1 //===- AffineLoopNormalize.cpp - AffineLoopNormalize Pass -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a normalizer for affine loop-like ops. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PassDetail.h" 14 #include "mlir/Dialect/Affine/IR/AffineOps.h" 15 #include "mlir/Dialect/Affine/IR/AffineValueMap.h" 16 #include "mlir/Dialect/Affine/Passes.h" 17 #include "mlir/Dialect/Affine/Utils.h" 18 #include "mlir/IR/PatternMatch.h" 19 #include "mlir/Transforms/LoopUtils.h" 20 21 using namespace mlir; 22 23 void mlir::normalizeAffineParallel(AffineParallelOp op) { 24 AffineMap lbMap = op.lowerBoundsMap(); 25 SmallVector<int64_t, 8> steps = op.getSteps(); 26 // No need to do any work if the parallel op is already normalized. 27 bool isAlreadyNormalized = 28 llvm::all_of(llvm::zip(steps, lbMap.getResults()), [](auto tuple) { 29 int64_t step = std::get<0>(tuple); 30 auto lbExpr = 31 std::get<1>(tuple).template dyn_cast<AffineConstantExpr>(); 32 return lbExpr && lbExpr.getValue() == 0 && step == 1; 33 }); 34 if (isAlreadyNormalized) 35 return; 36 37 AffineValueMap ranges = op.getRangesValueMap(); 38 auto builder = OpBuilder::atBlockBegin(op.getBody()); 39 auto zeroExpr = builder.getAffineConstantExpr(0); 40 SmallVector<AffineExpr, 8> lbExprs; 41 SmallVector<AffineExpr, 8> ubExprs; 42 for (unsigned i = 0, e = steps.size(); i < e; ++i) { 43 int64_t step = steps[i]; 44 45 // Adjust the lower bound to be 0. 46 lbExprs.push_back(zeroExpr); 47 48 // Adjust the upper bound expression: 'range / step'. 49 AffineExpr ubExpr = ranges.getResult(i).ceilDiv(step); 50 ubExprs.push_back(ubExpr); 51 52 // Adjust the corresponding IV: 'lb + i * step'. 53 BlockArgument iv = op.getBody()->getArgument(i); 54 AffineExpr lbExpr = lbMap.getResult(i); 55 unsigned nDims = lbMap.getNumDims(); 56 auto expr = lbExpr + builder.getAffineDimExpr(nDims) * step; 57 auto map = AffineMap::get(/*dimCount=*/nDims + 1, 58 /*symbolCount=*/lbMap.getNumSymbols(), expr); 59 60 // Use an 'affine.apply' op that will be simplified later in subsequent 61 // canonicalizations. 62 OperandRange lbOperands = op.getLowerBoundsOperands(); 63 OperandRange dimOperands = lbOperands.take_front(nDims); 64 OperandRange symbolOperands = lbOperands.drop_front(nDims); 65 SmallVector<Value, 8> applyOperands{dimOperands}; 66 applyOperands.push_back(iv); 67 applyOperands.append(symbolOperands.begin(), symbolOperands.end()); 68 auto apply = builder.create<AffineApplyOp>(op.getLoc(), map, applyOperands); 69 iv.replaceAllUsesExcept(apply, SmallPtrSet<Operation *, 1>{apply}); 70 } 71 72 SmallVector<int64_t, 8> newSteps(op.getNumDims(), 1); 73 op.setSteps(newSteps); 74 auto newLowerMap = AffineMap::get( 75 /*dimCount=*/0, /*symbolCount=*/0, lbExprs, op.getContext()); 76 op.setLowerBounds({}, newLowerMap); 77 auto newUpperMap = AffineMap::get(ranges.getNumDims(), ranges.getNumSymbols(), 78 ubExprs, op.getContext()); 79 op.setUpperBounds(ranges.getOperands(), newUpperMap); 80 } 81 82 /// Normalization transformations for affine.for ops. For now, it only removes 83 /// single iteration loops. We may want to consider separating redundant loop 84 /// elimitation from loop bound normalization, if needed in the future. 85 static void normalizeAffineFor(AffineForOp op) { 86 if (succeeded(promoteIfSingleIteration(op))) 87 return; 88 89 // TODO: Normalize loop bounds. 90 } 91 92 namespace { 93 94 /// Normalize affine.parallel ops so that lower bounds are 0 and steps are 1. 95 /// As currently implemented, this pass cannot fail, but it might skip over ops 96 /// that are already in a normalized form. 97 struct AffineLoopNormalizePass 98 : public AffineLoopNormalizeBase<AffineLoopNormalizePass> { 99 100 void runOnFunction() override { 101 getFunction().walk([](Operation *op) { 102 if (auto affineParallel = dyn_cast<AffineParallelOp>(op)) 103 normalizeAffineParallel(affineParallel); 104 else if (auto affineFor = dyn_cast<AffineForOp>(op)) 105 normalizeAffineFor(affineFor); 106 }); 107 } 108 }; 109 110 } // namespace 111 112 std::unique_ptr<OperationPass<FuncOp>> mlir::createAffineLoopNormalizePass() { 113 return std::make_unique<AffineLoopNormalizePass>(); 114 } 115