1 //===- VectorToSCF.cpp - Conversion from Vector to mix of SCF and Std -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements target-dependent lowering of vector transfer operations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <type_traits> 14 15 #include "mlir/Conversion/VectorToSCF/VectorToSCF.h" 16 17 #include "../PassDetail.h" 18 #include "mlir/Dialect/Affine/EDSC/Intrinsics.h" 19 #include "mlir/Dialect/MemRef/EDSC/Intrinsics.h" 20 #include "mlir/Dialect/SCF/EDSC/Builders.h" 21 #include "mlir/Dialect/SCF/EDSC/Intrinsics.h" 22 #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h" 23 #include "mlir/Dialect/Vector/EDSC/Intrinsics.h" 24 #include "mlir/Dialect/Vector/VectorOps.h" 25 #include "mlir/Dialect/Vector/VectorUtils.h" 26 #include "mlir/IR/AffineExpr.h" 27 #include "mlir/IR/AffineMap.h" 28 #include "mlir/IR/Builders.h" 29 #include "mlir/IR/Matchers.h" 30 #include "mlir/Pass/Pass.h" 31 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 32 #include "mlir/Transforms/Passes.h" 33 34 using namespace mlir; 35 using namespace mlir::edsc; 36 using namespace mlir::edsc::intrinsics; 37 using vector::TransferReadOp; 38 using vector::TransferWriteOp; 39 40 // Return a list of Values that correspond to multiple AffineApplyOp, one for 41 // each result of `map`. Each `expr` in `map` is canonicalized and folded 42 // greedily according to its operands. 43 // TODO: factor out in a common location that both linalg and vector can use. 44 static SmallVector<Value, 4> 45 applyMapToValues(OpBuilder &b, Location loc, AffineMap map, ValueRange values) { 46 SmallVector<Value, 4> res; 47 res.reserve(map.getNumResults()); 48 unsigned numDims = map.getNumDims(), numSym = map.getNumSymbols(); 49 // For each `expr` in `map`, applies the `expr` to the values extracted from 50 // ranges. If the resulting application can be folded into a Value, the 51 // folding occurs eagerly. Otherwise, an affine.apply operation is emitted. 52 for (auto expr : map.getResults()) { 53 AffineMap map = AffineMap::get(numDims, numSym, expr); 54 SmallVector<Value, 4> operands(values.begin(), values.end()); 55 fullyComposeAffineMapAndOperands(&map, &operands); 56 canonicalizeMapAndOperands(&map, &operands); 57 res.push_back(b.createOrFold<AffineApplyOp>(loc, map, operands)); 58 } 59 return res; 60 } 61 62 namespace { 63 /// Helper class captures the common information needed to lower N>1-D vector 64 /// transfer operations (read and write). 65 /// On construction, this class opens an edsc::ScopedContext for simpler IR 66 /// manipulation. 67 /// In pseudo-IR, for an n-D vector_transfer_read such as: 68 /// 69 /// ``` 70 /// vector_transfer_read(%m, %offsets, identity_map, %fill) : 71 /// memref<(leading_dims) x (major_dims) x (minor_dims) x type>, 72 /// vector<(major_dims) x (minor_dims) x type> 73 /// ``` 74 /// 75 /// where rank(minor_dims) is the lower-level vector rank (e.g. 1 for LLVM or 76 /// higher). 77 /// 78 /// This is the entry point to emitting pseudo-IR resembling: 79 /// 80 /// ``` 81 /// %tmp = alloc(): memref<(major_dims) x vector<minor_dim x type>> 82 /// for (%ivs_major, {0}, {vector_shape}, {1}) { // (N-1)-D loop nest 83 /// if (any_of(%ivs_major + %offsets, <, major_dims)) { 84 /// %v = vector_transfer_read( 85 /// {%offsets_leading, %ivs_major + %offsets_major, %offsets_minor}, 86 /// %ivs_minor): 87 /// memref<(leading_dims) x (major_dims) x (minor_dims) x type>, 88 /// vector<(minor_dims) x type>; 89 /// store(%v, %tmp); 90 /// } else { 91 /// %v = splat(vector<(minor_dims) x type>, %fill) 92 /// store(%v, %tmp, %ivs_major); 93 /// } 94 /// } 95 /// %res = load(%tmp, %0): memref<(major_dims) x vector<minor_dim x type>>): 96 // vector<(major_dims) x (minor_dims) x type> 97 /// ``` 98 /// 99 template <typename ConcreteOp> 100 class NDTransferOpHelper { 101 public: 102 NDTransferOpHelper(PatternRewriter &rewriter, ConcreteOp xferOp, 103 const VectorTransferToSCFOptions &options) 104 : rewriter(rewriter), options(options), loc(xferOp.getLoc()), 105 scope(std::make_unique<ScopedContext>(rewriter, loc)), xferOp(xferOp), 106 op(xferOp.getOperation()) { 107 vectorType = xferOp.getVectorType(); 108 // TODO: when we go to k > 1-D vectors adapt minorRank. 109 minorRank = 1; 110 majorRank = vectorType.getRank() - minorRank; 111 leadingRank = xferOp.getLeadingShapedRank(); 112 majorVectorType = 113 VectorType::get(vectorType.getShape().take_front(majorRank), 114 vectorType.getElementType()); 115 minorVectorType = 116 VectorType::get(vectorType.getShape().take_back(minorRank), 117 vectorType.getElementType()); 118 /// Memref of minor vector type is used for individual transfers. 119 memRefMinorVectorType = 120 MemRefType::get(majorVectorType.getShape(), minorVectorType, {}, 121 xferOp.getShapedType() 122 .template cast<MemRefType>() 123 .getMemorySpaceAsInt()); 124 } 125 126 LogicalResult doReplace(); 127 128 private: 129 /// Creates the loop nest on the "major" dimensions and calls the 130 /// `loopBodyBuilder` lambda in the context of the loop nest. 131 void 132 emitLoops(llvm::function_ref<void(ValueRange, ValueRange, ValueRange, 133 ValueRange, const MemRefBoundsCapture &)> 134 loopBodyBuilder); 135 136 /// Common state to lower vector transfer ops. 137 PatternRewriter &rewriter; 138 const VectorTransferToSCFOptions &options; 139 Location loc; 140 std::unique_ptr<ScopedContext> scope; 141 ConcreteOp xferOp; 142 Operation *op; 143 // A vector transfer copies data between: 144 // - memref<(leading_dims) x (major_dims) x (minor_dims) x type> 145 // - vector<(major_dims) x (minor_dims) x type> 146 unsigned minorRank; // for now always 1 147 unsigned majorRank; // vector rank - minorRank 148 unsigned leadingRank; // memref rank - vector rank 149 VectorType vectorType; // vector<(major_dims) x (minor_dims) x type> 150 VectorType majorVectorType; // vector<(major_dims) x type> 151 VectorType minorVectorType; // vector<(minor_dims) x type> 152 MemRefType memRefMinorVectorType; // memref<vector<(minor_dims) x type>> 153 }; 154 155 template <typename ConcreteOp> 156 void NDTransferOpHelper<ConcreteOp>::emitLoops( 157 llvm::function_ref<void(ValueRange, ValueRange, ValueRange, ValueRange, 158 const MemRefBoundsCapture &)> 159 loopBodyBuilder) { 160 /// Loop nest operates on the major dimensions 161 MemRefBoundsCapture memrefBoundsCapture(xferOp.source()); 162 163 if (options.unroll) { 164 auto shape = majorVectorType.getShape(); 165 auto strides = computeStrides(shape); 166 unsigned numUnrolledInstances = computeMaxLinearIndex(shape); 167 ValueRange indices(xferOp.indices()); 168 for (unsigned idx = 0; idx < numUnrolledInstances; ++idx) { 169 SmallVector<int64_t, 4> offsets = delinearize(strides, idx); 170 SmallVector<Value, 4> offsetValues = 171 llvm::to_vector<4>(llvm::map_range(offsets, [](int64_t off) -> Value { 172 return std_constant_index(off); 173 })); 174 loopBodyBuilder(offsetValues, indices.take_front(leadingRank), 175 indices.drop_front(leadingRank).take_front(majorRank), 176 indices.take_back(minorRank), memrefBoundsCapture); 177 } 178 } else { 179 VectorBoundsCapture vectorBoundsCapture(majorVectorType); 180 auto majorLbs = vectorBoundsCapture.getLbs(); 181 auto majorUbs = vectorBoundsCapture.getUbs(); 182 auto majorSteps = vectorBoundsCapture.getSteps(); 183 affineLoopNestBuilder( 184 majorLbs, majorUbs, majorSteps, [&](ValueRange majorIvs) { 185 ValueRange indices(xferOp.indices()); 186 loopBodyBuilder(majorIvs, indices.take_front(leadingRank), 187 indices.drop_front(leadingRank).take_front(majorRank), 188 indices.take_back(minorRank), memrefBoundsCapture); 189 }); 190 } 191 } 192 193 static Optional<int64_t> extractConstantIndex(Value v) { 194 if (auto cstOp = v.getDefiningOp<ConstantIndexOp>()) 195 return cstOp.getValue(); 196 if (auto affineApplyOp = v.getDefiningOp<AffineApplyOp>()) 197 if (affineApplyOp.getAffineMap().isSingleConstant()) 198 return affineApplyOp.getAffineMap().getSingleConstantResult(); 199 return None; 200 } 201 202 // Missing foldings of scf.if make it necessary to perform poor man's folding 203 // eagerly, especially in the case of unrolling. In the future, this should go 204 // away once scf.if folds properly. 205 static Value onTheFlyFoldSLT(Value v, Value ub) { 206 using namespace mlir::edsc::op; 207 auto maybeCstV = extractConstantIndex(v); 208 auto maybeCstUb = extractConstantIndex(ub); 209 if (maybeCstV && maybeCstUb && *maybeCstV < *maybeCstUb) 210 return Value(); 211 return slt(v, ub); 212 } 213 214 /// 1. Compute the indexings `majorIvs + majorOffsets` and save them in 215 /// `majorIvsPlusOffsets`. 216 /// 2. Return a value of i1 that determines whether the first 217 /// `majorIvs.rank()` 218 /// dimensions `majorIvs + majorOffsets` are all within `memrefBounds`. 219 static Value 220 emitInBoundsCondition(PatternRewriter &rewriter, 221 VectorTransferOpInterface xferOp, unsigned leadingRank, 222 ValueRange majorIvs, ValueRange majorOffsets, 223 const MemRefBoundsCapture &memrefBounds, 224 SmallVectorImpl<Value> &majorIvsPlusOffsets) { 225 Value inBoundsCondition; 226 majorIvsPlusOffsets.reserve(majorIvs.size()); 227 unsigned idx = 0; 228 SmallVector<Value, 4> bounds = 229 applyMapToValues(rewriter, xferOp.getLoc(), xferOp.permutation_map(), 230 memrefBounds.getUbs()); 231 for (auto it : llvm::zip(majorIvs, majorOffsets, bounds)) { 232 Value iv = std::get<0>(it), off = std::get<1>(it), ub = std::get<2>(it); 233 using namespace mlir::edsc::op; 234 majorIvsPlusOffsets.push_back(iv + off); 235 if (xferOp.isMaskedDim(leadingRank + idx)) { 236 Value inBoundsCond = onTheFlyFoldSLT(majorIvsPlusOffsets.back(), ub); 237 if (inBoundsCond) 238 inBoundsCondition = (inBoundsCondition) 239 ? (inBoundsCondition && inBoundsCond) 240 : inBoundsCond; 241 } 242 ++idx; 243 } 244 return inBoundsCondition; 245 } 246 247 // TODO: Parallelism and threadlocal considerations. 248 static Value setAllocAtFunctionEntry(MemRefType memRefMinorVectorType, 249 Operation *op) { 250 auto &b = ScopedContext::getBuilderRef(); 251 OpBuilder::InsertionGuard guard(b); 252 Operation *scope = 253 op->getParentWithTrait<OpTrait::AutomaticAllocationScope>(); 254 assert(scope && "Expected op to be inside automatic allocation scope"); 255 b.setInsertionPointToStart(&scope->getRegion(0).front()); 256 Value res = memref_alloca(memRefMinorVectorType); 257 return res; 258 } 259 260 template <> 261 LogicalResult NDTransferOpHelper<TransferReadOp>::doReplace() { 262 Value alloc, result; 263 if (options.unroll) 264 result = std_splat(vectorType, xferOp.padding()); 265 else 266 alloc = setAllocAtFunctionEntry(memRefMinorVectorType, op); 267 268 emitLoops([&](ValueRange majorIvs, ValueRange leadingOffsets, 269 ValueRange majorOffsets, ValueRange minorOffsets, 270 const MemRefBoundsCapture &memrefBounds) { 271 /// Lambda to load 1-D vector in the current loop ivs + offset context. 272 auto load1DVector = [&](ValueRange majorIvsPlusOffsets) -> Value { 273 SmallVector<Value, 8> indexing; 274 indexing.reserve(leadingRank + majorRank + minorRank); 275 indexing.append(leadingOffsets.begin(), leadingOffsets.end()); 276 indexing.append(majorIvsPlusOffsets.begin(), majorIvsPlusOffsets.end()); 277 indexing.append(minorOffsets.begin(), minorOffsets.end()); 278 Value memref = xferOp.source(); 279 auto map = 280 getTransferMinorIdentityMap(xferOp.getShapedType(), minorVectorType); 281 ArrayAttr masked; 282 if (!xferOp.isMaskedDim(xferOp.getVectorType().getRank() - 1)) { 283 OpBuilder &b = ScopedContext::getBuilderRef(); 284 masked = b.getBoolArrayAttr({false}); 285 } 286 return vector_transfer_read(minorVectorType, memref, indexing, 287 AffineMapAttr::get(map), xferOp.padding(), 288 masked); 289 }; 290 291 // 1. Compute the inBoundsCondition in the current loops ivs + offset 292 // context. 293 SmallVector<Value, 4> majorIvsPlusOffsets; 294 Value inBoundsCondition = emitInBoundsCondition( 295 rewriter, cast<VectorTransferOpInterface>(xferOp.getOperation()), 296 leadingRank, majorIvs, majorOffsets, memrefBounds, majorIvsPlusOffsets); 297 298 if (inBoundsCondition) { 299 // 2. If the condition is not null, we need an IfOp, which may yield 300 // if `options.unroll` is true. 301 SmallVector<Type, 1> resultType; 302 if (options.unroll) 303 resultType.push_back(vectorType); 304 305 // 3. If in-bounds, progressively lower to a 1-D transfer read, otherwise 306 // splat a 1-D vector. 307 ValueRange ifResults = conditionBuilder( 308 resultType, inBoundsCondition, 309 [&]() -> scf::ValueVector { 310 Value vector = load1DVector(majorIvsPlusOffsets); 311 // 3.a. If `options.unroll` is true, insert the 1-D vector in the 312 // aggregate. We must yield and merge with the `else` branch. 313 if (options.unroll) { 314 vector = vector_insert(vector, result, majorIvs); 315 return {vector}; 316 } 317 // 3.b. Otherwise, just go through the temporary `alloc`. 318 memref_store(vector, alloc, majorIvs); 319 return {}; 320 }, 321 [&]() -> scf::ValueVector { 322 Value vector = std_splat(minorVectorType, xferOp.padding()); 323 // 3.c. If `options.unroll` is true, insert the 1-D vector in the 324 // aggregate. We must yield and merge with the `then` branch. 325 if (options.unroll) { 326 vector = vector_insert(vector, result, majorIvs); 327 return {vector}; 328 } 329 // 3.d. Otherwise, just go through the temporary `alloc`. 330 memref_store(vector, alloc, majorIvs); 331 return {}; 332 }); 333 334 if (!resultType.empty()) 335 result = *ifResults.begin(); 336 } else { 337 // 4. Guaranteed in-bounds, progressively lower to a 1-D transfer read. 338 Value loaded1D = load1DVector(majorIvsPlusOffsets); 339 // 5.a. If `options.unroll` is true, insert the 1-D vector in the 340 // aggregate. 341 if (options.unroll) 342 result = vector_insert(loaded1D, result, majorIvs); 343 // 5.b. Otherwise, just go through the temporary `alloc`. 344 else 345 memref_store(loaded1D, alloc, majorIvs); 346 } 347 }); 348 349 assert((!options.unroll ^ (bool)result) && 350 "Expected resulting Value iff unroll"); 351 if (!result) 352 result = 353 memref_load(vector_type_cast(MemRefType::get({}, vectorType), alloc)); 354 rewriter.replaceOp(op, result); 355 356 return success(); 357 } 358 359 template <> 360 LogicalResult NDTransferOpHelper<TransferWriteOp>::doReplace() { 361 Value alloc; 362 if (!options.unroll) { 363 alloc = setAllocAtFunctionEntry(memRefMinorVectorType, op); 364 memref_store(xferOp.vector(), 365 vector_type_cast(MemRefType::get({}, vectorType), alloc)); 366 } 367 368 emitLoops([&](ValueRange majorIvs, ValueRange leadingOffsets, 369 ValueRange majorOffsets, ValueRange minorOffsets, 370 const MemRefBoundsCapture &memrefBounds) { 371 // Lower to 1-D vector_transfer_write and let recursion handle it. 372 auto emitTransferWrite = [&](ValueRange majorIvsPlusOffsets) { 373 SmallVector<Value, 8> indexing; 374 indexing.reserve(leadingRank + majorRank + minorRank); 375 indexing.append(leadingOffsets.begin(), leadingOffsets.end()); 376 indexing.append(majorIvsPlusOffsets.begin(), majorIvsPlusOffsets.end()); 377 indexing.append(minorOffsets.begin(), minorOffsets.end()); 378 Value result; 379 // If `options.unroll` is true, extract the 1-D vector from the 380 // aggregate. 381 if (options.unroll) 382 result = vector_extract(xferOp.vector(), majorIvs); 383 else 384 result = memref_load(alloc, majorIvs); 385 auto map = 386 getTransferMinorIdentityMap(xferOp.getShapedType(), minorVectorType); 387 ArrayAttr masked; 388 if (!xferOp.isMaskedDim(xferOp.getVectorType().getRank() - 1)) { 389 OpBuilder &b = ScopedContext::getBuilderRef(); 390 masked = b.getBoolArrayAttr({false}); 391 } 392 vector_transfer_write(result, xferOp.source(), indexing, 393 AffineMapAttr::get(map), masked); 394 }; 395 396 // 1. Compute the inBoundsCondition in the current loops ivs + offset 397 // context. 398 SmallVector<Value, 4> majorIvsPlusOffsets; 399 Value inBoundsCondition = emitInBoundsCondition( 400 rewriter, cast<VectorTransferOpInterface>(xferOp.getOperation()), 401 leadingRank, majorIvs, majorOffsets, memrefBounds, majorIvsPlusOffsets); 402 403 if (inBoundsCondition) { 404 // 2.a. If the condition is not null, we need an IfOp, to write 405 // conditionally. Progressively lower to a 1-D transfer write. 406 conditionBuilder(inBoundsCondition, 407 [&] { emitTransferWrite(majorIvsPlusOffsets); }); 408 } else { 409 // 2.b. Guaranteed in-bounds. Progressively lower to a 1-D transfer write. 410 emitTransferWrite(majorIvsPlusOffsets); 411 } 412 }); 413 414 rewriter.eraseOp(op); 415 416 return success(); 417 } 418 419 } // namespace 420 421 /// Analyzes the `transfer` to find an access dimension along the fastest remote 422 /// MemRef dimension. If such a dimension with coalescing properties is found, 423 /// `pivs` and `vectorBoundsCapture` are swapped so that the invocation of 424 /// LoopNestBuilder captures it in the innermost loop. 425 template <typename TransferOpTy> 426 static int computeCoalescedIndex(TransferOpTy transfer) { 427 // rank of the remote memory access, coalescing behavior occurs on the 428 // innermost memory dimension. 429 auto remoteRank = transfer.getShapedType().getRank(); 430 // Iterate over the results expressions of the permutation map to determine 431 // the loop order for creating pointwise copies between remote and local 432 // memories. 433 int coalescedIdx = -1; 434 auto exprs = transfer.permutation_map().getResults(); 435 for (auto en : llvm::enumerate(exprs)) { 436 auto dim = en.value().template dyn_cast<AffineDimExpr>(); 437 if (!dim) { 438 continue; 439 } 440 auto memRefDim = dim.getPosition(); 441 if (memRefDim == remoteRank - 1) { 442 // memRefDim has coalescing properties, it should be swapped in the last 443 // position. 444 assert(coalescedIdx == -1 && "Unexpected > 1 coalesced indices"); 445 coalescedIdx = en.index(); 446 } 447 } 448 return coalescedIdx; 449 } 450 451 template <typename TransferOpTy> 452 VectorTransferRewriter<TransferOpTy>::VectorTransferRewriter( 453 VectorTransferToSCFOptions options, MLIRContext *context) 454 : RewritePattern(TransferOpTy::getOperationName(), 1, context), 455 options(options) {} 456 457 /// Used for staging the transfer in a local buffer. 458 template <typename TransferOpTy> 459 MemRefType VectorTransferRewriter<TransferOpTy>::tmpMemRefType( 460 TransferOpTy transfer) const { 461 auto vectorType = transfer.getVectorType(); 462 return MemRefType::get(vectorType.getShape().drop_back(), 463 VectorType::get(vectorType.getShape().take_back(), 464 vectorType.getElementType()), 465 {}, 0); 466 } 467 468 static void emitWithBoundsChecks( 469 PatternRewriter &rewriter, VectorTransferOpInterface transfer, 470 ValueRange ivs, const MemRefBoundsCapture &memRefBoundsCapture, 471 function_ref<void(ArrayRef<Value>)> inBoundsFun, 472 function_ref<void(ArrayRef<Value>)> outOfBoundsFun = nullptr) { 473 // Permute the incoming indices according to the permutation map. 474 SmallVector<Value, 4> indices = 475 applyMapToValues(rewriter, transfer.getLoc(), transfer.permutation_map(), 476 transfer.indices()); 477 478 // Generate a bounds check if necessary. 479 SmallVector<Value, 4> majorIvsPlusOffsets; 480 Value inBoundsCondition = 481 emitInBoundsCondition(rewriter, transfer, 0, ivs, indices, 482 memRefBoundsCapture, majorIvsPlusOffsets); 483 484 // Apply the permutation map to the ivs. The permutation map may not use all 485 // the inputs. 486 SmallVector<Value, 4> scalarAccessExprs(transfer.indices().size()); 487 for (unsigned memRefDim = 0; memRefDim < transfer.indices().size(); 488 ++memRefDim) { 489 // Linear search on a small number of entries. 490 int loopIndex = -1; 491 auto exprs = transfer.permutation_map().getResults(); 492 for (auto en : llvm::enumerate(exprs)) { 493 auto expr = en.value(); 494 auto dim = expr.dyn_cast<AffineDimExpr>(); 495 // Sanity check. 496 assert((dim || expr.cast<AffineConstantExpr>().getValue() == 0) && 497 "Expected dim or 0 in permutationMap"); 498 if (dim && memRefDim == dim.getPosition()) { 499 loopIndex = en.index(); 500 break; 501 } 502 } 503 504 using namespace edsc::op; 505 auto i = transfer.indices()[memRefDim]; 506 scalarAccessExprs[memRefDim] = loopIndex < 0 ? i : i + ivs[loopIndex]; 507 } 508 509 if (inBoundsCondition) 510 conditionBuilder( 511 /* scf.if */ inBoundsCondition, // { 512 [&] { inBoundsFun(scalarAccessExprs); }, 513 // } else { 514 outOfBoundsFun ? [&] { outOfBoundsFun(scalarAccessExprs); } 515 : function_ref<void()>() 516 // } 517 ); 518 else 519 inBoundsFun(scalarAccessExprs); 520 } 521 522 namespace mlir { 523 524 /// Lowers TransferReadOp into a combination of: 525 /// 1. local memory allocation; 526 /// 2. perfect loop nest over: 527 /// a. scalar load from local buffers (viewed as a scalar memref); 528 /// a. scalar store to original memref (with padding). 529 /// 3. vector_load from local buffer (viewed as a memref<1 x vector>); 530 /// 4. local memory deallocation. 531 /// 532 /// Lowers the data transfer part of a TransferReadOp while ensuring no 533 /// out-of-bounds accesses are possible. Out-of-bounds behavior is handled by 534 /// padding. 535 536 /// Performs the rewrite. 537 template <> 538 LogicalResult VectorTransferRewriter<TransferReadOp>::matchAndRewrite( 539 Operation *op, PatternRewriter &rewriter) const { 540 using namespace mlir::edsc::op; 541 542 TransferReadOp transfer = cast<TransferReadOp>(op); 543 auto memRefType = transfer.getShapedType().dyn_cast<MemRefType>(); 544 if (!memRefType) 545 return failure(); 546 // Fall back to a loop if the fastest varying stride is not 1 or it is 547 // permuted. 548 int64_t offset; 549 SmallVector<int64_t, 4> strides; 550 auto successStrides = getStridesAndOffset(memRefType, strides, offset); 551 if (succeeded(successStrides) && strides.back() == 1 && 552 transfer.permutation_map().isMinorIdentity()) { 553 // If > 1D, emit a bunch of loops around 1-D vector transfers. 554 if (transfer.getVectorType().getRank() > 1) 555 return NDTransferOpHelper<TransferReadOp>(rewriter, transfer, options) 556 .doReplace(); 557 // If 1-D this is now handled by the target-specific lowering. 558 if (transfer.getVectorType().getRank() == 1) 559 return failure(); 560 } 561 562 // Conservative lowering to scalar load / stores. 563 // 1. Setup all the captures. 564 ScopedContext scope(rewriter, transfer.getLoc()); 565 MemRefIndexedValue remote(transfer.source()); 566 MemRefBoundsCapture memRefBoundsCapture(transfer.source()); 567 VectorBoundsCapture vectorBoundsCapture(transfer.vector()); 568 int coalescedIdx = computeCoalescedIndex(transfer); 569 // Swap the vectorBoundsCapture which will reorder loop bounds. 570 if (coalescedIdx >= 0) 571 vectorBoundsCapture.swapRanges(vectorBoundsCapture.rank() - 1, 572 coalescedIdx); 573 574 auto lbs = vectorBoundsCapture.getLbs(); 575 auto ubs = vectorBoundsCapture.getUbs(); 576 SmallVector<Value, 8> steps; 577 steps.reserve(vectorBoundsCapture.getSteps().size()); 578 for (auto step : vectorBoundsCapture.getSteps()) 579 steps.push_back(std_constant_index(step)); 580 581 // 2. Emit alloc-copy-load-dealloc. 582 MLIRContext *ctx = op->getContext(); 583 Value tmp = setAllocAtFunctionEntry(tmpMemRefType(transfer), transfer); 584 MemRefIndexedValue local(tmp); 585 loopNestBuilder(lbs, ubs, steps, [&](ValueRange loopIvs) { 586 auto ivsStorage = llvm::to_vector<8>(loopIvs); 587 // Swap the ivs which will reorder memory accesses. 588 if (coalescedIdx >= 0) 589 std::swap(ivsStorage.back(), ivsStorage[coalescedIdx]); 590 591 ArrayRef<Value> ivs(ivsStorage); 592 Value pos = std_index_cast(IntegerType::get(ctx, 32), ivs.back()); 593 Value inVector = local(ivs.drop_back()); 594 auto loadValue = [&](ArrayRef<Value> indices) { 595 Value vector = vector_insert_element(remote(indices), inVector, pos); 596 local(ivs.drop_back()) = vector; 597 }; 598 auto loadPadding = [&](ArrayRef<Value>) { 599 Value vector = vector_insert_element(transfer.padding(), inVector, pos); 600 local(ivs.drop_back()) = vector; 601 }; 602 emitWithBoundsChecks( 603 rewriter, cast<VectorTransferOpInterface>(transfer.getOperation()), ivs, 604 memRefBoundsCapture, loadValue, loadPadding); 605 }); 606 Value vectorValue = memref_load(vector_type_cast(tmp)); 607 608 // 3. Propagate. 609 rewriter.replaceOp(op, vectorValue); 610 return success(); 611 } 612 613 /// Lowers TransferWriteOp into a combination of: 614 /// 1. local memory allocation; 615 /// 2. vector_store to local buffer (viewed as a memref<1 x vector>); 616 /// 3. perfect loop nest over: 617 /// a. scalar load from local buffers (viewed as a scalar memref); 618 /// a. scalar store to original memref (if in bounds). 619 /// 4. local memory deallocation. 620 /// 621 /// More specifically, lowers the data transfer part while ensuring no 622 /// out-of-bounds accesses are possible. 623 template <> 624 LogicalResult VectorTransferRewriter<TransferWriteOp>::matchAndRewrite( 625 Operation *op, PatternRewriter &rewriter) const { 626 using namespace edsc::op; 627 628 TransferWriteOp transfer = cast<TransferWriteOp>(op); 629 auto memRefType = transfer.getShapedType().template dyn_cast<MemRefType>(); 630 if (!memRefType) 631 return failure(); 632 633 // Fall back to a loop if the fastest varying stride is not 1 or it is 634 // permuted. 635 int64_t offset; 636 SmallVector<int64_t, 4> strides; 637 auto successStrides = getStridesAndOffset(memRefType, strides, offset); 638 if (succeeded(successStrides) && strides.back() == 1 && 639 transfer.permutation_map().isMinorIdentity()) { 640 // If > 1D, emit a bunch of loops around 1-D vector transfers. 641 if (transfer.getVectorType().getRank() > 1) 642 return NDTransferOpHelper<TransferWriteOp>(rewriter, transfer, options) 643 .doReplace(); 644 // If 1-D this is now handled by the target-specific lowering. 645 if (transfer.getVectorType().getRank() == 1) 646 return failure(); 647 } 648 649 // 1. Setup all the captures. 650 ScopedContext scope(rewriter, transfer.getLoc()); 651 MemRefIndexedValue remote(transfer.source()); 652 MemRefBoundsCapture memRefBoundsCapture(transfer.source()); 653 Value vectorValue(transfer.vector()); 654 VectorBoundsCapture vectorBoundsCapture(transfer.vector()); 655 int coalescedIdx = computeCoalescedIndex(transfer); 656 // Swap the vectorBoundsCapture which will reorder loop bounds. 657 if (coalescedIdx >= 0) 658 vectorBoundsCapture.swapRanges(vectorBoundsCapture.rank() - 1, 659 coalescedIdx); 660 661 auto lbs = vectorBoundsCapture.getLbs(); 662 auto ubs = vectorBoundsCapture.getUbs(); 663 SmallVector<Value, 8> steps; 664 steps.reserve(vectorBoundsCapture.getSteps().size()); 665 for (auto step : vectorBoundsCapture.getSteps()) 666 steps.push_back(std_constant_index(step)); 667 668 // 2. Emit alloc-store-copy-dealloc. 669 Value tmp = setAllocAtFunctionEntry(tmpMemRefType(transfer), transfer); 670 MemRefIndexedValue local(tmp); 671 Value vec = vector_type_cast(tmp); 672 memref_store(vectorValue, vec); 673 loopNestBuilder(lbs, ubs, steps, [&](ValueRange loopIvs) { 674 auto ivsStorage = llvm::to_vector<8>(loopIvs); 675 // Swap the ivsStorage which will reorder memory accesses. 676 if (coalescedIdx >= 0) 677 std::swap(ivsStorage.back(), ivsStorage[coalescedIdx]); 678 679 ArrayRef<Value> ivs(ivsStorage); 680 Value pos = 681 std_index_cast(IntegerType::get(op->getContext(), 32), ivs.back()); 682 auto storeValue = [&](ArrayRef<Value> indices) { 683 Value scalar = vector_extract_element(local(ivs.drop_back()), pos); 684 remote(indices) = scalar; 685 }; 686 emitWithBoundsChecks( 687 rewriter, cast<VectorTransferOpInterface>(transfer.getOperation()), ivs, 688 memRefBoundsCapture, storeValue); 689 }); 690 691 // 3. Erase. 692 rewriter.eraseOp(op); 693 return success(); 694 } 695 696 void populateVectorToSCFConversionPatterns( 697 OwningRewritePatternList &patterns, MLIRContext *context, 698 const VectorTransferToSCFOptions &options) { 699 patterns.insert<VectorTransferRewriter<vector::TransferReadOp>, 700 VectorTransferRewriter<vector::TransferWriteOp>>(options, 701 context); 702 } 703 704 } // namespace mlir 705 706 namespace { 707 708 struct ConvertVectorToSCFPass 709 : public ConvertVectorToSCFBase<ConvertVectorToSCFPass> { 710 ConvertVectorToSCFPass() = default; 711 ConvertVectorToSCFPass(const VectorTransferToSCFOptions &options) { 712 this->fullUnroll = options.unroll; 713 } 714 715 void runOnFunction() override { 716 OwningRewritePatternList patterns; 717 auto *context = getFunction().getContext(); 718 populateVectorToSCFConversionPatterns( 719 patterns, context, VectorTransferToSCFOptions().setUnroll(fullUnroll)); 720 (void)applyPatternsAndFoldGreedily(getFunction(), std::move(patterns)); 721 } 722 }; 723 724 } // namespace 725 726 std::unique_ptr<Pass> 727 mlir::createConvertVectorToSCFPass(const VectorTransferToSCFOptions &options) { 728 return std::make_unique<ConvertVectorToSCFPass>(options); 729 } 730