1 //===- VectorToSCF.cpp - Conversion from Vector to mix of SCF and Std -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements target-dependent lowering of vector transfer operations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <type_traits> 14 15 #include "mlir/Conversion/VectorToSCF/VectorToSCF.h" 16 17 #include "../PassDetail.h" 18 #include "mlir/Dialect/Affine/EDSC/Intrinsics.h" 19 #include "mlir/Dialect/SCF/EDSC/Builders.h" 20 #include "mlir/Dialect/SCF/EDSC/Intrinsics.h" 21 #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h" 22 #include "mlir/Dialect/Vector/EDSC/Intrinsics.h" 23 #include "mlir/Dialect/Vector/VectorOps.h" 24 #include "mlir/Dialect/Vector/VectorUtils.h" 25 #include "mlir/IR/AffineExpr.h" 26 #include "mlir/IR/AffineMap.h" 27 #include "mlir/IR/Attributes.h" 28 #include "mlir/IR/Builders.h" 29 #include "mlir/IR/Location.h" 30 #include "mlir/IR/Matchers.h" 31 #include "mlir/IR/OperationSupport.h" 32 #include "mlir/IR/PatternMatch.h" 33 #include "mlir/IR/Types.h" 34 #include "mlir/Pass/Pass.h" 35 #include "mlir/Transforms/Passes.h" 36 37 using namespace mlir; 38 using namespace mlir::edsc; 39 using namespace mlir::edsc::intrinsics; 40 using vector::TransferReadOp; 41 using vector::TransferWriteOp; 42 43 namespace { 44 /// Helper class captures the common information needed to lower N>1-D vector 45 /// transfer operations (read and write). 46 /// On construction, this class opens an edsc::ScopedContext for simpler IR 47 /// manipulation. 48 /// In pseudo-IR, for an n-D vector_transfer_read such as: 49 /// 50 /// ``` 51 /// vector_transfer_read(%m, %offsets, identity_map, %fill) : 52 /// memref<(leading_dims) x (major_dims) x (minor_dims) x type>, 53 /// vector<(major_dims) x (minor_dims) x type> 54 /// ``` 55 /// 56 /// where rank(minor_dims) is the lower-level vector rank (e.g. 1 for LLVM or 57 /// higher). 58 /// 59 /// This is the entry point to emitting pseudo-IR resembling: 60 /// 61 /// ``` 62 /// %tmp = alloc(): memref<(major_dims) x vector<minor_dim x type>> 63 /// for (%ivs_major, {0}, {vector_shape}, {1}) { // (N-1)-D loop nest 64 /// if (any_of(%ivs_major + %offsets, <, major_dims)) { 65 /// %v = vector_transfer_read( 66 /// {%offsets_leading, %ivs_major + %offsets_major, %offsets_minor}, 67 /// %ivs_minor): 68 /// memref<(leading_dims) x (major_dims) x (minor_dims) x type>, 69 /// vector<(minor_dims) x type>; 70 /// store(%v, %tmp); 71 /// } else { 72 /// %v = splat(vector<(minor_dims) x type>, %fill) 73 /// store(%v, %tmp, %ivs_major); 74 /// } 75 /// } 76 /// %res = load(%tmp, %0): memref<(major_dims) x vector<minor_dim x type>>): 77 // vector<(major_dims) x (minor_dims) x type> 78 /// ``` 79 /// 80 template <typename ConcreteOp> 81 class NDTransferOpHelper { 82 public: 83 NDTransferOpHelper(PatternRewriter &rewriter, ConcreteOp xferOp, 84 const VectorTransferToSCFOptions &options) 85 : rewriter(rewriter), options(options), loc(xferOp.getLoc()), 86 scope(std::make_unique<ScopedContext>(rewriter, loc)), xferOp(xferOp), 87 op(xferOp.getOperation()) { 88 vectorType = xferOp.getVectorType(); 89 // TODO(ntv, ajcbik): when we go to k > 1-D vectors adapt minorRank. 90 minorRank = 1; 91 majorRank = vectorType.getRank() - minorRank; 92 leadingRank = xferOp.getMemRefType().getRank() - (majorRank + minorRank); 93 majorVectorType = 94 VectorType::get(vectorType.getShape().take_front(majorRank), 95 vectorType.getElementType()); 96 minorVectorType = 97 VectorType::get(vectorType.getShape().take_back(minorRank), 98 vectorType.getElementType()); 99 /// Memref of minor vector type is used for individual transfers. 100 memRefMinorVectorType = 101 MemRefType::get(majorVectorType.getShape(), minorVectorType, {}, 102 xferOp.getMemRefType().getMemorySpace()); 103 } 104 105 LogicalResult doReplace(); 106 107 private: 108 /// Creates the loop nest on the "major" dimensions and calls the 109 /// `loopBodyBuilder` lambda in the context of the loop nest. 110 template <typename Lambda> 111 void emitLoops(Lambda loopBodyBuilder); 112 113 /// Operate within the body of `emitLoops` to: 114 /// 1. Compute the indexings `majorIvs + majorOffsets` and save them in 115 /// `majorIvsPlusOffsets`. 116 /// 2. Return a boolean that determines whether the first `majorIvs.rank()` 117 /// dimensions `majorIvs + majorOffsets` are all within `memrefBounds`. 118 Value emitInBoundsCondition(ValueRange majorIvs, ValueRange majorOffsets, 119 MemRefBoundsCapture &memrefBounds, 120 SmallVectorImpl<Value> &majorIvsPlusOffsets); 121 122 /// Common state to lower vector transfer ops. 123 PatternRewriter &rewriter; 124 const VectorTransferToSCFOptions &options; 125 Location loc; 126 std::unique_ptr<ScopedContext> scope; 127 ConcreteOp xferOp; 128 Operation *op; 129 // A vector transfer copies data between: 130 // - memref<(leading_dims) x (major_dims) x (minor_dims) x type> 131 // - vector<(major_dims) x (minor_dims) x type> 132 unsigned minorRank; // for now always 1 133 unsigned majorRank; // vector rank - minorRank 134 unsigned leadingRank; // memref rank - vector rank 135 VectorType vectorType; // vector<(major_dims) x (minor_dims) x type> 136 VectorType majorVectorType; // vector<(major_dims) x type> 137 VectorType minorVectorType; // vector<(minor_dims) x type> 138 MemRefType memRefMinorVectorType; // memref<vector<(minor_dims) x type>> 139 }; 140 141 template <typename ConcreteOp> 142 template <typename Lambda> 143 void NDTransferOpHelper<ConcreteOp>::emitLoops(Lambda loopBodyBuilder) { 144 /// Loop nest operates on the major dimensions 145 MemRefBoundsCapture memrefBoundsCapture(xferOp.memref()); 146 147 if (options.unroll) { 148 auto shape = majorVectorType.getShape(); 149 auto strides = computeStrides(shape); 150 unsigned numUnrolledInstances = computeMaxLinearIndex(shape); 151 ValueRange indices(xferOp.indices()); 152 for (unsigned idx = 0; idx < numUnrolledInstances; ++idx) { 153 SmallVector<int64_t, 4> offsets = delinearize(strides, idx); 154 SmallVector<Value, 4> offsetValues = 155 llvm::to_vector<4>(llvm::map_range(offsets, [](int64_t off) -> Value { 156 return std_constant_index(off); 157 })); 158 loopBodyBuilder(offsetValues, indices.take_front(leadingRank), 159 indices.drop_front(leadingRank).take_front(majorRank), 160 indices.take_back(minorRank), memrefBoundsCapture); 161 } 162 } else { 163 VectorBoundsCapture vectorBoundsCapture(majorVectorType); 164 auto majorLbs = vectorBoundsCapture.getLbs(); 165 auto majorUbs = vectorBoundsCapture.getUbs(); 166 auto majorSteps = vectorBoundsCapture.getSteps(); 167 SmallVector<Value, 8> majorIvs(vectorBoundsCapture.rank()); 168 AffineLoopNestBuilder(majorIvs, majorLbs, majorUbs, majorSteps)([&] { 169 ValueRange indices(xferOp.indices()); 170 loopBodyBuilder(majorIvs, indices.take_front(leadingRank), 171 indices.drop_front(leadingRank).take_front(majorRank), 172 indices.take_back(minorRank), memrefBoundsCapture); 173 }); 174 } 175 } 176 177 template <typename ConcreteOp> 178 Value NDTransferOpHelper<ConcreteOp>::emitInBoundsCondition( 179 ValueRange majorIvs, ValueRange majorOffsets, 180 MemRefBoundsCapture &memrefBounds, 181 SmallVectorImpl<Value> &majorIvsPlusOffsets) { 182 Value inBoundsCondition; 183 majorIvsPlusOffsets.reserve(majorIvs.size()); 184 unsigned idx = 0; 185 for (auto it : llvm::zip(majorIvs, majorOffsets, memrefBounds.getUbs())) { 186 Value iv = std::get<0>(it), off = std::get<1>(it), ub = std::get<2>(it); 187 using namespace mlir::edsc::op; 188 majorIvsPlusOffsets.push_back(iv + off); 189 if (xferOp.isMaskedDim(leadingRank + idx)) { 190 Value inBounds = majorIvsPlusOffsets.back() < ub; 191 inBoundsCondition = 192 (inBoundsCondition) ? (inBoundsCondition && inBounds) : inBounds; 193 } 194 ++idx; 195 } 196 return inBoundsCondition; 197 } 198 199 // TODO: Parallelism and threadlocal considerations. 200 static Value setAllocAtFunctionEntry(MemRefType memRefMinorVectorType, 201 Operation *op) { 202 auto &b = ScopedContext::getBuilderRef(); 203 OpBuilder::InsertionGuard guard(b); 204 b.setInsertionPointToStart(&op->getParentOfType<FuncOp>().front()); 205 Value res = 206 std_alloca(memRefMinorVectorType, ValueRange{}, b.getI64IntegerAttr(128)); 207 return res; 208 } 209 210 template <> 211 LogicalResult NDTransferOpHelper<TransferReadOp>::doReplace() { 212 Value alloc, result; 213 if (options.unroll) 214 result = std_splat(vectorType, xferOp.padding()); 215 else 216 alloc = setAllocAtFunctionEntry(memRefMinorVectorType, op); 217 218 emitLoops([&](ValueRange majorIvs, ValueRange leadingOffsets, 219 ValueRange majorOffsets, ValueRange minorOffsets, 220 MemRefBoundsCapture &memrefBounds) { 221 /// Lambda to load 1-D vector in the current loop ivs + offset context. 222 auto load1DVector = [&](ValueRange majorIvsPlusOffsets) -> Value { 223 SmallVector<Value, 8> indexing; 224 indexing.reserve(leadingRank + majorRank + minorRank); 225 indexing.append(leadingOffsets.begin(), leadingOffsets.end()); 226 indexing.append(majorIvsPlusOffsets.begin(), majorIvsPlusOffsets.end()); 227 indexing.append(minorOffsets.begin(), minorOffsets.end()); 228 Value memref = xferOp.memref(); 229 auto map = TransferReadOp::getTransferMinorIdentityMap( 230 xferOp.getMemRefType(), minorVectorType); 231 ArrayAttr masked; 232 if (xferOp.isMaskedDim(xferOp.getVectorType().getRank() - 1)) { 233 OpBuilder &b = ScopedContext::getBuilderRef(); 234 masked = b.getBoolArrayAttr({true}); 235 } 236 return vector_transfer_read(minorVectorType, memref, indexing, 237 AffineMapAttr::get(map), xferOp.padding(), 238 masked); 239 }; 240 241 // 1. Compute the inBoundsCondition in the current loops ivs + offset 242 // context. 243 SmallVector<Value, 4> majorIvsPlusOffsets; 244 Value inBoundsCondition = emitInBoundsCondition( 245 majorIvs, majorOffsets, memrefBounds, majorIvsPlusOffsets); 246 247 if (inBoundsCondition) { 248 // 2. If the condition is not null, we need an IfOp, which may yield 249 // if `options.unroll` is true. 250 SmallVector<Type, 1> resultType; 251 if (options.unroll) 252 resultType.push_back(vectorType); 253 254 // 3. If in-bounds, progressively lower to a 1-D transfer read, otherwise 255 // splat a 1-D vector. 256 ValueRange ifResults = conditionBuilder( 257 resultType, inBoundsCondition, 258 [&]() -> scf::ValueVector { 259 Value vector = load1DVector(majorIvsPlusOffsets); 260 // 3.a. If `options.unroll` is true, insert the 1-D vector in the 261 // aggregate. We must yield and merge with the `else` branch. 262 if (options.unroll) { 263 vector = vector_insert(vector, result, majorIvs); 264 return {vector}; 265 } 266 // 3.b. Otherwise, just go through the temporary `alloc`. 267 std_store(vector, alloc, majorIvs); 268 return {}; 269 }, 270 [&]() -> scf::ValueVector { 271 Value vector = std_splat(minorVectorType, xferOp.padding()); 272 // 3.c. If `options.unroll` is true, insert the 1-D vector in the 273 // aggregate. We must yield and merge with the `then` branch. 274 if (options.unroll) { 275 vector = vector_insert(vector, result, majorIvs); 276 return {vector}; 277 } 278 // 3.d. Otherwise, just go through the temporary `alloc`. 279 std_store(vector, alloc, majorIvs); 280 return {}; 281 }); 282 283 if (!resultType.empty()) 284 result = *ifResults.begin(); 285 } else { 286 // 4. Guaranteed in-bounds, progressively lower to a 1-D transfer read. 287 Value loaded1D = load1DVector(majorIvsPlusOffsets); 288 // 5.a. If `options.unroll` is true, insert the 1-D vector in the 289 // aggregate. 290 if (options.unroll) 291 result = vector_insert(loaded1D, result, majorIvs); 292 // 5.b. Otherwise, just go through the temporary `alloc`. 293 else 294 std_store(loaded1D, alloc, majorIvs); 295 } 296 }); 297 298 assert((!options.unroll ^ (bool)result) && 299 "Expected resulting Value iff unroll"); 300 if (!result) 301 result = std_load(vector_type_cast(MemRefType::get({}, vectorType), alloc)); 302 rewriter.replaceOp(op, result); 303 304 return success(); 305 } 306 307 template <> 308 LogicalResult NDTransferOpHelper<TransferWriteOp>::doReplace() { 309 Value alloc; 310 if (!options.unroll) { 311 alloc = setAllocAtFunctionEntry(memRefMinorVectorType, op); 312 std_store(xferOp.vector(), 313 vector_type_cast(MemRefType::get({}, vectorType), alloc)); 314 } 315 316 emitLoops([&](ValueRange majorIvs, ValueRange leadingOffsets, 317 ValueRange majorOffsets, ValueRange minorOffsets, 318 MemRefBoundsCapture &memrefBounds) { 319 // Lower to 1-D vector_transfer_write and let recursion handle it. 320 auto emitTransferWrite = [&](ValueRange majorIvsPlusOffsets) { 321 SmallVector<Value, 8> indexing; 322 indexing.reserve(leadingRank + majorRank + minorRank); 323 indexing.append(leadingOffsets.begin(), leadingOffsets.end()); 324 indexing.append(majorIvsPlusOffsets.begin(), majorIvsPlusOffsets.end()); 325 indexing.append(minorOffsets.begin(), minorOffsets.end()); 326 Value result; 327 // If `options.unroll` is true, extract the 1-D vector from the 328 // aggregate. 329 if (options.unroll) 330 result = vector_extract(xferOp.vector(), majorIvs); 331 else 332 result = std_load(alloc, majorIvs); 333 auto map = TransferWriteOp::getTransferMinorIdentityMap( 334 xferOp.getMemRefType(), minorVectorType); 335 ArrayAttr masked; 336 if (xferOp.isMaskedDim(xferOp.getVectorType().getRank() - 1)) { 337 OpBuilder &b = ScopedContext::getBuilderRef(); 338 masked = b.getBoolArrayAttr({true}); 339 } 340 vector_transfer_write(result, xferOp.memref(), indexing, 341 AffineMapAttr::get(map), masked); 342 }; 343 344 // 1. Compute the inBoundsCondition in the current loops ivs + offset 345 // context. 346 SmallVector<Value, 4> majorIvsPlusOffsets; 347 Value inBoundsCondition = emitInBoundsCondition( 348 majorIvs, majorOffsets, memrefBounds, majorIvsPlusOffsets); 349 350 if (inBoundsCondition) { 351 // 2.a. If the condition is not null, we need an IfOp, to write 352 // conditionally. Progressively lower to a 1-D transfer write. 353 conditionBuilder(inBoundsCondition, 354 [&] { emitTransferWrite(majorIvsPlusOffsets); }); 355 } else { 356 // 2.b. Guaranteed in-bounds. Progressively lower to a 1-D transfer write. 357 emitTransferWrite(majorIvsPlusOffsets); 358 } 359 }); 360 361 rewriter.eraseOp(op); 362 363 return success(); 364 } 365 366 } // namespace 367 368 /// Analyzes the `transfer` to find an access dimension along the fastest remote 369 /// MemRef dimension. If such a dimension with coalescing properties is found, 370 /// `pivs` and `vectorBoundsCapture` are swapped so that the invocation of 371 /// LoopNestBuilder captures it in the innermost loop. 372 template <typename TransferOpTy> 373 static int computeCoalescedIndex(TransferOpTy transfer) { 374 // rank of the remote memory access, coalescing behavior occurs on the 375 // innermost memory dimension. 376 auto remoteRank = transfer.getMemRefType().getRank(); 377 // Iterate over the results expressions of the permutation map to determine 378 // the loop order for creating pointwise copies between remote and local 379 // memories. 380 int coalescedIdx = -1; 381 auto exprs = transfer.permutation_map().getResults(); 382 for (auto en : llvm::enumerate(exprs)) { 383 auto dim = en.value().template dyn_cast<AffineDimExpr>(); 384 if (!dim) { 385 continue; 386 } 387 auto memRefDim = dim.getPosition(); 388 if (memRefDim == remoteRank - 1) { 389 // memRefDim has coalescing properties, it should be swapped in the last 390 // position. 391 assert(coalescedIdx == -1 && "Unexpected > 1 coalesced indices"); 392 coalescedIdx = en.index(); 393 } 394 } 395 return coalescedIdx; 396 } 397 398 /// Emits remote memory accesses that are clipped to the boundaries of the 399 /// MemRef. 400 template <typename TransferOpTy> 401 static SmallVector<Value, 8> 402 clip(TransferOpTy transfer, MemRefBoundsCapture &bounds, ArrayRef<Value> ivs) { 403 using namespace mlir::edsc; 404 405 Value zero(std_constant_index(0)), one(std_constant_index(1)); 406 SmallVector<Value, 8> memRefAccess(transfer.indices()); 407 SmallVector<Value, 8> clippedScalarAccessExprs(memRefAccess.size()); 408 // Indices accessing to remote memory are clipped and their expressions are 409 // returned in clippedScalarAccessExprs. 410 for (unsigned memRefDim = 0; memRefDim < clippedScalarAccessExprs.size(); 411 ++memRefDim) { 412 // Linear search on a small number of entries. 413 int loopIndex = -1; 414 auto exprs = transfer.permutation_map().getResults(); 415 for (auto en : llvm::enumerate(exprs)) { 416 auto expr = en.value(); 417 auto dim = expr.template dyn_cast<AffineDimExpr>(); 418 // Sanity check. 419 assert( 420 (dim || expr.template cast<AffineConstantExpr>().getValue() == 0) && 421 "Expected dim or 0 in permutationMap"); 422 if (dim && memRefDim == dim.getPosition()) { 423 loopIndex = en.index(); 424 break; 425 } 426 } 427 428 // We cannot distinguish atm between unrolled dimensions that implement 429 // the "always full" tile abstraction and need clipping from the other 430 // ones. So we conservatively clip everything. 431 using namespace edsc::op; 432 auto N = bounds.ub(memRefDim); 433 auto i = memRefAccess[memRefDim]; 434 if (loopIndex < 0) { 435 auto N_minus_1 = N - one; 436 auto select_1 = std_select(i < N, i, N_minus_1); 437 clippedScalarAccessExprs[memRefDim] = 438 std_select(i < zero, zero, select_1); 439 } else { 440 auto ii = ivs[loopIndex]; 441 auto i_plus_ii = i + ii; 442 auto N_minus_1 = N - one; 443 auto select_1 = std_select(i_plus_ii < N, i_plus_ii, N_minus_1); 444 clippedScalarAccessExprs[memRefDim] = 445 std_select(i_plus_ii < zero, zero, select_1); 446 } 447 } 448 449 return clippedScalarAccessExprs; 450 } 451 452 namespace mlir { 453 454 template <typename TransferOpTy> 455 VectorTransferRewriter<TransferOpTy>::VectorTransferRewriter( 456 VectorTransferToSCFOptions options, MLIRContext *context) 457 : RewritePattern(TransferOpTy::getOperationName(), 1, context), 458 options(options) {} 459 460 /// Used for staging the transfer in a local buffer. 461 template <typename TransferOpTy> 462 MemRefType VectorTransferRewriter<TransferOpTy>::tmpMemRefType( 463 TransferOpTy transfer) const { 464 auto vectorType = transfer.getVectorType(); 465 return MemRefType::get(vectorType.getShape(), vectorType.getElementType(), {}, 466 0); 467 } 468 469 /// Lowers TransferReadOp into a combination of: 470 /// 1. local memory allocation; 471 /// 2. perfect loop nest over: 472 /// a. scalar load from local buffers (viewed as a scalar memref); 473 /// a. scalar store to original memref (with clipping). 474 /// 3. vector_load from local buffer (viewed as a memref<1 x vector>); 475 /// 4. local memory deallocation. 476 /// 477 /// Lowers the data transfer part of a TransferReadOp while ensuring no 478 /// out-of-bounds accesses are possible. Out-of-bounds behavior is handled by 479 /// clipping. This means that a given value in memory can be read multiple 480 /// times and concurrently. 481 /// 482 /// Important notes about clipping and "full-tiles only" abstraction: 483 /// ================================================================= 484 /// When using clipping for dealing with boundary conditions, the same edge 485 /// value will appear multiple times (a.k.a edge padding). This is fine if the 486 /// subsequent vector operations are all data-parallel but **is generally 487 /// incorrect** in the presence of reductions or extract operations. 488 /// 489 /// More generally, clipping is a scalar abstraction that is expected to work 490 /// fine as a baseline for CPUs and GPUs but not for vector_load and DMAs. 491 /// To deal with real vector_load and DMAs, a "padded allocation + view" 492 /// abstraction with the ability to read out-of-memref-bounds (but still within 493 /// the allocated region) is necessary. 494 /// 495 /// Whether using scalar loops or vector_load/DMAs to perform the transfer, 496 /// junk values will be materialized in the vectors and generally need to be 497 /// filtered out and replaced by the "neutral element". This neutral element is 498 /// op-dependent so, in the future, we expect to create a vector filter and 499 /// apply it to a splatted constant vector with the proper neutral element at 500 /// each ssa-use. This filtering is not necessary for pure data-parallel 501 /// operations. 502 /// 503 /// In the case of vector_store/DMAs, Read-Modify-Write will be required, which 504 /// also have concurrency implications. Note that by using clipped scalar stores 505 /// in the presence of data-parallel only operations, we generate code that 506 /// writes the same value multiple time on the edge locations. 507 /// 508 /// TODO(ntv): implement alternatives to clipping. 509 /// TODO(ntv): support non-data-parallel operations. 510 511 /// Performs the rewrite. 512 template <> 513 LogicalResult VectorTransferRewriter<TransferReadOp>::matchAndRewrite( 514 Operation *op, PatternRewriter &rewriter) const { 515 using namespace mlir::edsc::op; 516 517 TransferReadOp transfer = cast<TransferReadOp>(op); 518 if (AffineMap::isMinorIdentity(transfer.permutation_map())) { 519 // If > 1D, emit a bunch of loops around 1-D vector transfers. 520 if (transfer.getVectorType().getRank() > 1) 521 return NDTransferOpHelper<TransferReadOp>(rewriter, transfer, options) 522 .doReplace(); 523 // If 1-D this is now handled by the target-specific lowering. 524 if (transfer.getVectorType().getRank() == 1) 525 return failure(); 526 } 527 528 // Conservative lowering to scalar load / stores. 529 // 1. Setup all the captures. 530 ScopedContext scope(rewriter, transfer.getLoc()); 531 StdIndexedValue remote(transfer.memref()); 532 MemRefBoundsCapture memRefBoundsCapture(transfer.memref()); 533 VectorBoundsCapture vectorBoundsCapture(transfer.vector()); 534 int coalescedIdx = computeCoalescedIndex(transfer); 535 // Swap the vectorBoundsCapture which will reorder loop bounds. 536 if (coalescedIdx >= 0) 537 vectorBoundsCapture.swapRanges(vectorBoundsCapture.rank() - 1, 538 coalescedIdx); 539 540 auto lbs = vectorBoundsCapture.getLbs(); 541 auto ubs = vectorBoundsCapture.getUbs(); 542 SmallVector<Value, 8> steps; 543 steps.reserve(vectorBoundsCapture.getSteps().size()); 544 for (auto step : vectorBoundsCapture.getSteps()) 545 steps.push_back(std_constant_index(step)); 546 547 // 2. Emit alloc-copy-load-dealloc. 548 Value tmp = std_alloc(tmpMemRefType(transfer)); 549 StdIndexedValue local(tmp); 550 Value vec = vector_type_cast(tmp); 551 loopNestBuilder(lbs, ubs, steps, [&](ValueRange loopIvs) { 552 auto ivs = llvm::to_vector<8>(loopIvs); 553 // Swap the ivs which will reorder memory accesses. 554 if (coalescedIdx >= 0) 555 std::swap(ivs.back(), ivs[coalescedIdx]); 556 // Computes clippedScalarAccessExprs in the loop nest scope (ivs exist). 557 local(ivs) = remote(clip(transfer, memRefBoundsCapture, ivs)); 558 }); 559 Value vectorValue = std_load(vec); 560 (std_dealloc(tmp)); // vexing parse 561 562 // 3. Propagate. 563 rewriter.replaceOp(op, vectorValue); 564 return success(); 565 } 566 567 /// Lowers TransferWriteOp into a combination of: 568 /// 1. local memory allocation; 569 /// 2. vector_store to local buffer (viewed as a memref<1 x vector>); 570 /// 3. perfect loop nest over: 571 /// a. scalar load from local buffers (viewed as a scalar memref); 572 /// a. scalar store to original memref (with clipping). 573 /// 4. local memory deallocation. 574 /// 575 /// More specifically, lowers the data transfer part while ensuring no 576 /// out-of-bounds accesses are possible. Out-of-bounds behavior is handled by 577 /// clipping. This means that a given value in memory can be written to multiple 578 /// times and concurrently. 579 /// 580 /// See `Important notes about clipping and full-tiles only abstraction` in the 581 /// description of `readClipped` above. 582 /// 583 /// TODO(ntv): implement alternatives to clipping. 584 /// TODO(ntv): support non-data-parallel operations. 585 template <> 586 LogicalResult VectorTransferRewriter<TransferWriteOp>::matchAndRewrite( 587 Operation *op, PatternRewriter &rewriter) const { 588 using namespace edsc::op; 589 590 TransferWriteOp transfer = cast<TransferWriteOp>(op); 591 if (AffineMap::isMinorIdentity(transfer.permutation_map())) { 592 // If > 1D, emit a bunch of loops around 1-D vector transfers. 593 if (transfer.getVectorType().getRank() > 1) 594 return NDTransferOpHelper<TransferWriteOp>(rewriter, transfer, options) 595 .doReplace(); 596 // If 1-D this is now handled by the target-specific lowering. 597 if (transfer.getVectorType().getRank() == 1) 598 return failure(); 599 } 600 601 // 1. Setup all the captures. 602 ScopedContext scope(rewriter, transfer.getLoc()); 603 StdIndexedValue remote(transfer.memref()); 604 MemRefBoundsCapture memRefBoundsCapture(transfer.memref()); 605 Value vectorValue(transfer.vector()); 606 VectorBoundsCapture vectorBoundsCapture(transfer.vector()); 607 int coalescedIdx = computeCoalescedIndex(transfer); 608 // Swap the vectorBoundsCapture which will reorder loop bounds. 609 if (coalescedIdx >= 0) 610 vectorBoundsCapture.swapRanges(vectorBoundsCapture.rank() - 1, 611 coalescedIdx); 612 613 auto lbs = vectorBoundsCapture.getLbs(); 614 auto ubs = vectorBoundsCapture.getUbs(); 615 SmallVector<Value, 8> steps; 616 steps.reserve(vectorBoundsCapture.getSteps().size()); 617 for (auto step : vectorBoundsCapture.getSteps()) 618 steps.push_back(std_constant_index(step)); 619 620 // 2. Emit alloc-store-copy-dealloc. 621 Value tmp = std_alloc(tmpMemRefType(transfer)); 622 StdIndexedValue local(tmp); 623 Value vec = vector_type_cast(tmp); 624 std_store(vectorValue, vec); 625 loopNestBuilder(lbs, ubs, steps, [&](ValueRange loopIvs) { 626 auto ivs = llvm::to_vector<8>(loopIvs); 627 // Swap the ivs which will reorder memory accesses. 628 if (coalescedIdx >= 0) 629 std::swap(ivs.back(), ivs[coalescedIdx]); 630 // Computes clippedScalarAccessExprs in the loop nest scope (ivs exist). 631 remote(clip(transfer, memRefBoundsCapture, ivs)) = local(ivs); 632 }); 633 (std_dealloc(tmp)); // vexing parse... 634 635 rewriter.eraseOp(op); 636 return success(); 637 } 638 639 void populateVectorToSCFConversionPatterns( 640 OwningRewritePatternList &patterns, MLIRContext *context, 641 const VectorTransferToSCFOptions &options) { 642 patterns.insert<VectorTransferRewriter<vector::TransferReadOp>, 643 VectorTransferRewriter<vector::TransferWriteOp>>(options, 644 context); 645 } 646 647 } // namespace mlir 648 649 namespace { 650 651 struct ConvertVectorToSCFPass 652 : public ConvertVectorToSCFBase<ConvertVectorToSCFPass> { 653 ConvertVectorToSCFPass() = default; 654 ConvertVectorToSCFPass(const ConvertVectorToSCFPass &pass) {} 655 ConvertVectorToSCFPass(const VectorTransferToSCFOptions &options) { 656 this->fullUnroll = options.unroll; 657 } 658 659 void runOnFunction() override { 660 OwningRewritePatternList patterns; 661 auto *context = getFunction().getContext(); 662 populateVectorToSCFConversionPatterns( 663 patterns, context, VectorTransferToSCFOptions().setUnroll(fullUnroll)); 664 applyPatternsAndFoldGreedily(getFunction(), patterns); 665 } 666 }; 667 668 } // namespace 669 670 std::unique_ptr<Pass> 671 mlir::createConvertVectorToSCFPass(const VectorTransferToSCFOptions &options) { 672 return std::make_unique<ConvertVectorToSCFPass>(options); 673 } 674