if (!maybeSliceWriteRegionSizeBytes.has_value() ||
1188c27d8152SKazu Hirata maybeSliceWriteRegionSizeBytes.value() == 0) {
1189a70aa7bbSRiver Riddle LLVM_DEBUG(llvm::dbgs()
1190a70aa7bbSRiver Riddle << "Failed to get slice write region size at loopDepth: " << i
1191a70aa7bbSRiver Riddle << "\n");
1192a70aa7bbSRiver Riddle continue;
1193a70aa7bbSRiver Riddle }
1194c27d8152SKazu Hirata int64_t sliceWriteRegionSizeBytes = maybeSliceWriteRegionSizeBytes.value();
1195a70aa7bbSRiver Riddle
1196a70aa7bbSRiver Riddle // If we are fusing for reuse, check that write regions remain the same.
1197a70aa7bbSRiver Riddle // TODO: Write region check should check sizes and offsets in
1198a70aa7bbSRiver Riddle // each dimension, so that we are sure they are covering the same memref
1199a70aa7bbSRiver Riddle // region. Also, move this out to a isMemRefRegionSuperSet helper function.
1200a70aa7bbSRiver Riddle if (srcOpInst != srcStoreOpInst &&
1201a70aa7bbSRiver Riddle sliceWriteRegionSizeBytes != srcWriteRegionSizeBytes)
1202a70aa7bbSRiver Riddle continue;
1203a70aa7bbSRiver Riddle
1204a70aa7bbSRiver Riddle double storageReduction = static_cast<double>(srcWriteRegionSizeBytes) /
1205a70aa7bbSRiver Riddle static_cast<double>(sliceWriteRegionSizeBytes);
1206a70aa7bbSRiver Riddle
1207a70aa7bbSRiver Riddle LLVM_DEBUG({
1208a70aa7bbSRiver Riddle std::stringstream msg;
1209a70aa7bbSRiver Riddle msg << " evaluating fusion profitability at depth : " << i << "\n"
1210a70aa7bbSRiver Riddle << std::fixed << std::setprecision(2)
1211a70aa7bbSRiver Riddle << " additional compute fraction: "
1212a70aa7bbSRiver Riddle << 100.0 * additionalComputeFraction << "%\n"
1213a70aa7bbSRiver Riddle << " storage reduction factor: " << storageReduction << "x\n"
1214a70aa7bbSRiver Riddle << " fused nest cost: " << fusedLoopNestComputeCost << "\n"
1215a70aa7bbSRiver Riddle << " src write region size: " << srcWriteRegionSizeBytes << "\n"
1216a70aa7bbSRiver Riddle << " slice write region size: " << sliceWriteRegionSizeBytes
1217a70aa7bbSRiver Riddle << "\n";
1218a70aa7bbSRiver Riddle llvm::dbgs() << msg.str();
1219a70aa7bbSRiver Riddle });
1220a70aa7bbSRiver Riddle
1221a70aa7bbSRiver Riddle // TODO: This is a placeholder cost model.
1222a70aa7bbSRiver Riddle // Among all choices that add an acceptable amount of redundant computation
1223a70aa7bbSRiver Riddle // (as per computeToleranceThreshold), we will simply pick the one that
1224a70aa7bbSRiver Riddle // reduces the intermediary size the most.
1225a70aa7bbSRiver Riddle if ((storageReduction > maxStorageReduction) &&
1226a70aa7bbSRiver Riddle (additionalComputeFraction < computeToleranceThreshold)) {
1227a70aa7bbSRiver Riddle maxStorageReduction = storageReduction;
1228a70aa7bbSRiver Riddle bestDstLoopDepth = i;
1229a70aa7bbSRiver Riddle minFusedLoopNestComputeCost = fusedLoopNestComputeCost;
1230a70aa7bbSRiver Riddle sliceMemEstimate = sliceWriteRegionSizeBytes;
1231a70aa7bbSRiver Riddle }
1232a70aa7bbSRiver Riddle }
1233a70aa7bbSRiver Riddle
1234a70aa7bbSRiver Riddle // A simple cost model: fuse if it reduces the memory footprint.
1235a70aa7bbSRiver Riddle
1236037f0995SKazu Hirata if (!bestDstLoopDepth) {
1237a70aa7bbSRiver Riddle LLVM_DEBUG(
1238a70aa7bbSRiver Riddle llvm::dbgs()
1239a70aa7bbSRiver Riddle << "All fusion choices involve more than the threshold amount of "
1240a70aa7bbSRiver Riddle "redundant computation; NOT fusing.\n");
1241a70aa7bbSRiver Riddle return false;
1242a70aa7bbSRiver Riddle }
1243a70aa7bbSRiver Riddle
1244037f0995SKazu Hirata if (!bestDstLoopDepth) {
1245a70aa7bbSRiver Riddle LLVM_DEBUG(llvm::dbgs() << "no fusion depth could be evaluated.\n");
1246a70aa7bbSRiver Riddle return false;
1247a70aa7bbSRiver Riddle }
1248a70aa7bbSRiver Riddle
1249a70aa7bbSRiver Riddle // Set dstLoopDepth based on best values from search.
12506d5fc1e3SKazu Hirata *dstLoopDepth = *bestDstLoopDepth;
1251a70aa7bbSRiver Riddle
1252a70aa7bbSRiver Riddle LLVM_DEBUG(
1253a70aa7bbSRiver Riddle llvm::dbgs() << " LoopFusion fusion stats:"
1254a70aa7bbSRiver Riddle << "\n best loop depth: " << bestDstLoopDepth
1255a70aa7bbSRiver Riddle << "\n src loop nest compute cost: " << srcLoopNestCost
1256a70aa7bbSRiver Riddle << "\n dst loop nest compute cost: " << dstLoopNestCost
1257a70aa7bbSRiver Riddle << "\n fused loop nest compute cost: "
1258a70aa7bbSRiver Riddle << minFusedLoopNestComputeCost << "\n");
1259a70aa7bbSRiver Riddle
1260a70aa7bbSRiver Riddle auto dstMemSize = getMemoryFootprintBytes(dstForOp);
1261a70aa7bbSRiver Riddle auto srcMemSize = getMemoryFootprintBytes(srcLoopIVs[0]);
1262a70aa7bbSRiver Riddle
1263a70aa7bbSRiver Riddle Optional<double> storageReduction = None;
1264a70aa7bbSRiver Riddle
1265037f0995SKazu Hirata if (!dstMemSize || !srcMemSize) {
1266a70aa7bbSRiver Riddle LLVM_DEBUG(llvm::dbgs()
1267a70aa7bbSRiver Riddle << " fusion memory benefit cannot be evaluated; NOT fusing.\n");
1268a70aa7bbSRiver Riddle return false;
1269a70aa7bbSRiver Riddle }
1270a70aa7bbSRiver Riddle
1271c27d8152SKazu Hirata auto srcMemSizeVal = srcMemSize.value();
1272c27d8152SKazu Hirata auto dstMemSizeVal = dstMemSize.value();
1273a70aa7bbSRiver Riddle
12745413bf1bSKazu Hirata assert(sliceMemEstimate && "expected value");
1275c27d8152SKazu Hirata auto fusedMem = dstMemSizeVal + sliceMemEstimate.value();
1276a70aa7bbSRiver Riddle
1277a70aa7bbSRiver Riddle LLVM_DEBUG(llvm::dbgs() << " src mem: " << srcMemSizeVal << "\n"
1278a70aa7bbSRiver Riddle << " dst mem: " << dstMemSizeVal << "\n"
1279a70aa7bbSRiver Riddle << " fused mem: " << fusedMem << "\n"
1280a70aa7bbSRiver Riddle << " slice mem: " << sliceMemEstimate << "\n");
1281a70aa7bbSRiver Riddle
1282a70aa7bbSRiver Riddle if (static_cast<long>(fusedMem) > srcMemSizeVal + dstMemSizeVal) {
1283a70aa7bbSRiver Riddle LLVM_DEBUG(llvm::dbgs() << "Fusion is not profitable; NOT fusing.\n");
1284a70aa7bbSRiver Riddle return false;
1285a70aa7bbSRiver Riddle }
1286a70aa7bbSRiver Riddle storageReduction =
1287a70aa7bbSRiver Riddle 100.0 *
1288a70aa7bbSRiver Riddle (1.0 - fusedMem / (static_cast<double>(srcMemSizeVal) + dstMemSizeVal));
1289a70aa7bbSRiver Riddle
1290a70aa7bbSRiver Riddle double additionalComputeFraction =
1291a70aa7bbSRiver Riddle 100.0 * (minFusedLoopNestComputeCost /
1292a70aa7bbSRiver Riddle (static_cast<double>(srcLoopNestCost) + dstLoopNestCost) -
1293a70aa7bbSRiver Riddle 1);
1294a70aa7bbSRiver Riddle (void)additionalComputeFraction;
1295a70aa7bbSRiver Riddle LLVM_DEBUG({
1296a70aa7bbSRiver Riddle std::stringstream msg;
1297a70aa7bbSRiver Riddle msg << " fusion is most profitable at depth " << *dstLoopDepth << " with "
1298a70aa7bbSRiver Riddle << std::setprecision(2) << additionalComputeFraction
1299a70aa7bbSRiver Riddle << "% redundant computation and a ";
1300d66cbc56SKazu Hirata msg << (storageReduction ? std::to_string(*storageReduction) : "<unknown>");
1301a70aa7bbSRiver Riddle msg << "% storage reduction.\n";
1302a70aa7bbSRiver Riddle llvm::dbgs() << msg.str();
1303a70aa7bbSRiver Riddle });
1304a70aa7bbSRiver Riddle
1305a70aa7bbSRiver Riddle return true;
1306a70aa7bbSRiver Riddle }
1307a70aa7bbSRiver Riddle
1308a70aa7bbSRiver Riddle namespace {
1309a70aa7bbSRiver Riddle
1310a70aa7bbSRiver Riddle // GreedyFusion greedily fuses loop nests which have a producer/consumer or
1311a70aa7bbSRiver Riddle // input-reuse relationship on a memref, with the goal of improving locality.
1312a70aa7bbSRiver Riddle //
1313a70aa7bbSRiver Riddle // The steps of the producer-consumer fusion algorithm are as follows:
1314a70aa7bbSRiver Riddle //
1315a70aa7bbSRiver Riddle // *) A worklist is initialized with node ids from the dependence graph.
1316a70aa7bbSRiver Riddle // *) For each node id in the worklist:
1317a70aa7bbSRiver Riddle // *) Pop an AffineForOp of the worklist. This 'dstAffineForOp' will be a
1318a70aa7bbSRiver Riddle // candidate destination AffineForOp into which fusion will be attempted.
1319a70aa7bbSRiver Riddle // *) Add each LoadOp currently in 'dstAffineForOp' into list 'dstLoadOps'.
1320a70aa7bbSRiver Riddle // *) For each LoadOp in 'dstLoadOps' do:
1321a70aa7bbSRiver Riddle // *) Look up dependent loop nests which have a single store op to the same
1322a70aa7bbSRiver Riddle // memref.
1323a70aa7bbSRiver Riddle // *) Check if dependences would be violated by the fusion.
1324a70aa7bbSRiver Riddle // *) Get a computation slice of 'srcLoopNest', which adjusts its loop
1325a70aa7bbSRiver Riddle // bounds to be functions of 'dstLoopNest' IVs and symbols.
1326a70aa7bbSRiver Riddle // *) Fuse the 'srcLoopNest' computation slice into the 'dstLoopNest',
1327a70aa7bbSRiver Riddle // at a loop depth determined by the cost model in 'isFusionProfitable'.
1328a70aa7bbSRiver Riddle // *) Add the newly fused load/store operations to the state,
1329a70aa7bbSRiver Riddle // and also add newly fused load ops to 'dstLoopOps' to be considered
1330a70aa7bbSRiver Riddle // as fusion dst load ops in another iteration.
1331a70aa7bbSRiver Riddle // *) Remove old src loop nest and its associated state.
1332a70aa7bbSRiver Riddle //
1333a70aa7bbSRiver Riddle // The steps of the input-reuse fusion algorithm are as follows:
1334a70aa7bbSRiver Riddle //
1335a70aa7bbSRiver Riddle // *) Initialize 'worklist' with node ids from the dependence graph.
1336a70aa7bbSRiver Riddle // *) For each 'dstNode' in the worklist:
1337a70aa7bbSRiver Riddle // *) Find a candidate sibling node 'sibNode' to fuse with 'dstNode' which
1338a70aa7bbSRiver Riddle // loads from the same memref, but which has no dependence paths to/from.
1339a70aa7bbSRiver Riddle // *) Get a computation slice of 'sibLoopNest', which adjusts its loop
1340a70aa7bbSRiver Riddle // bounds to be functions of 'dstLoopNest' IVs and symbols.
1341a70aa7bbSRiver Riddle // *) Fuse the 'sibLoopNest' computation slice into the 'dstLoopNest',
1342a70aa7bbSRiver Riddle // at a loop depth determined by the cost model in 'isFusionProfitable'.
1343a70aa7bbSRiver Riddle // This function also checks that the memref write region of 'sibLoopNest',
1344a70aa7bbSRiver Riddle // is preserved in the fused loop nest.
1345a70aa7bbSRiver Riddle // *) Update graph state to reflect the fusion of 'sibNode' into 'dstNode'.
1346a70aa7bbSRiver Riddle //
1347a70aa7bbSRiver Riddle // Given a graph where top-level operations are vertices in the set 'V' and
1348a70aa7bbSRiver Riddle // edges in the set 'E' are dependences between vertices, this algorithm
1349a70aa7bbSRiver Riddle // takes O(V) time for initialization, and has runtime O(V + E).
1350a70aa7bbSRiver Riddle //
1351a70aa7bbSRiver Riddle // This greedy algorithm is not 'maximal' due to the current restriction of
1352a70aa7bbSRiver Riddle // fusing along single producer consumer edges, but there is a TODO: to fix
1353a70aa7bbSRiver Riddle // this.
1354a70aa7bbSRiver Riddle //
1355a70aa7bbSRiver Riddle // TODO: Experiment with other fusion policies.
1356a70aa7bbSRiver Riddle struct GreedyFusion {
1357a70aa7bbSRiver Riddle public:
1358a70aa7bbSRiver Riddle // The data dependence graph to traverse during fusion.
1359a70aa7bbSRiver Riddle MemRefDependenceGraph *mdg;
1360a70aa7bbSRiver Riddle // Worklist of graph nodes visited during the fusion pass.
1361a70aa7bbSRiver Riddle SmallVector<unsigned, 8> worklist;
1362a70aa7bbSRiver Riddle // Parameter for local buffer size threshold.
1363a70aa7bbSRiver Riddle unsigned localBufSizeThreshold;
1364a70aa7bbSRiver Riddle // Parameter for fast memory space.
1365a70aa7bbSRiver Riddle Optional<unsigned> fastMemorySpace;
1366a70aa7bbSRiver Riddle // If true, ignore any additional (redundant) computation tolerance threshold
1367a70aa7bbSRiver Riddle // that would have prevented fusion.
1368a70aa7bbSRiver Riddle bool maximalFusion;
1369a70aa7bbSRiver Riddle // The amount of additional computation that is tolerated while fusing
1370a70aa7bbSRiver Riddle // pair-wise as a fraction of the total computation.
1371a70aa7bbSRiver Riddle double computeToleranceThreshold;
1372a70aa7bbSRiver Riddle
1373a70aa7bbSRiver Riddle using Node = MemRefDependenceGraph::Node;
1374a70aa7bbSRiver Riddle
GreedyFusion__anon8a0d4ac20c11::GreedyFusion1375a70aa7bbSRiver Riddle GreedyFusion(MemRefDependenceGraph *mdg, unsigned localBufSizeThreshold,
1376a70aa7bbSRiver Riddle Optional<unsigned> fastMemorySpace, bool maximalFusion,
1377a70aa7bbSRiver Riddle double computeToleranceThreshold)
1378a70aa7bbSRiver Riddle : mdg(mdg), localBufSizeThreshold(localBufSizeThreshold),
1379a70aa7bbSRiver Riddle fastMemorySpace(fastMemorySpace), maximalFusion(maximalFusion),
1380a70aa7bbSRiver Riddle computeToleranceThreshold(computeToleranceThreshold) {}
1381a70aa7bbSRiver Riddle
1382a70aa7bbSRiver Riddle /// Initializes 'worklist' with nodes from 'mdg'.
init__anon8a0d4ac20c11::GreedyFusion1383a70aa7bbSRiver Riddle void init() {
1384a70aa7bbSRiver Riddle // TODO: Add a priority queue for prioritizing nodes by different
1385a70aa7bbSRiver Riddle // metrics (e.g. arithmetic intensity/flops-to-bytes ratio).
1386a70aa7bbSRiver Riddle worklist.clear();
1387a70aa7bbSRiver Riddle for (auto &idAndNode : mdg->nodes) {
1388a70aa7bbSRiver Riddle const Node &node = idAndNode.second;
1389a70aa7bbSRiver Riddle worklist.push_back(node.id);
1390a70aa7bbSRiver Riddle }
1391a70aa7bbSRiver Riddle }
1392a70aa7bbSRiver Riddle /// Run only sibling fusion on the `mdg`.
runSiblingFusionOnly__anon8a0d4ac20c11::GreedyFusion1393a70aa7bbSRiver Riddle void runSiblingFusionOnly() {
1394a70aa7bbSRiver Riddle fuseSiblingNodes();
1395a70aa7bbSRiver Riddle eraseUnusedMemRefAllocations();
1396a70aa7bbSRiver Riddle }
1397a70aa7bbSRiver Riddle
1398a70aa7bbSRiver Riddle /// Run only producer/consumer fusion on the `mdg`.
runProducerConsumerFusionOnly__anon8a0d4ac20c11::GreedyFusion1399a70aa7bbSRiver Riddle void runProducerConsumerFusionOnly() {
1400a70aa7bbSRiver Riddle fuseProducerConsumerNodes(
1401a70aa7bbSRiver Riddle /*maxSrcUserCount=*/std::numeric_limits<unsigned>::max());
1402a70aa7bbSRiver Riddle eraseUnusedMemRefAllocations();
1403a70aa7bbSRiver Riddle }
1404a70aa7bbSRiver Riddle
1405a70aa7bbSRiver Riddle // Run the GreedyFusion pass.
1406a70aa7bbSRiver Riddle // *) First pass through the nodes fuses single-use producer nodes into their
1407a70aa7bbSRiver Riddle // unique consumer.
1408a70aa7bbSRiver Riddle // *) Second pass fuses sibling nodes which share no dependence edges.
1409a70aa7bbSRiver Riddle // *) Third pass fuses any remaining producer nodes into their users.
runGreedyFusion__anon8a0d4ac20c11::GreedyFusion1410a70aa7bbSRiver Riddle void runGreedyFusion() {
1411a70aa7bbSRiver Riddle // TODO: Run this repeatedly until a fixed-point is reached.
1412a70aa7bbSRiver Riddle fuseProducerConsumerNodes(/*maxSrcUserCount=*/1);
1413a70aa7bbSRiver Riddle fuseSiblingNodes();
1414a70aa7bbSRiver Riddle fuseProducerConsumerNodes(
1415a70aa7bbSRiver Riddle /*maxSrcUserCount=*/std::numeric_limits<unsigned>::max());
1416a70aa7bbSRiver Riddle eraseUnusedMemRefAllocations();
1417a70aa7bbSRiver Riddle }
1418a70aa7bbSRiver Riddle
fuseProducerConsumerNodes__anon8a0d4ac20c11::GreedyFusion1419a70aa7bbSRiver Riddle void fuseProducerConsumerNodes(unsigned maxSrcUserCount) {
1420a70aa7bbSRiver Riddle LLVM_DEBUG(llvm::dbgs() << "--- Producer/Consumer Fusion ---\n");
1421a70aa7bbSRiver Riddle init();
1422a70aa7bbSRiver Riddle while (!worklist.empty()) {
1423a70aa7bbSRiver Riddle unsigned dstId = worklist.back();
1424a70aa7bbSRiver Riddle worklist.pop_back();
1425a70aa7bbSRiver Riddle
1426a70aa7bbSRiver Riddle // Skip if this node was removed (fused into another node).
1427a70aa7bbSRiver Riddle if (mdg->nodes.count(dstId) == 0)
1428a70aa7bbSRiver Riddle continue;
1429a70aa7bbSRiver Riddle // Get 'dstNode' into which to attempt fusion.
1430a70aa7bbSRiver Riddle auto *dstNode = mdg->getNode(dstId);
1431a70aa7bbSRiver Riddle // Skip if 'dstNode' is not a loop nest.
1432a70aa7bbSRiver Riddle if (!isa<AffineForOp>(dstNode->op))
1433a70aa7bbSRiver Riddle continue;
1434a70aa7bbSRiver Riddle // Skip if 'dstNode' is a loop nest returning values.
1435a70aa7bbSRiver Riddle // TODO: support loop nests that return values.
1436a70aa7bbSRiver Riddle if (dstNode->op->getNumResults() > 0)
1437a70aa7bbSRiver Riddle continue;
1438a70aa7bbSRiver Riddle
1439a70aa7bbSRiver Riddle LLVM_DEBUG(llvm::dbgs() << "Evaluating dst loop " << dstId << "\n");
1440a70aa7bbSRiver Riddle
1441a70aa7bbSRiver Riddle // Sink sequential loops in 'dstNode' (and thus raise parallel loops)
1442a70aa7bbSRiver Riddle // while preserving relative order. This can increase the maximum loop
1443a70aa7bbSRiver Riddle // depth at which we can fuse a slice of a producer loop nest into a
1444a70aa7bbSRiver Riddle // consumer loop nest.
1445a70aa7bbSRiver Riddle sinkSequentialLoops(dstNode);
1446a70aa7bbSRiver Riddle auto dstAffineForOp = cast<AffineForOp>(dstNode->op);
1447a70aa7bbSRiver Riddle
1448a70aa7bbSRiver Riddle // Try to fuse 'dstNode' with candidate producer loops until a fixed point
1449a70aa7bbSRiver Riddle // is reached. Fusing two loops may expose new fusion opportunities.
1450a70aa7bbSRiver Riddle bool dstNodeChanged;
1451a70aa7bbSRiver Riddle do {
1452a70aa7bbSRiver Riddle // Gather src loop candidates for 'dstNode' and visit them in "quasi"
1453a70aa7bbSRiver Riddle // reverse program order to minimize the number of iterations needed to
1454a70aa7bbSRiver Riddle // reach the fixed point. Note that this is a best effort approach since
1455a70aa7bbSRiver Riddle // 'getProducerCandidates' does not always guarantee that program order
1456a70aa7bbSRiver Riddle // in 'srcIdCandidates'.
1457a70aa7bbSRiver Riddle dstNodeChanged = false;
1458a70aa7bbSRiver Riddle SmallVector<unsigned, 16> srcIdCandidates;
1459a70aa7bbSRiver Riddle getProducerCandidates(dstId, mdg, srcIdCandidates);
1460a70aa7bbSRiver Riddle
1461a70aa7bbSRiver Riddle for (unsigned srcId : llvm::reverse(srcIdCandidates)) {
1462a70aa7bbSRiver Riddle // Get 'srcNode' from which to attempt fusion into 'dstNode'.
1463a70aa7bbSRiver Riddle auto *srcNode = mdg->getNode(srcId);
1464a70aa7bbSRiver Riddle auto srcAffineForOp = cast<AffineForOp>(srcNode->op);
1465a70aa7bbSRiver Riddle LLVM_DEBUG(llvm::dbgs() << "Evaluating src loop " << srcId
1466a70aa7bbSRiver Riddle << " for dst loop " << dstId << "\n");
1467a70aa7bbSRiver Riddle
1468a70aa7bbSRiver Riddle // Skip if 'srcNode' is a loop nest returning values.
1469a70aa7bbSRiver Riddle // TODO: support loop nests that return values.
1470a70aa7bbSRiver Riddle if (isa<AffineForOp>(srcNode->op) && srcNode->op->getNumResults() > 0)
1471a70aa7bbSRiver Riddle continue;
1472a70aa7bbSRiver Riddle
1473a70aa7bbSRiver Riddle DenseSet<Value> producerConsumerMemrefs;
1474a70aa7bbSRiver Riddle gatherProducerConsumerMemrefs(srcId, dstId, mdg,
1475a70aa7bbSRiver Riddle producerConsumerMemrefs);
1476a70aa7bbSRiver Riddle
1477a70aa7bbSRiver Riddle // Skip if 'srcNode' out edge count on any memref is greater than
1478a70aa7bbSRiver Riddle // 'maxSrcUserCount'.
1479a70aa7bbSRiver Riddle if (any_of(producerConsumerMemrefs, [&](Value memref) {
1480a70aa7bbSRiver Riddle return mdg->getOutEdgeCount(srcNode->id, memref) >
1481a70aa7bbSRiver Riddle maxSrcUserCount;
1482a70aa7bbSRiver Riddle }))
1483a70aa7bbSRiver Riddle continue;
1484a70aa7bbSRiver Riddle
1485a70aa7bbSRiver Riddle // Gather memrefs in 'srcNode' that are written and escape to the
1486a70aa7bbSRiver Riddle // function (e.g., memref function arguments, returned memrefs,
1487a70aa7bbSRiver Riddle // memrefs passed to function calls, etc.).
1488a70aa7bbSRiver Riddle DenseSet<Value> srcEscapingMemRefs;
1489a70aa7bbSRiver Riddle gatherEscapingMemrefs(srcNode->id, mdg, srcEscapingMemRefs);
1490a70aa7bbSRiver Riddle
1491a70aa7bbSRiver Riddle // Skip if there are non-affine operations in between the 'srcNode'
1492a70aa7bbSRiver Riddle // and 'dstNode' using their memrefs. If so, we wouldn't be able to
1493a70aa7bbSRiver Riddle // compute a legal insertion point for now. 'srcNode' and 'dstNode'
1494a70aa7bbSRiver Riddle // memrefs with non-affine operation users would be considered
1495a70aa7bbSRiver Riddle // escaping memrefs so we can limit this check to only scenarios with
1496a70aa7bbSRiver Riddle // escaping memrefs.
1497a70aa7bbSRiver Riddle if (!srcEscapingMemRefs.empty() &&
1498a70aa7bbSRiver Riddle hasNonAffineUsersOnThePath(srcId, dstId, mdg)) {
1499a70aa7bbSRiver Riddle LLVM_DEBUG(
1500a70aa7bbSRiver Riddle llvm::dbgs()
1501a70aa7bbSRiver Riddle << "Can't fuse: non-affine users in between the loops\n.");
1502a70aa7bbSRiver Riddle continue;
1503a70aa7bbSRiver Riddle }
1504a70aa7bbSRiver Riddle
1505a70aa7bbSRiver Riddle // Compute an operation list insertion point for the fused loop
1506a70aa7bbSRiver Riddle // nest which preserves dependences.
1507a70aa7bbSRiver Riddle Operation *fusedLoopInsPoint =
1508a70aa7bbSRiver Riddle mdg->getFusedLoopNestInsertionPoint(srcNode->id, dstNode->id);
1509a70aa7bbSRiver Riddle if (fusedLoopInsPoint == nullptr)
1510a70aa7bbSRiver Riddle continue;
1511a70aa7bbSRiver Riddle
1512a70aa7bbSRiver Riddle // Compute the innermost common loop depth for dstNode
1513a70aa7bbSRiver Riddle // producer-consumer loads/stores.
1514a70aa7bbSRiver Riddle SmallVector<Operation *, 2> dstMemrefOps;
1515a70aa7bbSRiver Riddle for (Operation *op : dstNode->loads)
1516a70aa7bbSRiver Riddle if (producerConsumerMemrefs.count(
1517a70aa7bbSRiver Riddle cast<AffineReadOpInterface>(op).getMemRef()) > 0)
1518a70aa7bbSRiver Riddle dstMemrefOps.push_back(op);
1519a70aa7bbSRiver Riddle for (Operation *op : dstNode->stores)
1520a70aa7bbSRiver Riddle if (producerConsumerMemrefs.count(
1521a70aa7bbSRiver Riddle cast<AffineWriteOpInterface>(op).getMemRef()))
1522a70aa7bbSRiver Riddle dstMemrefOps.push_back(op);
1523a70aa7bbSRiver Riddle unsigned dstLoopDepthTest = getInnermostCommonLoopDepth(dstMemrefOps);
1524a70aa7bbSRiver Riddle
1525a70aa7bbSRiver Riddle // Check the feasibility of fusing src loop nest into dst loop nest
1526a70aa7bbSRiver Riddle // at loop depths in range [1, dstLoopDepthTest].
1527a70aa7bbSRiver Riddle unsigned maxLegalFusionDepth = 0;
1528a70aa7bbSRiver Riddle SmallVector<ComputationSliceState, 8> depthSliceUnions;
1529a70aa7bbSRiver Riddle depthSliceUnions.resize(dstLoopDepthTest);
1530a70aa7bbSRiver Riddle FusionStrategy strategy(FusionStrategy::ProducerConsumer);
1531a70aa7bbSRiver Riddle for (unsigned i = 1; i <= dstLoopDepthTest; ++i) {
1532a70aa7bbSRiver Riddle FusionResult result = mlir::canFuseLoops(
1533a70aa7bbSRiver Riddle srcAffineForOp, dstAffineForOp,
1534a70aa7bbSRiver Riddle /*dstLoopDepth=*/i, &depthSliceUnions[i - 1], strategy);
1535a70aa7bbSRiver Riddle
1536a70aa7bbSRiver Riddle if (result.value == FusionResult::Success)
1537a70aa7bbSRiver Riddle maxLegalFusionDepth = i;
1538a70aa7bbSRiver Riddle }
1539a70aa7bbSRiver Riddle
1540a70aa7bbSRiver Riddle if (maxLegalFusionDepth == 0) {
1541a70aa7bbSRiver Riddle LLVM_DEBUG(llvm::dbgs()
1542a70aa7bbSRiver Riddle << "Can't fuse: fusion is not legal at any depth\n");
1543a70aa7bbSRiver Riddle continue;
1544a70aa7bbSRiver Riddle }
1545a70aa7bbSRiver Riddle
1546a70aa7bbSRiver Riddle // Check if fusion would be profitable. We skip profitability analysis
1547a70aa7bbSRiver Riddle // for maximal fusion since we already know the maximal legal depth to
1548a70aa7bbSRiver Riddle // fuse.
1549a70aa7bbSRiver Riddle unsigned bestDstLoopDepth = maxLegalFusionDepth;
1550a70aa7bbSRiver Riddle if (!maximalFusion) {
1551a70aa7bbSRiver Riddle // Retrieve producer stores from the src loop.
1552a70aa7bbSRiver Riddle SmallVector<Operation *, 2> producerStores;
1553a70aa7bbSRiver Riddle for (Operation *op : srcNode->stores)
1554a70aa7bbSRiver Riddle if (producerConsumerMemrefs.count(
1555a70aa7bbSRiver Riddle cast<AffineWriteOpInterface>(op).getMemRef()))
1556a70aa7bbSRiver Riddle producerStores.push_back(op);
1557a70aa7bbSRiver Riddle
1558a70aa7bbSRiver Riddle // TODO: Suppport multiple producer stores in profitability
1559a70aa7bbSRiver Riddle // analysis. We limit profitability analysis to only scenarios with
1560a70aa7bbSRiver Riddle // a single producer store for now. Note that some multi-store
1561a70aa7bbSRiver Riddle // producer scenarios will still go through profitability analysis
1562a70aa7bbSRiver Riddle // if only one of the stores is involved the producer-consumer
1563a70aa7bbSRiver Riddle // relationship of the candidate loops.
1564a70aa7bbSRiver Riddle assert(!producerStores.empty() && "Expected producer store");
1565a70aa7bbSRiver Riddle if (producerStores.size() > 1)
1566a70aa7bbSRiver Riddle LLVM_DEBUG(llvm::dbgs() << "Skipping profitability analysis. Not "
1567a70aa7bbSRiver Riddle "supported for this case\n");
1568a70aa7bbSRiver Riddle else if (!isFusionProfitable(producerStores[0], producerStores[0],
1569a70aa7bbSRiver Riddle dstAffineForOp, depthSliceUnions,
1570a70aa7bbSRiver Riddle maxLegalFusionDepth, &bestDstLoopDepth,
1571a70aa7bbSRiver Riddle computeToleranceThreshold))
1572a70aa7bbSRiver Riddle continue;
1573a70aa7bbSRiver Riddle }
1574a70aa7bbSRiver Riddle
1575a70aa7bbSRiver Riddle assert(bestDstLoopDepth > 0 && "Unexpected loop fusion depth");
1576a70aa7bbSRiver Riddle ComputationSliceState &bestSlice =
1577a70aa7bbSRiver Riddle depthSliceUnions[bestDstLoopDepth - 1];
1578a70aa7bbSRiver Riddle assert(!bestSlice.isEmpty() && "Missing slice union for depth");
1579a70aa7bbSRiver Riddle
1580a70aa7bbSRiver Riddle // Determine if 'srcId' can be removed after fusion, taking into
1581a70aa7bbSRiver Riddle // account remaining dependences, escaping memrefs and the fusion
1582a70aa7bbSRiver Riddle // insertion point.
1583a70aa7bbSRiver Riddle bool removeSrcNode = canRemoveSrcNodeAfterFusion(
1584a70aa7bbSRiver Riddle srcId, dstId, bestSlice, fusedLoopInsPoint, srcEscapingMemRefs,
1585a70aa7bbSRiver Riddle mdg);
1586a70aa7bbSRiver Riddle
1587a70aa7bbSRiver Riddle DenseSet<Value> privateMemrefs;
1588a70aa7bbSRiver Riddle for (Value memref : producerConsumerMemrefs) {
1589a70aa7bbSRiver Riddle // If `memref` is an escaping one, do not create a private memref
1590a70aa7bbSRiver Riddle // for the below scenarios, since doing so will leave the escaping
1591a70aa7bbSRiver Riddle // memref unmodified as all the writes originally meant for the
1592a70aa7bbSRiver Riddle // escaping memref would be performed on the private memref:
1593a70aa7bbSRiver Riddle // 1. The source is to be removed after fusion,
1594a70aa7bbSRiver Riddle // OR
1595a70aa7bbSRiver Riddle // 2. The destination writes to `memref`.
1596a70aa7bbSRiver Riddle if (srcEscapingMemRefs.count(memref) > 0 &&
1597a70aa7bbSRiver Riddle (removeSrcNode || dstNode->getStoreOpCount(memref) > 0))
1598a70aa7bbSRiver Riddle continue;
1599a70aa7bbSRiver Riddle
1600a70aa7bbSRiver Riddle // Don't create a private memref if 'srcNode' has in edges on
1601a70aa7bbSRiver Riddle // 'memref' or 'dstNode' has out edges on 'memref'.
1602a70aa7bbSRiver Riddle if (mdg->getIncomingMemRefAccesses(srcId, memref) > 0 ||
1603a70aa7bbSRiver Riddle mdg->getOutEdgeCount(dstId, memref) > 0)
1604a70aa7bbSRiver Riddle continue;
1605a70aa7bbSRiver Riddle
1606a70aa7bbSRiver Riddle // If 'srcNode' will be removed but it has out edges on 'memref' to
1607a70aa7bbSRiver Riddle // nodes other than 'dstNode', we have to preserve dependences and
1608a70aa7bbSRiver Riddle // cannot create a private memref.
1609a70aa7bbSRiver Riddle if (removeSrcNode &&
1610a70aa7bbSRiver Riddle any_of(mdg->outEdges[srcId], [&](const auto &edge) {
1611a70aa7bbSRiver Riddle return edge.value == memref && edge.id != dstId;
1612a70aa7bbSRiver Riddle }))
1613a70aa7bbSRiver Riddle continue;
1614a70aa7bbSRiver Riddle
1615a70aa7bbSRiver Riddle // Create a private version of this memref.
1616a70aa7bbSRiver Riddle privateMemrefs.insert(memref);
1617a70aa7bbSRiver Riddle }
1618a70aa7bbSRiver Riddle
1619a70aa7bbSRiver Riddle // Fuse computation slice of 'srcLoopNest' into 'dstLoopNest'.
1620a70aa7bbSRiver Riddle fuseLoops(srcAffineForOp, dstAffineForOp, bestSlice);
1621a70aa7bbSRiver Riddle dstNodeChanged = true;
1622a70aa7bbSRiver Riddle
1623a70aa7bbSRiver Riddle LLVM_DEBUG(llvm::dbgs()
1624a70aa7bbSRiver Riddle << "Fused src loop " << srcId << " into dst loop " << dstId
1625a70aa7bbSRiver Riddle << " at depth " << bestDstLoopDepth << ":\n"
1626a70aa7bbSRiver Riddle << dstAffineForOp << "\n");
1627a70aa7bbSRiver Riddle
1628a70aa7bbSRiver Riddle // Move 'dstAffineForOp' before 'insertPointInst' if needed.
1629a70aa7bbSRiver Riddle if (fusedLoopInsPoint != dstAffineForOp.getOperation())
1630a70aa7bbSRiver Riddle dstAffineForOp.getOperation()->moveBefore(fusedLoopInsPoint);
1631a70aa7bbSRiver Riddle
1632a70aa7bbSRiver Riddle // Update edges between 'srcNode' and 'dstNode'.
1633a70aa7bbSRiver Riddle mdg->updateEdges(srcNode->id, dstNode->id, privateMemrefs,
1634a70aa7bbSRiver Riddle removeSrcNode);
1635a70aa7bbSRiver Riddle
1636a70aa7bbSRiver Riddle // Create private memrefs.
1637a70aa7bbSRiver Riddle if (!privateMemrefs.empty()) {
1638a70aa7bbSRiver Riddle // Gather stores for all the private-to-be memrefs.
1639a70aa7bbSRiver Riddle DenseMap<Value, SmallVector<Operation *, 4>> privateMemRefToStores;
1640a70aa7bbSRiver Riddle dstAffineForOp.walk([&](AffineWriteOpInterface storeOp) {
1641a70aa7bbSRiver Riddle Value storeMemRef = storeOp.getMemRef();
1642a70aa7bbSRiver Riddle if (privateMemrefs.count(storeMemRef) > 0)
1643a70aa7bbSRiver Riddle privateMemRefToStores[storeMemRef].push_back(
1644a70aa7bbSRiver Riddle storeOp.getOperation());
1645a70aa7bbSRiver Riddle });
1646a70aa7bbSRiver Riddle
1647a70aa7bbSRiver Riddle // Replace original memrefs with private memrefs. Note that all the
1648a70aa7bbSRiver Riddle // loads and stores on these memrefs will be replaced with a new
1649a70aa7bbSRiver Riddle // loads and stores. Any reference to the original ones becomes
1650a70aa7bbSRiver Riddle // invalid after this point.
1651a70aa7bbSRiver Riddle for (auto &memrefToStoresPair : privateMemRefToStores) {
1652a70aa7bbSRiver Riddle // TODO: Use union of memref write regions to compute
1653a70aa7bbSRiver Riddle // private memref footprint.
1654a70aa7bbSRiver Riddle SmallVector<Operation *, 4> &storesForMemref =
1655a70aa7bbSRiver Riddle memrefToStoresPair.second;
1656a70aa7bbSRiver Riddle Value newMemRef = createPrivateMemRef(
1657a70aa7bbSRiver Riddle dstAffineForOp, storesForMemref[0], bestDstLoopDepth,
1658a70aa7bbSRiver Riddle fastMemorySpace, localBufSizeThreshold);
1659a70aa7bbSRiver Riddle // Create new node in dependence graph for 'newMemRef' alloc op.
1660a70aa7bbSRiver Riddle unsigned newMemRefNodeId =
1661a70aa7bbSRiver Riddle mdg->addNode(newMemRef.getDefiningOp());
1662a70aa7bbSRiver Riddle // Add edge from 'newMemRef' node to dstNode.
1663a70aa7bbSRiver Riddle mdg->addEdge(newMemRefNodeId, dstId, newMemRef);
1664a70aa7bbSRiver Riddle }
1665a70aa7bbSRiver Riddle // One or more entries for 'newMemRef' alloc op are inserted into
1666a70aa7bbSRiver Riddle // the DenseMap mdg->nodes. Since an insertion may cause DenseMap to
1667a70aa7bbSRiver Riddle // reallocate, update dstNode.
1668a70aa7bbSRiver Riddle dstNode = mdg->getNode(dstId);
1669a70aa7bbSRiver Riddle }
1670a70aa7bbSRiver Riddle
1671a70aa7bbSRiver Riddle // Collect dst loop stats after memref privatization transformation.
1672a70aa7bbSRiver Riddle LoopNestStateCollector dstLoopCollector;
1673a70aa7bbSRiver Riddle dstLoopCollector.collect(dstAffineForOp.getOperation());
1674a70aa7bbSRiver Riddle
1675a70aa7bbSRiver Riddle // Clear and add back loads and stores.
1676a70aa7bbSRiver Riddle mdg->clearNodeLoadAndStores(dstNode->id);
1677a70aa7bbSRiver Riddle mdg->addToNode(dstId, dstLoopCollector.loadOpInsts,
1678a70aa7bbSRiver Riddle dstLoopCollector.storeOpInsts);
1679a70aa7bbSRiver Riddle
1680a70aa7bbSRiver Riddle if (removeSrcNode) {
1681a70aa7bbSRiver Riddle LLVM_DEBUG(llvm::dbgs()
1682a70aa7bbSRiver Riddle << "Removing src loop " << srcId << " after fusion\n");
1683a70aa7bbSRiver Riddle // srcNode is no longer valid after it is removed from mdg.
1684a70aa7bbSRiver Riddle srcAffineForOp.erase();
1685a70aa7bbSRiver Riddle mdg->removeNode(srcId);
1686a70aa7bbSRiver Riddle srcNode = nullptr;
1687a70aa7bbSRiver Riddle }
1688a70aa7bbSRiver Riddle }
1689a70aa7bbSRiver Riddle } while (dstNodeChanged);
1690a70aa7bbSRiver Riddle }
1691a70aa7bbSRiver Riddle }
1692a70aa7bbSRiver Riddle
1693a70aa7bbSRiver Riddle // Visits each node in the graph, and for each node, attempts to fuse it with
1694a70aa7bbSRiver Riddle // its sibling nodes (nodes which share a parent, but no dependence edges).
fuseSiblingNodes__anon8a0d4ac20c11::GreedyFusion1695a70aa7bbSRiver Riddle void fuseSiblingNodes() {
1696a70aa7bbSRiver Riddle LLVM_DEBUG(llvm::dbgs() << "--- Sibling Fusion ---\n");
1697a70aa7bbSRiver Riddle init();
1698a70aa7bbSRiver Riddle while (!worklist.empty()) {
1699a70aa7bbSRiver Riddle unsigned dstId = worklist.back();
1700a70aa7bbSRiver Riddle worklist.pop_back();
1701a70aa7bbSRiver Riddle
1702a70aa7bbSRiver Riddle // Skip if this node was removed (fused into another node).
1703a70aa7bbSRiver Riddle if (mdg->nodes.count(dstId) == 0)
1704a70aa7bbSRiver Riddle continue;
1705a70aa7bbSRiver Riddle // Get 'dstNode' into which to attempt fusion.
1706a70aa7bbSRiver Riddle auto *dstNode = mdg->getNode(dstId);
1707a70aa7bbSRiver Riddle // Skip if 'dstNode' is not a loop nest.
1708a70aa7bbSRiver Riddle if (!isa<AffineForOp>(dstNode->op))
1709a70aa7bbSRiver Riddle continue;
1710a70aa7bbSRiver Riddle // Attempt to fuse 'dstNode' with its sibling nodes in the graph.
1711a70aa7bbSRiver Riddle fuseWithSiblingNodes(dstNode);
1712a70aa7bbSRiver Riddle }
1713a70aa7bbSRiver Riddle }
1714a70aa7bbSRiver Riddle
1715a70aa7bbSRiver Riddle // Attempt to fuse 'dstNode' with sibling nodes in the graph.
fuseWithSiblingNodes__anon8a0d4ac20c11::GreedyFusion1716a70aa7bbSRiver Riddle void fuseWithSiblingNodes(Node *dstNode) {
1717a70aa7bbSRiver Riddle DenseSet<unsigned> visitedSibNodeIds;
1718a70aa7bbSRiver Riddle std::pair<unsigned, Value> idAndMemref;
1719a70aa7bbSRiver Riddle auto dstAffineForOp = cast<AffineForOp>(dstNode->op);
1720a70aa7bbSRiver Riddle
1721a70aa7bbSRiver Riddle while (findSiblingNodeToFuse(dstNode, &visitedSibNodeIds, &idAndMemref)) {
1722a70aa7bbSRiver Riddle unsigned sibId = idAndMemref.first;
1723a70aa7bbSRiver Riddle Value memref = idAndMemref.second;
1724a70aa7bbSRiver Riddle // TODO: Check that 'sibStoreOpInst' post-dominates all other
1725a70aa7bbSRiver Riddle // stores to the same memref in 'sibNode' loop nest.
1726a70aa7bbSRiver Riddle auto *sibNode = mdg->getNode(sibId);
1727a70aa7bbSRiver Riddle // Compute an operation list insertion point for the fused loop
1728a70aa7bbSRiver Riddle // nest which preserves dependences.
1729a70aa7bbSRiver Riddle assert(sibNode->op->getBlock() == dstNode->op->getBlock());
1730a70aa7bbSRiver Riddle Operation *insertPointInst =
1731a70aa7bbSRiver Riddle sibNode->op->isBeforeInBlock(dstNode->op)
1732a70aa7bbSRiver Riddle ? mdg->getFusedLoopNestInsertionPoint(sibNode->id, dstNode->id)
1733a70aa7bbSRiver Riddle : mdg->getFusedLoopNestInsertionPoint(dstNode->id, sibNode->id);
1734a70aa7bbSRiver Riddle if (insertPointInst == nullptr)
1735a70aa7bbSRiver Riddle continue;
1736a70aa7bbSRiver Riddle
1737a70aa7bbSRiver Riddle // Check if fusion would be profitable and at what depth.
1738a70aa7bbSRiver Riddle
1739a70aa7bbSRiver Riddle // Get unique 'sibNode' load op to 'memref'.
1740a70aa7bbSRiver Riddle SmallVector<Operation *, 2> sibLoadOpInsts;
1741a70aa7bbSRiver Riddle sibNode->getLoadOpsForMemref(memref, &sibLoadOpInsts);
1742a70aa7bbSRiver Riddle // Currently findSiblingNodeToFuse searches for siblings with one load.
1743a70aa7bbSRiver Riddle assert(sibLoadOpInsts.size() == 1);
1744a70aa7bbSRiver Riddle Operation *sibLoadOpInst = sibLoadOpInsts[0];
1745a70aa7bbSRiver Riddle assert(!sibNode->stores.empty());
1746a70aa7bbSRiver Riddle // TODO: Choose the store which postdominates all other stores.
1747a70aa7bbSRiver Riddle auto *sibStoreOpInst = sibNode->stores.back();
1748a70aa7bbSRiver Riddle
1749a70aa7bbSRiver Riddle // Gather 'dstNode' load ops to 'memref'.
1750a70aa7bbSRiver Riddle SmallVector<Operation *, 2> dstLoadOpInsts;
1751a70aa7bbSRiver Riddle dstNode->getLoadOpsForMemref(memref, &dstLoadOpInsts);
1752a70aa7bbSRiver Riddle
1753a70aa7bbSRiver Riddle SmallVector<AffineForOp, 4> dstLoopIVs;
1754a70aa7bbSRiver Riddle getLoopIVs(*dstLoadOpInsts[0], &dstLoopIVs);
1755a70aa7bbSRiver Riddle unsigned dstLoopDepthTest = dstLoopIVs.size();
1756a70aa7bbSRiver Riddle auto sibAffineForOp = cast<AffineForOp>(sibNode->op);
1757a70aa7bbSRiver Riddle
1758a70aa7bbSRiver Riddle // Compute loop depth and slice union for fusion.
1759a70aa7bbSRiver Riddle SmallVector<ComputationSliceState, 8> depthSliceUnions;
1760a70aa7bbSRiver Riddle depthSliceUnions.resize(dstLoopDepthTest);
1761a70aa7bbSRiver Riddle unsigned maxLegalFusionDepth = 0;
1762a70aa7bbSRiver Riddle FusionStrategy strategy(memref);
1763a70aa7bbSRiver Riddle for (unsigned i = 1; i <= dstLoopDepthTest; ++i) {
1764a70aa7bbSRiver Riddle FusionResult result = mlir::canFuseLoops(
1765a70aa7bbSRiver Riddle sibAffineForOp, dstAffineForOp,
1766a70aa7bbSRiver Riddle /*dstLoopDepth=*/i, &depthSliceUnions[i - 1], strategy);
1767a70aa7bbSRiver Riddle
1768a70aa7bbSRiver Riddle if (result.value == FusionResult::Success)
1769a70aa7bbSRiver Riddle maxLegalFusionDepth = i;
1770a70aa7bbSRiver Riddle }
1771a70aa7bbSRiver Riddle
1772a70aa7bbSRiver Riddle // Skip if fusion is not feasible at any loop depths.
1773a70aa7bbSRiver Riddle if (maxLegalFusionDepth == 0)
1774a70aa7bbSRiver Riddle continue;
1775a70aa7bbSRiver Riddle
1776a70aa7bbSRiver Riddle unsigned bestDstLoopDepth = maxLegalFusionDepth;
1777a70aa7bbSRiver Riddle if (!maximalFusion) {
1778a70aa7bbSRiver Riddle // Check if fusion would be profitable.
1779a70aa7bbSRiver Riddle if (!isFusionProfitable(sibLoadOpInst, sibStoreOpInst, dstAffineForOp,
1780a70aa7bbSRiver Riddle depthSliceUnions, maxLegalFusionDepth,
1781a70aa7bbSRiver Riddle &bestDstLoopDepth, computeToleranceThreshold))
1782a70aa7bbSRiver Riddle continue;
1783a70aa7bbSRiver Riddle }
1784a70aa7bbSRiver Riddle
1785a70aa7bbSRiver Riddle assert(bestDstLoopDepth > 0 && "Unexpected loop fusion depth");
1786a70aa7bbSRiver Riddle assert(!depthSliceUnions[bestDstLoopDepth - 1].isEmpty() &&
1787a70aa7bbSRiver Riddle "Fusion depth has no computed slice union");
1788a70aa7bbSRiver Riddle // Check if source loop is being inserted in the innermost
1789a70aa7bbSRiver Riddle // destination loop. Based on this, the fused loop may be optimized
1790a70aa7bbSRiver Riddle // further inside `fuseLoops`.
1791a70aa7bbSRiver Riddle bool isInnermostInsertion = (bestDstLoopDepth == dstLoopDepthTest);
1792a70aa7bbSRiver Riddle // Fuse computation slice of 'sibLoopNest' into 'dstLoopNest'.
1793a70aa7bbSRiver Riddle mlir::fuseLoops(sibAffineForOp, dstAffineForOp,
1794a70aa7bbSRiver Riddle depthSliceUnions[bestDstLoopDepth - 1],
1795a70aa7bbSRiver Riddle isInnermostInsertion);
1796a70aa7bbSRiver Riddle
1797a70aa7bbSRiver Riddle auto dstForInst = cast<AffineForOp>(dstNode->op);
1798a70aa7bbSRiver Riddle // Update operation position of fused loop nest (if needed).
1799a70aa7bbSRiver Riddle if (insertPointInst != dstForInst.getOperation()) {
1800a70aa7bbSRiver Riddle dstForInst->moveBefore(insertPointInst);
1801a70aa7bbSRiver Riddle }
1802a70aa7bbSRiver Riddle // Update data dependence graph state post fusion.
1803a70aa7bbSRiver Riddle updateStateAfterSiblingFusion(sibNode, dstNode);
1804a70aa7bbSRiver Riddle }
1805a70aa7bbSRiver Riddle }
1806a70aa7bbSRiver Riddle
1807a70aa7bbSRiver Riddle // Searches function argument uses and the graph from 'dstNode' looking for a
1808a70aa7bbSRiver Riddle // fusion candidate sibling node which shares no dependences with 'dstNode'
1809a70aa7bbSRiver Riddle // but which loads from the same memref. Returns true and sets
1810a70aa7bbSRiver Riddle // 'idAndMemrefToFuse' on success. Returns false otherwise.
findSiblingNodeToFuse__anon8a0d4ac20c11::GreedyFusion1811a70aa7bbSRiver Riddle bool findSiblingNodeToFuse(Node *dstNode,
1812a70aa7bbSRiver Riddle DenseSet<unsigned> *visitedSibNodeIds,
1813a70aa7bbSRiver Riddle std::pair<unsigned, Value> *idAndMemrefToFuse) {
1814a70aa7bbSRiver Riddle // Returns true if 'sibNode' can be fused with 'dstNode' for input reuse
1815a70aa7bbSRiver Riddle // on 'memref'.
1816a70aa7bbSRiver Riddle auto canFuseWithSibNode = [&](Node *sibNode, Value memref) {
1817a70aa7bbSRiver Riddle // Skip if 'outEdge' is not a read-after-write dependence.
1818a70aa7bbSRiver Riddle // TODO: Remove restrict to single load op restriction.
1819a70aa7bbSRiver Riddle if (sibNode->getLoadOpCount(memref) != 1)
1820a70aa7bbSRiver Riddle return false;
1821a70aa7bbSRiver Riddle // Skip if there exists a path of dependent edges between
1822a70aa7bbSRiver Riddle // 'sibNode' and 'dstNode'.
1823a70aa7bbSRiver Riddle if (mdg->hasDependencePath(sibNode->id, dstNode->id) ||
1824a70aa7bbSRiver Riddle mdg->hasDependencePath(dstNode->id, sibNode->id))
1825a70aa7bbSRiver Riddle return false;
1826a70aa7bbSRiver Riddle // Skip sib node if it loads to (and stores from) the same memref on
1827a70aa7bbSRiver Riddle // which it also has an input dependence edge.
1828a70aa7bbSRiver Riddle DenseSet<Value> loadAndStoreMemrefSet;
1829a70aa7bbSRiver Riddle sibNode->getLoadAndStoreMemrefSet(&loadAndStoreMemrefSet);
1830a70aa7bbSRiver Riddle if (llvm::any_of(loadAndStoreMemrefSet, [=](Value memref) {
1831a70aa7bbSRiver Riddle return mdg->getIncomingMemRefAccesses(sibNode->id, memref) > 0;
1832a70aa7bbSRiver Riddle }))
1833a70aa7bbSRiver Riddle return false;
1834a70aa7bbSRiver Riddle
1835a70aa7bbSRiver Riddle // Check that all stores are to the same memref.
1836a70aa7bbSRiver Riddle DenseSet<Value> storeMemrefs;
1837a70aa7bbSRiver Riddle for (auto *storeOpInst : sibNode->stores) {
1838a70aa7bbSRiver Riddle storeMemrefs.insert(
1839a70aa7bbSRiver Riddle cast<AffineWriteOpInterface>(storeOpInst).getMemRef());
1840a70aa7bbSRiver Riddle }
1841a70aa7bbSRiver Riddle if (storeMemrefs.size() != 1)
1842a70aa7bbSRiver Riddle return false;
1843a70aa7bbSRiver Riddle
1844a70aa7bbSRiver Riddle // Skip if a memref value in one node is used by a non-affine memref
1845a70aa7bbSRiver Riddle // access that lies between 'dstNode' and 'sibNode'.
1846a70aa7bbSRiver Riddle if (hasNonAffineUsersOnThePath(dstNode->id, sibNode->id, mdg) ||
1847a70aa7bbSRiver Riddle hasNonAffineUsersOnThePath(sibNode->id, dstNode->id, mdg))
1848a70aa7bbSRiver Riddle return false;
1849a70aa7bbSRiver Riddle return true;
1850a70aa7bbSRiver Riddle };
1851a70aa7bbSRiver Riddle
1852a70aa7bbSRiver Riddle // Search for siblings which load the same memref function argument.
185358ceae95SRiver Riddle auto fn = dstNode->op->getParentOfType<func::FuncOp>();
1854a70aa7bbSRiver Riddle for (unsigned i = 0, e = fn.getNumArguments(); i != e; ++i) {
1855a70aa7bbSRiver Riddle for (auto *user : fn.getArgument(i).getUsers()) {
1856a70aa7bbSRiver Riddle if (auto loadOp = dyn_cast<AffineReadOpInterface>(user)) {
1857a70aa7bbSRiver Riddle // Gather loops surrounding 'use'.
1858a70aa7bbSRiver Riddle SmallVector<AffineForOp, 4> loops;
1859a70aa7bbSRiver Riddle getLoopIVs(*user, &loops);
1860a70aa7bbSRiver Riddle // Skip 'use' if it is not within a loop nest.
1861a70aa7bbSRiver Riddle if (loops.empty())
1862a70aa7bbSRiver Riddle continue;
1863a70aa7bbSRiver Riddle Node *sibNode = mdg->getForOpNode(loops[0]);
1864a70aa7bbSRiver Riddle assert(sibNode != nullptr);
1865a70aa7bbSRiver Riddle // Skip 'use' if it not a sibling to 'dstNode'.
1866a70aa7bbSRiver Riddle if (sibNode->id == dstNode->id)
1867a70aa7bbSRiver Riddle continue;
1868a70aa7bbSRiver Riddle // Skip 'use' if it has been visited.
1869a70aa7bbSRiver Riddle if (visitedSibNodeIds->count(sibNode->id) > 0)
1870a70aa7bbSRiver Riddle continue;
1871a70aa7bbSRiver Riddle // Skip 'use' if it does not load from the same memref as 'dstNode'.
1872a70aa7bbSRiver Riddle auto memref = loadOp.getMemRef();
1873a70aa7bbSRiver Riddle if (dstNode->getLoadOpCount(memref) == 0)
1874a70aa7bbSRiver Riddle continue;
1875a70aa7bbSRiver Riddle // Check if 'sibNode/dstNode' can be input-reuse fused on 'memref'.
1876a70aa7bbSRiver Riddle if (canFuseWithSibNode(sibNode, memref)) {
1877a70aa7bbSRiver Riddle visitedSibNodeIds->insert(sibNode->id);
1878a70aa7bbSRiver Riddle idAndMemrefToFuse->first = sibNode->id;
1879a70aa7bbSRiver Riddle idAndMemrefToFuse->second = memref;
1880a70aa7bbSRiver Riddle return true;
1881a70aa7bbSRiver Riddle }
1882a70aa7bbSRiver Riddle }
1883a70aa7bbSRiver Riddle }
1884a70aa7bbSRiver Riddle }
1885a70aa7bbSRiver Riddle
1886a70aa7bbSRiver Riddle // Search for siblings by following edges through an intermediate src node.
1887a70aa7bbSRiver Riddle // Collect candidate 'dstNode' input edges in 'inEdges'.
1888a70aa7bbSRiver Riddle SmallVector<MemRefDependenceGraph::Edge, 2> inEdges;
1889a70aa7bbSRiver Riddle mdg->forEachMemRefInputEdge(
1890a70aa7bbSRiver Riddle dstNode->id, [&](MemRefDependenceGraph::Edge inEdge) {
1891a70aa7bbSRiver Riddle // Add 'inEdge' if it is a read-after-write dependence.
1892a70aa7bbSRiver Riddle if (dstNode->getLoadOpCount(inEdge.value) > 0 &&
1893a70aa7bbSRiver Riddle mdg->getNode(inEdge.id)->getStoreOpCount(inEdge.value) > 0)
1894a70aa7bbSRiver Riddle inEdges.push_back(inEdge);
1895a70aa7bbSRiver Riddle });
1896a70aa7bbSRiver Riddle
1897a70aa7bbSRiver Riddle // Search for sibling nodes to fuse by visiting output edges from each input
1898a70aa7bbSRiver Riddle // edge in 'inEdges'.
1899a70aa7bbSRiver Riddle for (auto &inEdge : inEdges) {
1900a70aa7bbSRiver Riddle // Collect candidate output edges from each node 'inEdge.id' in 'inEdges'.
1901a70aa7bbSRiver Riddle SmallVector<MemRefDependenceGraph::Edge, 2> outEdges;
1902a70aa7bbSRiver Riddle mdg->forEachMemRefOutputEdge(
1903a70aa7bbSRiver Riddle inEdge.id, [&](MemRefDependenceGraph::Edge outEdge) {
1904a70aa7bbSRiver Riddle unsigned sibNodeId = outEdge.id;
1905a70aa7bbSRiver Riddle if (visitedSibNodeIds->count(sibNodeId) > 0)
1906a70aa7bbSRiver Riddle return;
1907a70aa7bbSRiver Riddle // Skip output edge if not a sibling using the same memref.
1908a70aa7bbSRiver Riddle if (outEdge.id == dstNode->id || outEdge.value != inEdge.value)
1909a70aa7bbSRiver Riddle return;
1910a70aa7bbSRiver Riddle auto *sibNode = mdg->getNode(sibNodeId);
1911a70aa7bbSRiver Riddle if (!isa<AffineForOp>(sibNode->op))
1912a70aa7bbSRiver Riddle return;
1913a70aa7bbSRiver Riddle // Check if 'sibNode/dstNode' can be input-reuse fused on 'memref'.
1914a70aa7bbSRiver Riddle if (canFuseWithSibNode(sibNode, outEdge.value)) {
1915a70aa7bbSRiver Riddle // Add candidate 'outEdge' to sibling node.
1916a70aa7bbSRiver Riddle outEdges.push_back(outEdge);
1917a70aa7bbSRiver Riddle }
1918a70aa7bbSRiver Riddle });
1919a70aa7bbSRiver Riddle
1920a70aa7bbSRiver Riddle // Add first candidate if any were returned.
1921a70aa7bbSRiver Riddle if (!outEdges.empty()) {
1922a70aa7bbSRiver Riddle visitedSibNodeIds->insert(outEdges[0].id);
1923a70aa7bbSRiver Riddle idAndMemrefToFuse->first = outEdges[0].id;
1924a70aa7bbSRiver Riddle idAndMemrefToFuse->second = outEdges[0].value;
1925a70aa7bbSRiver Riddle return true;
1926a70aa7bbSRiver Riddle }
1927a70aa7bbSRiver Riddle }
1928a70aa7bbSRiver Riddle return false;
1929a70aa7bbSRiver Riddle }
1930a70aa7bbSRiver Riddle
1931a70aa7bbSRiver Riddle /// Update data dependence graph state to reflect sibling fusion of 'sibNode'
1932a70aa7bbSRiver Riddle /// into 'dstNode'.
updateStateAfterSiblingFusion__anon8a0d4ac20c11::GreedyFusion1933a70aa7bbSRiver Riddle void updateStateAfterSiblingFusion(Node *sibNode, Node *dstNode) {
1934a70aa7bbSRiver Riddle // Update 'sibNode' and 'dstNode' input/output edges to reflect fusion.
1935a70aa7bbSRiver Riddle mdg->updateEdges(sibNode->id, dstNode->id);
1936a70aa7bbSRiver Riddle
1937a70aa7bbSRiver Riddle // Collect dst loop stats after memref privatization transformation.
1938a70aa7bbSRiver Riddle auto dstForInst = cast<AffineForOp>(dstNode->op);
1939a70aa7bbSRiver Riddle LoopNestStateCollector dstLoopCollector;
1940a70aa7bbSRiver Riddle dstLoopCollector.collect(dstForInst.getOperation());
1941a70aa7bbSRiver Riddle // Clear and add back loads and stores
1942a70aa7bbSRiver Riddle mdg->clearNodeLoadAndStores(dstNode->id);
1943a70aa7bbSRiver Riddle mdg->addToNode(dstNode->id, dstLoopCollector.loadOpInsts,
1944a70aa7bbSRiver Riddle dstLoopCollector.storeOpInsts);
1945a70aa7bbSRiver Riddle // Remove old sibling loop nest if it no longer has outgoing dependence
1946a70aa7bbSRiver Riddle // edges, and it does not write to a memref which escapes the
1947a70aa7bbSRiver Riddle // function.
1948a70aa7bbSRiver Riddle if (mdg->getOutEdgeCount(sibNode->id) == 0) {
19499f235a88SVitaly Buka Operation *op = sibNode->op;
1950a70aa7bbSRiver Riddle mdg->removeNode(sibNode->id);
19519f235a88SVitaly Buka op->erase();
1952a70aa7bbSRiver Riddle }
1953a70aa7bbSRiver Riddle }
1954a70aa7bbSRiver Riddle
1955a70aa7bbSRiver Riddle // Clean up any allocs with no users.
eraseUnusedMemRefAllocations__anon8a0d4ac20c11::GreedyFusion1956a70aa7bbSRiver Riddle void eraseUnusedMemRefAllocations() {
1957a70aa7bbSRiver Riddle for (auto &pair : mdg->memrefEdgeCount) {
1958a70aa7bbSRiver Riddle if (pair.second > 0)
1959a70aa7bbSRiver Riddle continue;
1960a70aa7bbSRiver Riddle auto memref = pair.first;
1961a70aa7bbSRiver Riddle // Skip if there exist other uses (return operation or function calls).
1962a70aa7bbSRiver Riddle if (!memref.use_empty())
1963a70aa7bbSRiver Riddle continue;
1964a70aa7bbSRiver Riddle // Use list expected to match the dep graph info.
1965a70aa7bbSRiver Riddle auto *op = memref.getDefiningOp();
1966a70aa7bbSRiver Riddle if (isa_and_nonnull<memref::AllocOp>(op))
1967a70aa7bbSRiver Riddle op->erase();
1968a70aa7bbSRiver Riddle }
1969a70aa7bbSRiver Riddle }
1970a70aa7bbSRiver Riddle };
1971a70aa7bbSRiver Riddle
1972a70aa7bbSRiver Riddle } // namespace
1973a70aa7bbSRiver Riddle
runOnOperation()1974a70aa7bbSRiver Riddle void LoopFusion::runOnOperation() {
1975a70aa7bbSRiver Riddle MemRefDependenceGraph g;
1976a70aa7bbSRiver Riddle if (!g.init(getOperation()))
1977a70aa7bbSRiver Riddle return;
1978a70aa7bbSRiver Riddle
1979a70aa7bbSRiver Riddle Optional<unsigned> fastMemorySpaceOpt;
1980a70aa7bbSRiver Riddle if (fastMemorySpace.hasValue())
1981a70aa7bbSRiver Riddle fastMemorySpaceOpt = fastMemorySpace;
1982a70aa7bbSRiver Riddle unsigned localBufSizeThresholdBytes = localBufSizeThreshold * 1024;
1983a70aa7bbSRiver Riddle GreedyFusion fusion(&g, localBufSizeThresholdBytes, fastMemorySpaceOpt,
1984a70aa7bbSRiver Riddle maximalFusion, computeToleranceThreshold);
1985a70aa7bbSRiver Riddle
1986a70aa7bbSRiver Riddle if (affineFusionMode == FusionMode::ProducerConsumer)
1987a70aa7bbSRiver Riddle fusion.runProducerConsumerFusionOnly();
1988a70aa7bbSRiver Riddle else if (affineFusionMode == FusionMode::Sibling)
1989a70aa7bbSRiver Riddle fusion.runSiblingFusionOnly();
1990a70aa7bbSRiver Riddle else
1991a70aa7bbSRiver Riddle fusion.runGreedyFusion();
1992a70aa7bbSRiver Riddle }
1993