1 //===- VectorToSCF.cpp - Conversion from Vector to mix of SCF and Std -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements target-dependent lowering of vector transfer operations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <type_traits> 14 15 #include "mlir/Conversion/VectorToSCF/VectorToSCF.h" 16 17 #include "../PassDetail.h" 18 #include "mlir/Dialect/Affine/EDSC/Intrinsics.h" 19 #include "mlir/Dialect/SCF/EDSC/Builders.h" 20 #include "mlir/Dialect/SCF/EDSC/Intrinsics.h" 21 #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h" 22 #include "mlir/Dialect/Vector/EDSC/Intrinsics.h" 23 #include "mlir/Dialect/Vector/VectorOps.h" 24 #include "mlir/Dialect/Vector/VectorUtils.h" 25 #include "mlir/IR/AffineExpr.h" 26 #include "mlir/IR/AffineMap.h" 27 #include "mlir/IR/Attributes.h" 28 #include "mlir/IR/Builders.h" 29 #include "mlir/IR/Location.h" 30 #include "mlir/IR/Matchers.h" 31 #include "mlir/IR/OperationSupport.h" 32 #include "mlir/IR/PatternMatch.h" 33 #include "mlir/IR/Types.h" 34 #include "mlir/Pass/Pass.h" 35 #include "mlir/Transforms/Passes.h" 36 37 using namespace mlir; 38 using namespace mlir::edsc; 39 using namespace mlir::edsc::intrinsics; 40 using vector::TransferReadOp; 41 using vector::TransferWriteOp; 42 43 namespace { 44 /// Helper class captures the common information needed to lower N>1-D vector 45 /// transfer operations (read and write). 46 /// On construction, this class opens an edsc::ScopedContext for simpler IR 47 /// manipulation. 48 /// In pseudo-IR, for an n-D vector_transfer_read such as: 49 /// 50 /// ``` 51 /// vector_transfer_read(%m, %offsets, identity_map, %fill) : 52 /// memref<(leading_dims) x (major_dims) x (minor_dims) x type>, 53 /// vector<(major_dims) x (minor_dims) x type> 54 /// ``` 55 /// 56 /// where rank(minor_dims) is the lower-level vector rank (e.g. 1 for LLVM or 57 /// higher). 58 /// 59 /// This is the entry point to emitting pseudo-IR resembling: 60 /// 61 /// ``` 62 /// %tmp = alloc(): memref<(major_dims) x vector<minor_dim x type>> 63 /// for (%ivs_major, {0}, {vector_shape}, {1}) { // (N-1)-D loop nest 64 /// if (any_of(%ivs_major + %offsets, <, major_dims)) { 65 /// %v = vector_transfer_read( 66 /// {%offsets_leading, %ivs_major + %offsets_major, %offsets_minor}, 67 /// %ivs_minor): 68 /// memref<(leading_dims) x (major_dims) x (minor_dims) x type>, 69 /// vector<(minor_dims) x type>; 70 /// store(%v, %tmp); 71 /// } else { 72 /// %v = splat(vector<(minor_dims) x type>, %fill) 73 /// store(%v, %tmp, %ivs_major); 74 /// } 75 /// } 76 /// %res = load(%tmp, %0): memref<(major_dims) x vector<minor_dim x type>>): 77 // vector<(major_dims) x (minor_dims) x type> 78 /// ``` 79 /// 80 template <typename ConcreteOp> 81 class NDTransferOpHelper { 82 public: 83 NDTransferOpHelper(PatternRewriter &rewriter, ConcreteOp xferOp, 84 const VectorTransferToSCFOptions &options) 85 : rewriter(rewriter), options(options), loc(xferOp.getLoc()), 86 scope(std::make_unique<ScopedContext>(rewriter, loc)), xferOp(xferOp), 87 op(xferOp.getOperation()) { 88 vectorType = xferOp.getVectorType(); 89 // TODO: when we go to k > 1-D vectors adapt minorRank. 90 minorRank = 1; 91 majorRank = vectorType.getRank() - minorRank; 92 leadingRank = xferOp.getLeadingMemRefRank(); 93 majorVectorType = 94 VectorType::get(vectorType.getShape().take_front(majorRank), 95 vectorType.getElementType()); 96 minorVectorType = 97 VectorType::get(vectorType.getShape().take_back(minorRank), 98 vectorType.getElementType()); 99 /// Memref of minor vector type is used for individual transfers. 100 memRefMinorVectorType = 101 MemRefType::get(majorVectorType.getShape(), minorVectorType, {}, 102 xferOp.getMemRefType().getMemorySpace()); 103 } 104 105 LogicalResult doReplace(); 106 107 private: 108 /// Creates the loop nest on the "major" dimensions and calls the 109 /// `loopBodyBuilder` lambda in the context of the loop nest. 110 template <typename Lambda> 111 void emitLoops(Lambda loopBodyBuilder); 112 113 /// Operate within the body of `emitLoops` to: 114 /// 1. Compute the indexings `majorIvs + majorOffsets` and save them in 115 /// `majorIvsPlusOffsets`. 116 /// 2. Return a boolean that determines whether the first `majorIvs.rank()` 117 /// dimensions `majorIvs + majorOffsets` are all within `memrefBounds`. 118 Value emitInBoundsCondition(ValueRange majorIvs, ValueRange majorOffsets, 119 MemRefBoundsCapture &memrefBounds, 120 SmallVectorImpl<Value> &majorIvsPlusOffsets); 121 122 /// Common state to lower vector transfer ops. 123 PatternRewriter &rewriter; 124 const VectorTransferToSCFOptions &options; 125 Location loc; 126 std::unique_ptr<ScopedContext> scope; 127 ConcreteOp xferOp; 128 Operation *op; 129 // A vector transfer copies data between: 130 // - memref<(leading_dims) x (major_dims) x (minor_dims) x type> 131 // - vector<(major_dims) x (minor_dims) x type> 132 unsigned minorRank; // for now always 1 133 unsigned majorRank; // vector rank - minorRank 134 unsigned leadingRank; // memref rank - vector rank 135 VectorType vectorType; // vector<(major_dims) x (minor_dims) x type> 136 VectorType majorVectorType; // vector<(major_dims) x type> 137 VectorType minorVectorType; // vector<(minor_dims) x type> 138 MemRefType memRefMinorVectorType; // memref<vector<(minor_dims) x type>> 139 }; 140 141 template <typename ConcreteOp> 142 template <typename Lambda> 143 void NDTransferOpHelper<ConcreteOp>::emitLoops(Lambda loopBodyBuilder) { 144 /// Loop nest operates on the major dimensions 145 MemRefBoundsCapture memrefBoundsCapture(xferOp.memref()); 146 147 if (options.unroll) { 148 auto shape = majorVectorType.getShape(); 149 auto strides = computeStrides(shape); 150 unsigned numUnrolledInstances = computeMaxLinearIndex(shape); 151 ValueRange indices(xferOp.indices()); 152 for (unsigned idx = 0; idx < numUnrolledInstances; ++idx) { 153 SmallVector<int64_t, 4> offsets = delinearize(strides, idx); 154 SmallVector<Value, 4> offsetValues = 155 llvm::to_vector<4>(llvm::map_range(offsets, [](int64_t off) -> Value { 156 return std_constant_index(off); 157 })); 158 loopBodyBuilder(offsetValues, indices.take_front(leadingRank), 159 indices.drop_front(leadingRank).take_front(majorRank), 160 indices.take_back(minorRank), memrefBoundsCapture); 161 } 162 } else { 163 VectorBoundsCapture vectorBoundsCapture(majorVectorType); 164 auto majorLbs = vectorBoundsCapture.getLbs(); 165 auto majorUbs = vectorBoundsCapture.getUbs(); 166 auto majorSteps = vectorBoundsCapture.getSteps(); 167 affineLoopNestBuilder( 168 majorLbs, majorUbs, majorSteps, [&](ValueRange majorIvs) { 169 ValueRange indices(xferOp.indices()); 170 loopBodyBuilder(majorIvs, indices.take_front(leadingRank), 171 indices.drop_front(leadingRank).take_front(majorRank), 172 indices.take_back(minorRank), memrefBoundsCapture); 173 }); 174 } 175 } 176 177 static Optional<int64_t> extractConstantIndex(Value v) { 178 if (auto cstOp = v.getDefiningOp<ConstantIndexOp>()) 179 return cstOp.getValue(); 180 if (auto affineApplyOp = v.getDefiningOp<AffineApplyOp>()) 181 if (affineApplyOp.getAffineMap().isSingleConstant()) 182 return affineApplyOp.getAffineMap().getSingleConstantResult(); 183 return None; 184 } 185 186 // Missing foldings of scf.if make it necessary to perform poor man's folding 187 // eagerly, especially in the case of unrolling. In the future, this should go 188 // away once scf.if folds properly. 189 static Value onTheFlyFoldSLT(Value v, Value ub) { 190 using namespace mlir::edsc::op; 191 auto maybeCstV = extractConstantIndex(v); 192 auto maybeCstUb = extractConstantIndex(ub); 193 if (maybeCstV && maybeCstUb && *maybeCstV < *maybeCstUb) 194 return Value(); 195 return slt(v, ub); 196 } 197 198 template <typename ConcreteOp> 199 Value NDTransferOpHelper<ConcreteOp>::emitInBoundsCondition( 200 ValueRange majorIvs, ValueRange majorOffsets, 201 MemRefBoundsCapture &memrefBounds, 202 SmallVectorImpl<Value> &majorIvsPlusOffsets) { 203 Value inBoundsCondition; 204 majorIvsPlusOffsets.reserve(majorIvs.size()); 205 unsigned idx = 0; 206 for (auto it : llvm::zip(majorIvs, majorOffsets, memrefBounds.getUbs())) { 207 Value iv = std::get<0>(it), off = std::get<1>(it), ub = std::get<2>(it); 208 using namespace mlir::edsc::op; 209 majorIvsPlusOffsets.push_back(iv + off); 210 if (xferOp.isMaskedDim(leadingRank + idx)) { 211 Value inBoundsCond = onTheFlyFoldSLT(majorIvsPlusOffsets.back(), ub); 212 if (inBoundsCond) 213 inBoundsCondition = (inBoundsCondition) 214 ? (inBoundsCondition && inBoundsCond) 215 : inBoundsCond; 216 } 217 ++idx; 218 } 219 return inBoundsCondition; 220 } 221 222 // TODO: Parallelism and threadlocal considerations. 223 static Value setAllocAtFunctionEntry(MemRefType memRefMinorVectorType, 224 Operation *op) { 225 auto &b = ScopedContext::getBuilderRef(); 226 OpBuilder::InsertionGuard guard(b); 227 b.setInsertionPointToStart(&op->getParentOfType<FuncOp>().front()); 228 Value res = 229 std_alloca(memRefMinorVectorType, ValueRange{}, b.getI64IntegerAttr(128)); 230 return res; 231 } 232 233 template <> 234 LogicalResult NDTransferOpHelper<TransferReadOp>::doReplace() { 235 Value alloc, result; 236 if (options.unroll) 237 result = std_splat(vectorType, xferOp.padding()); 238 else 239 alloc = setAllocAtFunctionEntry(memRefMinorVectorType, op); 240 241 emitLoops([&](ValueRange majorIvs, ValueRange leadingOffsets, 242 ValueRange majorOffsets, ValueRange minorOffsets, 243 MemRefBoundsCapture &memrefBounds) { 244 /// Lambda to load 1-D vector in the current loop ivs + offset context. 245 auto load1DVector = [&](ValueRange majorIvsPlusOffsets) -> Value { 246 SmallVector<Value, 8> indexing; 247 indexing.reserve(leadingRank + majorRank + minorRank); 248 indexing.append(leadingOffsets.begin(), leadingOffsets.end()); 249 indexing.append(majorIvsPlusOffsets.begin(), majorIvsPlusOffsets.end()); 250 indexing.append(minorOffsets.begin(), minorOffsets.end()); 251 Value memref = xferOp.memref(); 252 auto map = 253 getTransferMinorIdentityMap(xferOp.getMemRefType(), minorVectorType); 254 ArrayAttr masked; 255 if (!xferOp.isMaskedDim(xferOp.getVectorType().getRank() - 1)) { 256 OpBuilder &b = ScopedContext::getBuilderRef(); 257 masked = b.getBoolArrayAttr({false}); 258 } 259 return vector_transfer_read(minorVectorType, memref, indexing, 260 AffineMapAttr::get(map), xferOp.padding(), 261 masked); 262 }; 263 264 // 1. Compute the inBoundsCondition in the current loops ivs + offset 265 // context. 266 SmallVector<Value, 4> majorIvsPlusOffsets; 267 Value inBoundsCondition = emitInBoundsCondition( 268 majorIvs, majorOffsets, memrefBounds, majorIvsPlusOffsets); 269 270 if (inBoundsCondition) { 271 // 2. If the condition is not null, we need an IfOp, which may yield 272 // if `options.unroll` is true. 273 SmallVector<Type, 1> resultType; 274 if (options.unroll) 275 resultType.push_back(vectorType); 276 277 // 3. If in-bounds, progressively lower to a 1-D transfer read, otherwise 278 // splat a 1-D vector. 279 ValueRange ifResults = conditionBuilder( 280 resultType, inBoundsCondition, 281 [&]() -> scf::ValueVector { 282 Value vector = load1DVector(majorIvsPlusOffsets); 283 // 3.a. If `options.unroll` is true, insert the 1-D vector in the 284 // aggregate. We must yield and merge with the `else` branch. 285 if (options.unroll) { 286 vector = vector_insert(vector, result, majorIvs); 287 return {vector}; 288 } 289 // 3.b. Otherwise, just go through the temporary `alloc`. 290 std_store(vector, alloc, majorIvs); 291 return {}; 292 }, 293 [&]() -> scf::ValueVector { 294 Value vector = std_splat(minorVectorType, xferOp.padding()); 295 // 3.c. If `options.unroll` is true, insert the 1-D vector in the 296 // aggregate. We must yield and merge with the `then` branch. 297 if (options.unroll) { 298 vector = vector_insert(vector, result, majorIvs); 299 return {vector}; 300 } 301 // 3.d. Otherwise, just go through the temporary `alloc`. 302 std_store(vector, alloc, majorIvs); 303 return {}; 304 }); 305 306 if (!resultType.empty()) 307 result = *ifResults.begin(); 308 } else { 309 // 4. Guaranteed in-bounds, progressively lower to a 1-D transfer read. 310 Value loaded1D = load1DVector(majorIvsPlusOffsets); 311 // 5.a. If `options.unroll` is true, insert the 1-D vector in the 312 // aggregate. 313 if (options.unroll) 314 result = vector_insert(loaded1D, result, majorIvs); 315 // 5.b. Otherwise, just go through the temporary `alloc`. 316 else 317 std_store(loaded1D, alloc, majorIvs); 318 } 319 }); 320 321 assert((!options.unroll ^ (bool)result) && 322 "Expected resulting Value iff unroll"); 323 if (!result) 324 result = std_load(vector_type_cast(MemRefType::get({}, vectorType), alloc)); 325 rewriter.replaceOp(op, result); 326 327 return success(); 328 } 329 330 template <> 331 LogicalResult NDTransferOpHelper<TransferWriteOp>::doReplace() { 332 Value alloc; 333 if (!options.unroll) { 334 alloc = setAllocAtFunctionEntry(memRefMinorVectorType, op); 335 std_store(xferOp.vector(), 336 vector_type_cast(MemRefType::get({}, vectorType), alloc)); 337 } 338 339 emitLoops([&](ValueRange majorIvs, ValueRange leadingOffsets, 340 ValueRange majorOffsets, ValueRange minorOffsets, 341 MemRefBoundsCapture &memrefBounds) { 342 // Lower to 1-D vector_transfer_write and let recursion handle it. 343 auto emitTransferWrite = [&](ValueRange majorIvsPlusOffsets) { 344 SmallVector<Value, 8> indexing; 345 indexing.reserve(leadingRank + majorRank + minorRank); 346 indexing.append(leadingOffsets.begin(), leadingOffsets.end()); 347 indexing.append(majorIvsPlusOffsets.begin(), majorIvsPlusOffsets.end()); 348 indexing.append(minorOffsets.begin(), minorOffsets.end()); 349 Value result; 350 // If `options.unroll` is true, extract the 1-D vector from the 351 // aggregate. 352 if (options.unroll) 353 result = vector_extract(xferOp.vector(), majorIvs); 354 else 355 result = std_load(alloc, majorIvs); 356 auto map = 357 getTransferMinorIdentityMap(xferOp.getMemRefType(), minorVectorType); 358 ArrayAttr masked; 359 if (!xferOp.isMaskedDim(xferOp.getVectorType().getRank() - 1)) { 360 OpBuilder &b = ScopedContext::getBuilderRef(); 361 masked = b.getBoolArrayAttr({false}); 362 } 363 vector_transfer_write(result, xferOp.memref(), indexing, 364 AffineMapAttr::get(map), masked); 365 }; 366 367 // 1. Compute the inBoundsCondition in the current loops ivs + offset 368 // context. 369 SmallVector<Value, 4> majorIvsPlusOffsets; 370 Value inBoundsCondition = emitInBoundsCondition( 371 majorIvs, majorOffsets, memrefBounds, majorIvsPlusOffsets); 372 373 if (inBoundsCondition) { 374 // 2.a. If the condition is not null, we need an IfOp, to write 375 // conditionally. Progressively lower to a 1-D transfer write. 376 conditionBuilder(inBoundsCondition, 377 [&] { emitTransferWrite(majorIvsPlusOffsets); }); 378 } else { 379 // 2.b. Guaranteed in-bounds. Progressively lower to a 1-D transfer write. 380 emitTransferWrite(majorIvsPlusOffsets); 381 } 382 }); 383 384 rewriter.eraseOp(op); 385 386 return success(); 387 } 388 389 } // namespace 390 391 /// Analyzes the `transfer` to find an access dimension along the fastest remote 392 /// MemRef dimension. If such a dimension with coalescing properties is found, 393 /// `pivs` and `vectorBoundsCapture` are swapped so that the invocation of 394 /// LoopNestBuilder captures it in the innermost loop. 395 template <typename TransferOpTy> 396 static int computeCoalescedIndex(TransferOpTy transfer) { 397 // rank of the remote memory access, coalescing behavior occurs on the 398 // innermost memory dimension. 399 auto remoteRank = transfer.getMemRefType().getRank(); 400 // Iterate over the results expressions of the permutation map to determine 401 // the loop order for creating pointwise copies between remote and local 402 // memories. 403 int coalescedIdx = -1; 404 auto exprs = transfer.permutation_map().getResults(); 405 for (auto en : llvm::enumerate(exprs)) { 406 auto dim = en.value().template dyn_cast<AffineDimExpr>(); 407 if (!dim) { 408 continue; 409 } 410 auto memRefDim = dim.getPosition(); 411 if (memRefDim == remoteRank - 1) { 412 // memRefDim has coalescing properties, it should be swapped in the last 413 // position. 414 assert(coalescedIdx == -1 && "Unexpected > 1 coalesced indices"); 415 coalescedIdx = en.index(); 416 } 417 } 418 return coalescedIdx; 419 } 420 421 /// Emits remote memory accesses that are clipped to the boundaries of the 422 /// MemRef. 423 template <typename TransferOpTy> 424 static SmallVector<Value, 8> 425 clip(TransferOpTy transfer, MemRefBoundsCapture &bounds, ArrayRef<Value> ivs) { 426 using namespace mlir::edsc; 427 428 Value zero(std_constant_index(0)), one(std_constant_index(1)); 429 SmallVector<Value, 8> memRefAccess(transfer.indices()); 430 SmallVector<Value, 8> clippedScalarAccessExprs(memRefAccess.size()); 431 // Indices accessing to remote memory are clipped and their expressions are 432 // returned in clippedScalarAccessExprs. 433 for (unsigned memRefDim = 0; memRefDim < clippedScalarAccessExprs.size(); 434 ++memRefDim) { 435 // Linear search on a small number of entries. 436 int loopIndex = -1; 437 auto exprs = transfer.permutation_map().getResults(); 438 for (auto en : llvm::enumerate(exprs)) { 439 auto expr = en.value(); 440 auto dim = expr.template dyn_cast<AffineDimExpr>(); 441 // Sanity check. 442 assert( 443 (dim || expr.template cast<AffineConstantExpr>().getValue() == 0) && 444 "Expected dim or 0 in permutationMap"); 445 if (dim && memRefDim == dim.getPosition()) { 446 loopIndex = en.index(); 447 break; 448 } 449 } 450 451 // We cannot distinguish atm between unrolled dimensions that implement 452 // the "always full" tile abstraction and need clipping from the other 453 // ones. So we conservatively clip everything. 454 using namespace edsc::op; 455 auto N = bounds.ub(memRefDim); 456 auto i = memRefAccess[memRefDim]; 457 if (loopIndex < 0) { 458 auto N_minus_1 = N - one; 459 auto select_1 = std_select(slt(i, N), i, N_minus_1); 460 clippedScalarAccessExprs[memRefDim] = 461 std_select(slt(i, zero), zero, select_1); 462 } else { 463 auto ii = ivs[loopIndex]; 464 auto i_plus_ii = i + ii; 465 auto N_minus_1 = N - one; 466 auto select_1 = std_select(slt(i_plus_ii, N), i_plus_ii, N_minus_1); 467 clippedScalarAccessExprs[memRefDim] = 468 std_select(slt(i_plus_ii, zero), zero, select_1); 469 } 470 } 471 472 return clippedScalarAccessExprs; 473 } 474 475 namespace mlir { 476 477 template <typename TransferOpTy> 478 VectorTransferRewriter<TransferOpTy>::VectorTransferRewriter( 479 VectorTransferToSCFOptions options, MLIRContext *context) 480 : RewritePattern(TransferOpTy::getOperationName(), 1, context), 481 options(options) {} 482 483 /// Used for staging the transfer in a local buffer. 484 template <typename TransferOpTy> 485 MemRefType VectorTransferRewriter<TransferOpTy>::tmpMemRefType( 486 TransferOpTy transfer) const { 487 auto vectorType = transfer.getVectorType(); 488 return MemRefType::get(vectorType.getShape(), vectorType.getElementType(), {}, 489 0); 490 } 491 492 /// Lowers TransferReadOp into a combination of: 493 /// 1. local memory allocation; 494 /// 2. perfect loop nest over: 495 /// a. scalar load from local buffers (viewed as a scalar memref); 496 /// a. scalar store to original memref (with clipping). 497 /// 3. vector_load from local buffer (viewed as a memref<1 x vector>); 498 /// 4. local memory deallocation. 499 /// 500 /// Lowers the data transfer part of a TransferReadOp while ensuring no 501 /// out-of-bounds accesses are possible. Out-of-bounds behavior is handled by 502 /// clipping. This means that a given value in memory can be read multiple 503 /// times and concurrently. 504 /// 505 /// Important notes about clipping and "full-tiles only" abstraction: 506 /// ================================================================= 507 /// When using clipping for dealing with boundary conditions, the same edge 508 /// value will appear multiple times (a.k.a edge padding). This is fine if the 509 /// subsequent vector operations are all data-parallel but **is generally 510 /// incorrect** in the presence of reductions or extract operations. 511 /// 512 /// More generally, clipping is a scalar abstraction that is expected to work 513 /// fine as a baseline for CPUs and GPUs but not for vector_load and DMAs. 514 /// To deal with real vector_load and DMAs, a "padded allocation + view" 515 /// abstraction with the ability to read out-of-memref-bounds (but still within 516 /// the allocated region) is necessary. 517 /// 518 /// Whether using scalar loops or vector_load/DMAs to perform the transfer, 519 /// junk values will be materialized in the vectors and generally need to be 520 /// filtered out and replaced by the "neutral element". This neutral element is 521 /// op-dependent so, in the future, we expect to create a vector filter and 522 /// apply it to a splatted constant vector with the proper neutral element at 523 /// each ssa-use. This filtering is not necessary for pure data-parallel 524 /// operations. 525 /// 526 /// In the case of vector_store/DMAs, Read-Modify-Write will be required, which 527 /// also have concurrency implications. Note that by using clipped scalar stores 528 /// in the presence of data-parallel only operations, we generate code that 529 /// writes the same value multiple time on the edge locations. 530 /// 531 /// TODO: implement alternatives to clipping. 532 /// TODO: support non-data-parallel operations. 533 534 /// Performs the rewrite. 535 template <> 536 LogicalResult VectorTransferRewriter<TransferReadOp>::matchAndRewrite( 537 Operation *op, PatternRewriter &rewriter) const { 538 using namespace mlir::edsc::op; 539 540 TransferReadOp transfer = cast<TransferReadOp>(op); 541 if (transfer.permutation_map().isMinorIdentity()) { 542 // If > 1D, emit a bunch of loops around 1-D vector transfers. 543 if (transfer.getVectorType().getRank() > 1) 544 return NDTransferOpHelper<TransferReadOp>(rewriter, transfer, options) 545 .doReplace(); 546 // If 1-D this is now handled by the target-specific lowering. 547 if (transfer.getVectorType().getRank() == 1) 548 return failure(); 549 } 550 551 // Conservative lowering to scalar load / stores. 552 // 1. Setup all the captures. 553 ScopedContext scope(rewriter, transfer.getLoc()); 554 StdIndexedValue remote(transfer.memref()); 555 MemRefBoundsCapture memRefBoundsCapture(transfer.memref()); 556 VectorBoundsCapture vectorBoundsCapture(transfer.vector()); 557 int coalescedIdx = computeCoalescedIndex(transfer); 558 // Swap the vectorBoundsCapture which will reorder loop bounds. 559 if (coalescedIdx >= 0) 560 vectorBoundsCapture.swapRanges(vectorBoundsCapture.rank() - 1, 561 coalescedIdx); 562 563 auto lbs = vectorBoundsCapture.getLbs(); 564 auto ubs = vectorBoundsCapture.getUbs(); 565 SmallVector<Value, 8> steps; 566 steps.reserve(vectorBoundsCapture.getSteps().size()); 567 for (auto step : vectorBoundsCapture.getSteps()) 568 steps.push_back(std_constant_index(step)); 569 570 // 2. Emit alloc-copy-load-dealloc. 571 Value tmp = std_alloc(tmpMemRefType(transfer)); 572 StdIndexedValue local(tmp); 573 Value vec = vector_type_cast(tmp); 574 loopNestBuilder(lbs, ubs, steps, [&](ValueRange loopIvs) { 575 auto ivs = llvm::to_vector<8>(loopIvs); 576 // Swap the ivs which will reorder memory accesses. 577 if (coalescedIdx >= 0) 578 std::swap(ivs.back(), ivs[coalescedIdx]); 579 // Computes clippedScalarAccessExprs in the loop nest scope (ivs exist). 580 local(ivs) = remote(clip(transfer, memRefBoundsCapture, ivs)); 581 }); 582 Value vectorValue = std_load(vec); 583 (std_dealloc(tmp)); // vexing parse 584 585 // 3. Propagate. 586 rewriter.replaceOp(op, vectorValue); 587 return success(); 588 } 589 590 /// Lowers TransferWriteOp into a combination of: 591 /// 1. local memory allocation; 592 /// 2. vector_store to local buffer (viewed as a memref<1 x vector>); 593 /// 3. perfect loop nest over: 594 /// a. scalar load from local buffers (viewed as a scalar memref); 595 /// a. scalar store to original memref (with clipping). 596 /// 4. local memory deallocation. 597 /// 598 /// More specifically, lowers the data transfer part while ensuring no 599 /// out-of-bounds accesses are possible. Out-of-bounds behavior is handled by 600 /// clipping. This means that a given value in memory can be written to multiple 601 /// times and concurrently. 602 /// 603 /// See `Important notes about clipping and full-tiles only abstraction` in the 604 /// description of `readClipped` above. 605 /// 606 /// TODO: implement alternatives to clipping. 607 /// TODO: support non-data-parallel operations. 608 template <> 609 LogicalResult VectorTransferRewriter<TransferWriteOp>::matchAndRewrite( 610 Operation *op, PatternRewriter &rewriter) const { 611 using namespace edsc::op; 612 613 TransferWriteOp transfer = cast<TransferWriteOp>(op); 614 if (transfer.permutation_map().isMinorIdentity()) { 615 // If > 1D, emit a bunch of loops around 1-D vector transfers. 616 if (transfer.getVectorType().getRank() > 1) 617 return NDTransferOpHelper<TransferWriteOp>(rewriter, transfer, options) 618 .doReplace(); 619 // If 1-D this is now handled by the target-specific lowering. 620 if (transfer.getVectorType().getRank() == 1) 621 return failure(); 622 } 623 624 // 1. Setup all the captures. 625 ScopedContext scope(rewriter, transfer.getLoc()); 626 StdIndexedValue remote(transfer.memref()); 627 MemRefBoundsCapture memRefBoundsCapture(transfer.memref()); 628 Value vectorValue(transfer.vector()); 629 VectorBoundsCapture vectorBoundsCapture(transfer.vector()); 630 int coalescedIdx = computeCoalescedIndex(transfer); 631 // Swap the vectorBoundsCapture which will reorder loop bounds. 632 if (coalescedIdx >= 0) 633 vectorBoundsCapture.swapRanges(vectorBoundsCapture.rank() - 1, 634 coalescedIdx); 635 636 auto lbs = vectorBoundsCapture.getLbs(); 637 auto ubs = vectorBoundsCapture.getUbs(); 638 SmallVector<Value, 8> steps; 639 steps.reserve(vectorBoundsCapture.getSteps().size()); 640 for (auto step : vectorBoundsCapture.getSteps()) 641 steps.push_back(std_constant_index(step)); 642 643 // 2. Emit alloc-store-copy-dealloc. 644 Value tmp = std_alloc(tmpMemRefType(transfer)); 645 StdIndexedValue local(tmp); 646 Value vec = vector_type_cast(tmp); 647 std_store(vectorValue, vec); 648 loopNestBuilder(lbs, ubs, steps, [&](ValueRange loopIvs) { 649 auto ivs = llvm::to_vector<8>(loopIvs); 650 // Swap the ivs which will reorder memory accesses. 651 if (coalescedIdx >= 0) 652 std::swap(ivs.back(), ivs[coalescedIdx]); 653 // Computes clippedScalarAccessExprs in the loop nest scope (ivs exist). 654 remote(clip(transfer, memRefBoundsCapture, ivs)) = local(ivs); 655 }); 656 (std_dealloc(tmp)); // vexing parse... 657 658 rewriter.eraseOp(op); 659 return success(); 660 } 661 662 void populateVectorToSCFConversionPatterns( 663 OwningRewritePatternList &patterns, MLIRContext *context, 664 const VectorTransferToSCFOptions &options) { 665 patterns.insert<VectorTransferRewriter<vector::TransferReadOp>, 666 VectorTransferRewriter<vector::TransferWriteOp>>(options, 667 context); 668 } 669 670 } // namespace mlir 671 672 namespace { 673 674 struct ConvertVectorToSCFPass 675 : public ConvertVectorToSCFBase<ConvertVectorToSCFPass> { 676 ConvertVectorToSCFPass() = default; 677 ConvertVectorToSCFPass(const VectorTransferToSCFOptions &options) { 678 this->fullUnroll = options.unroll; 679 } 680 681 void runOnFunction() override { 682 OwningRewritePatternList patterns; 683 auto *context = getFunction().getContext(); 684 populateVectorToSCFConversionPatterns( 685 patterns, context, VectorTransferToSCFOptions().setUnroll(fullUnroll)); 686 applyPatternsAndFoldGreedily(getFunction(), patterns); 687 } 688 }; 689 690 } // namespace 691 692 std::unique_ptr<Pass> 693 mlir::createConvertVectorToSCFPass(const VectorTransferToSCFOptions &options) { 694 return std::make_unique<ConvertVectorToSCFPass>(options); 695 } 696