1 //===- VectorToSCF.cpp - Conversion from Vector to mix of SCF and Std -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements target-dependent lowering of vector transfer operations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <type_traits> 14 15 #include "mlir/Conversion/VectorToSCF/VectorToSCF.h" 16 17 #include "../PassDetail.h" 18 #include "mlir/Dialect/Affine/EDSC/Intrinsics.h" 19 #include "mlir/Dialect/Linalg/Utils/Utils.h" 20 #include "mlir/Dialect/SCF/EDSC/Builders.h" 21 #include "mlir/Dialect/SCF/EDSC/Intrinsics.h" 22 #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h" 23 #include "mlir/Dialect/Vector/EDSC/Intrinsics.h" 24 #include "mlir/Dialect/Vector/VectorOps.h" 25 #include "mlir/Dialect/Vector/VectorUtils.h" 26 #include "mlir/IR/AffineExpr.h" 27 #include "mlir/IR/AffineMap.h" 28 #include "mlir/IR/Attributes.h" 29 #include "mlir/IR/Builders.h" 30 #include "mlir/IR/Location.h" 31 #include "mlir/IR/Matchers.h" 32 #include "mlir/IR/OperationSupport.h" 33 #include "mlir/IR/PatternMatch.h" 34 #include "mlir/IR/Types.h" 35 #include "mlir/Pass/Pass.h" 36 #include "mlir/Transforms/Passes.h" 37 38 using namespace mlir; 39 using namespace mlir::edsc; 40 using namespace mlir::edsc::intrinsics; 41 using vector::TransferReadOp; 42 using vector::TransferWriteOp; 43 44 namespace { 45 /// Helper class captures the common information needed to lower N>1-D vector 46 /// transfer operations (read and write). 47 /// On construction, this class opens an edsc::ScopedContext for simpler IR 48 /// manipulation. 49 /// In pseudo-IR, for an n-D vector_transfer_read such as: 50 /// 51 /// ``` 52 /// vector_transfer_read(%m, %offsets, identity_map, %fill) : 53 /// memref<(leading_dims) x (major_dims) x (minor_dims) x type>, 54 /// vector<(major_dims) x (minor_dims) x type> 55 /// ``` 56 /// 57 /// where rank(minor_dims) is the lower-level vector rank (e.g. 1 for LLVM or 58 /// higher). 59 /// 60 /// This is the entry point to emitting pseudo-IR resembling: 61 /// 62 /// ``` 63 /// %tmp = alloc(): memref<(major_dims) x vector<minor_dim x type>> 64 /// for (%ivs_major, {0}, {vector_shape}, {1}) { // (N-1)-D loop nest 65 /// if (any_of(%ivs_major + %offsets, <, major_dims)) { 66 /// %v = vector_transfer_read( 67 /// {%offsets_leading, %ivs_major + %offsets_major, %offsets_minor}, 68 /// %ivs_minor): 69 /// memref<(leading_dims) x (major_dims) x (minor_dims) x type>, 70 /// vector<(minor_dims) x type>; 71 /// store(%v, %tmp); 72 /// } else { 73 /// %v = splat(vector<(minor_dims) x type>, %fill) 74 /// store(%v, %tmp, %ivs_major); 75 /// } 76 /// } 77 /// %res = load(%tmp, %0): memref<(major_dims) x vector<minor_dim x type>>): 78 // vector<(major_dims) x (minor_dims) x type> 79 /// ``` 80 /// 81 template <typename ConcreteOp> 82 class NDTransferOpHelper { 83 public: 84 NDTransferOpHelper(PatternRewriter &rewriter, ConcreteOp xferOp, 85 const VectorTransferToSCFOptions &options) 86 : rewriter(rewriter), options(options), loc(xferOp.getLoc()), 87 scope(std::make_unique<ScopedContext>(rewriter, loc)), xferOp(xferOp), 88 op(xferOp.getOperation()) { 89 vectorType = xferOp.getVectorType(); 90 // TODO: when we go to k > 1-D vectors adapt minorRank. 91 minorRank = 1; 92 majorRank = vectorType.getRank() - minorRank; 93 leadingRank = xferOp.getLeadingMemRefRank(); 94 majorVectorType = 95 VectorType::get(vectorType.getShape().take_front(majorRank), 96 vectorType.getElementType()); 97 minorVectorType = 98 VectorType::get(vectorType.getShape().take_back(minorRank), 99 vectorType.getElementType()); 100 /// Memref of minor vector type is used for individual transfers. 101 memRefMinorVectorType = 102 MemRefType::get(majorVectorType.getShape(), minorVectorType, {}, 103 xferOp.getMemRefType().getMemorySpace()); 104 } 105 106 LogicalResult doReplace(); 107 108 private: 109 /// Creates the loop nest on the "major" dimensions and calls the 110 /// `loopBodyBuilder` lambda in the context of the loop nest. 111 void 112 emitLoops(llvm::function_ref<void(ValueRange, ValueRange, ValueRange, 113 ValueRange, const MemRefBoundsCapture &)> 114 loopBodyBuilder); 115 116 /// Common state to lower vector transfer ops. 117 PatternRewriter &rewriter; 118 const VectorTransferToSCFOptions &options; 119 Location loc; 120 std::unique_ptr<ScopedContext> scope; 121 ConcreteOp xferOp; 122 Operation *op; 123 // A vector transfer copies data between: 124 // - memref<(leading_dims) x (major_dims) x (minor_dims) x type> 125 // - vector<(major_dims) x (minor_dims) x type> 126 unsigned minorRank; // for now always 1 127 unsigned majorRank; // vector rank - minorRank 128 unsigned leadingRank; // memref rank - vector rank 129 VectorType vectorType; // vector<(major_dims) x (minor_dims) x type> 130 VectorType majorVectorType; // vector<(major_dims) x type> 131 VectorType minorVectorType; // vector<(minor_dims) x type> 132 MemRefType memRefMinorVectorType; // memref<vector<(minor_dims) x type>> 133 }; 134 135 template <typename ConcreteOp> 136 void NDTransferOpHelper<ConcreteOp>::emitLoops( 137 llvm::function_ref<void(ValueRange, ValueRange, ValueRange, ValueRange, 138 const MemRefBoundsCapture &)> 139 loopBodyBuilder) { 140 /// Loop nest operates on the major dimensions 141 MemRefBoundsCapture memrefBoundsCapture(xferOp.memref()); 142 143 if (options.unroll) { 144 auto shape = majorVectorType.getShape(); 145 auto strides = computeStrides(shape); 146 unsigned numUnrolledInstances = computeMaxLinearIndex(shape); 147 ValueRange indices(xferOp.indices()); 148 for (unsigned idx = 0; idx < numUnrolledInstances; ++idx) { 149 SmallVector<int64_t, 4> offsets = delinearize(strides, idx); 150 SmallVector<Value, 4> offsetValues = 151 llvm::to_vector<4>(llvm::map_range(offsets, [](int64_t off) -> Value { 152 return std_constant_index(off); 153 })); 154 loopBodyBuilder(offsetValues, indices.take_front(leadingRank), 155 indices.drop_front(leadingRank).take_front(majorRank), 156 indices.take_back(minorRank), memrefBoundsCapture); 157 } 158 } else { 159 VectorBoundsCapture vectorBoundsCapture(majorVectorType); 160 auto majorLbs = vectorBoundsCapture.getLbs(); 161 auto majorUbs = vectorBoundsCapture.getUbs(); 162 auto majorSteps = vectorBoundsCapture.getSteps(); 163 affineLoopNestBuilder( 164 majorLbs, majorUbs, majorSteps, [&](ValueRange majorIvs) { 165 ValueRange indices(xferOp.indices()); 166 loopBodyBuilder(majorIvs, indices.take_front(leadingRank), 167 indices.drop_front(leadingRank).take_front(majorRank), 168 indices.take_back(minorRank), memrefBoundsCapture); 169 }); 170 } 171 } 172 173 static Optional<int64_t> extractConstantIndex(Value v) { 174 if (auto cstOp = v.getDefiningOp<ConstantIndexOp>()) 175 return cstOp.getValue(); 176 if (auto affineApplyOp = v.getDefiningOp<AffineApplyOp>()) 177 if (affineApplyOp.getAffineMap().isSingleConstant()) 178 return affineApplyOp.getAffineMap().getSingleConstantResult(); 179 return None; 180 } 181 182 // Missing foldings of scf.if make it necessary to perform poor man's folding 183 // eagerly, especially in the case of unrolling. In the future, this should go 184 // away once scf.if folds properly. 185 static Value onTheFlyFoldSLT(Value v, Value ub) { 186 using namespace mlir::edsc::op; 187 auto maybeCstV = extractConstantIndex(v); 188 auto maybeCstUb = extractConstantIndex(ub); 189 if (maybeCstV && maybeCstUb && *maybeCstV < *maybeCstUb) 190 return Value(); 191 return slt(v, ub); 192 } 193 194 /// 1. Compute the indexings `majorIvs + majorOffsets` and save them in 195 /// `majorIvsPlusOffsets`. 196 /// 2. Return a value of i1 that determines whether the first `majorIvs.rank()` 197 /// dimensions `majorIvs + majorOffsets` are all within `memrefBounds`. 198 static Value 199 emitInBoundsCondition(PatternRewriter &rewriter, 200 VectorTransferOpInterface xferOp, unsigned leadingRank, 201 ValueRange majorIvs, ValueRange majorOffsets, 202 const MemRefBoundsCapture &memrefBounds, 203 SmallVectorImpl<Value> &majorIvsPlusOffsets) { 204 Value inBoundsCondition; 205 majorIvsPlusOffsets.reserve(majorIvs.size()); 206 unsigned idx = 0; 207 SmallVector<Value, 4> bounds = 208 linalg::applyMapToValues(rewriter, xferOp.getLoc(), 209 xferOp.permutation_map(), memrefBounds.getUbs()); 210 for (auto it : llvm::zip(majorIvs, majorOffsets, bounds)) { 211 Value iv = std::get<0>(it), off = std::get<1>(it), ub = std::get<2>(it); 212 using namespace mlir::edsc::op; 213 majorIvsPlusOffsets.push_back(iv + off); 214 if (xferOp.isMaskedDim(leadingRank + idx)) { 215 Value inBoundsCond = onTheFlyFoldSLT(majorIvsPlusOffsets.back(), ub); 216 if (inBoundsCond) 217 inBoundsCondition = (inBoundsCondition) 218 ? (inBoundsCondition && inBoundsCond) 219 : inBoundsCond; 220 } 221 ++idx; 222 } 223 return inBoundsCondition; 224 } 225 226 // TODO: Parallelism and threadlocal considerations. 227 static Value setAllocAtFunctionEntry(MemRefType memRefMinorVectorType, 228 Operation *op) { 229 auto &b = ScopedContext::getBuilderRef(); 230 OpBuilder::InsertionGuard guard(b); 231 Operation *scope = 232 op->getParentWithTrait<OpTrait::AutomaticAllocationScope>(); 233 assert(scope && "Expected op to be inside automatic allocation scope"); 234 b.setInsertionPointToStart(&scope->getRegion(0).front()); 235 Value res = std_alloca(memRefMinorVectorType); 236 return res; 237 } 238 239 template <> 240 LogicalResult NDTransferOpHelper<TransferReadOp>::doReplace() { 241 Value alloc, result; 242 if (options.unroll) 243 result = std_splat(vectorType, xferOp.padding()); 244 else 245 alloc = setAllocAtFunctionEntry(memRefMinorVectorType, op); 246 247 emitLoops([&](ValueRange majorIvs, ValueRange leadingOffsets, 248 ValueRange majorOffsets, ValueRange minorOffsets, 249 const MemRefBoundsCapture &memrefBounds) { 250 /// Lambda to load 1-D vector in the current loop ivs + offset context. 251 auto load1DVector = [&](ValueRange majorIvsPlusOffsets) -> Value { 252 SmallVector<Value, 8> indexing; 253 indexing.reserve(leadingRank + majorRank + minorRank); 254 indexing.append(leadingOffsets.begin(), leadingOffsets.end()); 255 indexing.append(majorIvsPlusOffsets.begin(), majorIvsPlusOffsets.end()); 256 indexing.append(minorOffsets.begin(), minorOffsets.end()); 257 Value memref = xferOp.memref(); 258 auto map = 259 getTransferMinorIdentityMap(xferOp.getMemRefType(), minorVectorType); 260 ArrayAttr masked; 261 if (!xferOp.isMaskedDim(xferOp.getVectorType().getRank() - 1)) { 262 OpBuilder &b = ScopedContext::getBuilderRef(); 263 masked = b.getBoolArrayAttr({false}); 264 } 265 return vector_transfer_read(minorVectorType, memref, indexing, 266 AffineMapAttr::get(map), xferOp.padding(), 267 masked); 268 }; 269 270 // 1. Compute the inBoundsCondition in the current loops ivs + offset 271 // context. 272 SmallVector<Value, 4> majorIvsPlusOffsets; 273 Value inBoundsCondition = emitInBoundsCondition( 274 rewriter, cast<VectorTransferOpInterface>(xferOp.getOperation()), 275 leadingRank, majorIvs, majorOffsets, memrefBounds, majorIvsPlusOffsets); 276 277 if (inBoundsCondition) { 278 // 2. If the condition is not null, we need an IfOp, which may yield 279 // if `options.unroll` is true. 280 SmallVector<Type, 1> resultType; 281 if (options.unroll) 282 resultType.push_back(vectorType); 283 284 // 3. If in-bounds, progressively lower to a 1-D transfer read, otherwise 285 // splat a 1-D vector. 286 ValueRange ifResults = conditionBuilder( 287 resultType, inBoundsCondition, 288 [&]() -> scf::ValueVector { 289 Value vector = load1DVector(majorIvsPlusOffsets); 290 // 3.a. If `options.unroll` is true, insert the 1-D vector in the 291 // aggregate. We must yield and merge with the `else` branch. 292 if (options.unroll) { 293 vector = vector_insert(vector, result, majorIvs); 294 return {vector}; 295 } 296 // 3.b. Otherwise, just go through the temporary `alloc`. 297 std_store(vector, alloc, majorIvs); 298 return {}; 299 }, 300 [&]() -> scf::ValueVector { 301 Value vector = std_splat(minorVectorType, xferOp.padding()); 302 // 3.c. If `options.unroll` is true, insert the 1-D vector in the 303 // aggregate. We must yield and merge with the `then` branch. 304 if (options.unroll) { 305 vector = vector_insert(vector, result, majorIvs); 306 return {vector}; 307 } 308 // 3.d. Otherwise, just go through the temporary `alloc`. 309 std_store(vector, alloc, majorIvs); 310 return {}; 311 }); 312 313 if (!resultType.empty()) 314 result = *ifResults.begin(); 315 } else { 316 // 4. Guaranteed in-bounds, progressively lower to a 1-D transfer read. 317 Value loaded1D = load1DVector(majorIvsPlusOffsets); 318 // 5.a. If `options.unroll` is true, insert the 1-D vector in the 319 // aggregate. 320 if (options.unroll) 321 result = vector_insert(loaded1D, result, majorIvs); 322 // 5.b. Otherwise, just go through the temporary `alloc`. 323 else 324 std_store(loaded1D, alloc, majorIvs); 325 } 326 }); 327 328 assert((!options.unroll ^ (bool)result) && 329 "Expected resulting Value iff unroll"); 330 if (!result) 331 result = std_load(vector_type_cast(MemRefType::get({}, vectorType), alloc)); 332 rewriter.replaceOp(op, result); 333 334 return success(); 335 } 336 337 template <> 338 LogicalResult NDTransferOpHelper<TransferWriteOp>::doReplace() { 339 Value alloc; 340 if (!options.unroll) { 341 alloc = setAllocAtFunctionEntry(memRefMinorVectorType, op); 342 std_store(xferOp.vector(), 343 vector_type_cast(MemRefType::get({}, vectorType), alloc)); 344 } 345 346 emitLoops([&](ValueRange majorIvs, ValueRange leadingOffsets, 347 ValueRange majorOffsets, ValueRange minorOffsets, 348 const MemRefBoundsCapture &memrefBounds) { 349 // Lower to 1-D vector_transfer_write and let recursion handle it. 350 auto emitTransferWrite = [&](ValueRange majorIvsPlusOffsets) { 351 SmallVector<Value, 8> indexing; 352 indexing.reserve(leadingRank + majorRank + minorRank); 353 indexing.append(leadingOffsets.begin(), leadingOffsets.end()); 354 indexing.append(majorIvsPlusOffsets.begin(), majorIvsPlusOffsets.end()); 355 indexing.append(minorOffsets.begin(), minorOffsets.end()); 356 Value result; 357 // If `options.unroll` is true, extract the 1-D vector from the 358 // aggregate. 359 if (options.unroll) 360 result = vector_extract(xferOp.vector(), majorIvs); 361 else 362 result = std_load(alloc, majorIvs); 363 auto map = 364 getTransferMinorIdentityMap(xferOp.getMemRefType(), minorVectorType); 365 ArrayAttr masked; 366 if (!xferOp.isMaskedDim(xferOp.getVectorType().getRank() - 1)) { 367 OpBuilder &b = ScopedContext::getBuilderRef(); 368 masked = b.getBoolArrayAttr({false}); 369 } 370 vector_transfer_write(result, xferOp.memref(), indexing, 371 AffineMapAttr::get(map), masked); 372 }; 373 374 // 1. Compute the inBoundsCondition in the current loops ivs + offset 375 // context. 376 SmallVector<Value, 4> majorIvsPlusOffsets; 377 Value inBoundsCondition = emitInBoundsCondition( 378 rewriter, cast<VectorTransferOpInterface>(xferOp.getOperation()), 379 leadingRank, majorIvs, majorOffsets, memrefBounds, majorIvsPlusOffsets); 380 381 if (inBoundsCondition) { 382 // 2.a. If the condition is not null, we need an IfOp, to write 383 // conditionally. Progressively lower to a 1-D transfer write. 384 conditionBuilder(inBoundsCondition, 385 [&] { emitTransferWrite(majorIvsPlusOffsets); }); 386 } else { 387 // 2.b. Guaranteed in-bounds. Progressively lower to a 1-D transfer write. 388 emitTransferWrite(majorIvsPlusOffsets); 389 } 390 }); 391 392 rewriter.eraseOp(op); 393 394 return success(); 395 } 396 397 } // namespace 398 399 /// Analyzes the `transfer` to find an access dimension along the fastest remote 400 /// MemRef dimension. If such a dimension with coalescing properties is found, 401 /// `pivs` and `vectorBoundsCapture` are swapped so that the invocation of 402 /// LoopNestBuilder captures it in the innermost loop. 403 template <typename TransferOpTy> 404 static int computeCoalescedIndex(TransferOpTy transfer) { 405 // rank of the remote memory access, coalescing behavior occurs on the 406 // innermost memory dimension. 407 auto remoteRank = transfer.getMemRefType().getRank(); 408 // Iterate over the results expressions of the permutation map to determine 409 // the loop order for creating pointwise copies between remote and local 410 // memories. 411 int coalescedIdx = -1; 412 auto exprs = transfer.permutation_map().getResults(); 413 for (auto en : llvm::enumerate(exprs)) { 414 auto dim = en.value().template dyn_cast<AffineDimExpr>(); 415 if (!dim) { 416 continue; 417 } 418 auto memRefDim = dim.getPosition(); 419 if (memRefDim == remoteRank - 1) { 420 // memRefDim has coalescing properties, it should be swapped in the last 421 // position. 422 assert(coalescedIdx == -1 && "Unexpected > 1 coalesced indices"); 423 coalescedIdx = en.index(); 424 } 425 } 426 return coalescedIdx; 427 } 428 429 template <typename TransferOpTy> 430 VectorTransferRewriter<TransferOpTy>::VectorTransferRewriter( 431 VectorTransferToSCFOptions options, MLIRContext *context) 432 : RewritePattern(TransferOpTy::getOperationName(), 1, context), 433 options(options) {} 434 435 /// Used for staging the transfer in a local buffer. 436 template <typename TransferOpTy> 437 MemRefType VectorTransferRewriter<TransferOpTy>::tmpMemRefType( 438 TransferOpTy transfer) const { 439 auto vectorType = transfer.getVectorType(); 440 return MemRefType::get(vectorType.getShape().drop_back(), 441 VectorType::get(vectorType.getShape().take_back(), 442 vectorType.getElementType()), 443 {}, 0); 444 } 445 446 static void emitWithBoundsChecks( 447 PatternRewriter &rewriter, VectorTransferOpInterface transfer, 448 ValueRange ivs, const MemRefBoundsCapture &memRefBoundsCapture, 449 function_ref<void(ArrayRef<Value>)> inBoundsFun, 450 function_ref<void(ArrayRef<Value>)> outOfBoundsFun = nullptr) { 451 // Permute the incoming indices according to the permutation map. 452 SmallVector<Value, 4> indices = 453 linalg::applyMapToValues(rewriter, transfer.getLoc(), 454 transfer.permutation_map(), transfer.indices()); 455 456 // Generate a bounds check if necessary. 457 SmallVector<Value, 4> majorIvsPlusOffsets; 458 Value inBoundsCondition = 459 emitInBoundsCondition(rewriter, transfer, 0, ivs, indices, 460 memRefBoundsCapture, majorIvsPlusOffsets); 461 462 // Apply the permutation map to the ivs. The permutation map may not use all 463 // the inputs. 464 SmallVector<Value, 4> scalarAccessExprs(transfer.indices().size()); 465 for (unsigned memRefDim = 0; memRefDim < transfer.indices().size(); 466 ++memRefDim) { 467 // Linear search on a small number of entries. 468 int loopIndex = -1; 469 auto exprs = transfer.permutation_map().getResults(); 470 for (auto en : llvm::enumerate(exprs)) { 471 auto expr = en.value(); 472 auto dim = expr.dyn_cast<AffineDimExpr>(); 473 // Sanity check. 474 assert((dim || expr.cast<AffineConstantExpr>().getValue() == 0) && 475 "Expected dim or 0 in permutationMap"); 476 if (dim && memRefDim == dim.getPosition()) { 477 loopIndex = en.index(); 478 break; 479 } 480 } 481 482 using namespace edsc::op; 483 auto i = transfer.indices()[memRefDim]; 484 scalarAccessExprs[memRefDim] = loopIndex < 0 ? i : i + ivs[loopIndex]; 485 } 486 487 if (inBoundsCondition) 488 conditionBuilder( 489 /* scf.if */ inBoundsCondition, // { 490 [&] { inBoundsFun(scalarAccessExprs); }, 491 // } else { 492 outOfBoundsFun ? [&] { outOfBoundsFun(scalarAccessExprs); } 493 : function_ref<void()>() 494 // } 495 ); 496 else 497 inBoundsFun(scalarAccessExprs); 498 } 499 500 namespace mlir { 501 502 /// Lowers TransferReadOp into a combination of: 503 /// 1. local memory allocation; 504 /// 2. perfect loop nest over: 505 /// a. scalar load from local buffers (viewed as a scalar memref); 506 /// a. scalar store to original memref (with padding). 507 /// 3. vector_load from local buffer (viewed as a memref<1 x vector>); 508 /// 4. local memory deallocation. 509 /// 510 /// Lowers the data transfer part of a TransferReadOp while ensuring no 511 /// out-of-bounds accesses are possible. Out-of-bounds behavior is handled by 512 /// padding. 513 514 /// Performs the rewrite. 515 template <> 516 LogicalResult VectorTransferRewriter<TransferReadOp>::matchAndRewrite( 517 Operation *op, PatternRewriter &rewriter) const { 518 using namespace mlir::edsc::op; 519 520 TransferReadOp transfer = cast<TransferReadOp>(op); 521 522 // Fall back to a loop if the fastest varying stride is not 1 or it is 523 // permuted. 524 int64_t offset; 525 SmallVector<int64_t, 4> strides; 526 auto successStrides = 527 getStridesAndOffset(transfer.getMemRefType(), strides, offset); 528 if (succeeded(successStrides) && strides.back() == 1 && 529 transfer.permutation_map().isMinorIdentity()) { 530 // If > 1D, emit a bunch of loops around 1-D vector transfers. 531 if (transfer.getVectorType().getRank() > 1) 532 return NDTransferOpHelper<TransferReadOp>(rewriter, transfer, options) 533 .doReplace(); 534 // If 1-D this is now handled by the target-specific lowering. 535 if (transfer.getVectorType().getRank() == 1) 536 return failure(); 537 } 538 539 // Conservative lowering to scalar load / stores. 540 // 1. Setup all the captures. 541 ScopedContext scope(rewriter, transfer.getLoc()); 542 StdIndexedValue remote(transfer.memref()); 543 MemRefBoundsCapture memRefBoundsCapture(transfer.memref()); 544 VectorBoundsCapture vectorBoundsCapture(transfer.vector()); 545 int coalescedIdx = computeCoalescedIndex(transfer); 546 // Swap the vectorBoundsCapture which will reorder loop bounds. 547 if (coalescedIdx >= 0) 548 vectorBoundsCapture.swapRanges(vectorBoundsCapture.rank() - 1, 549 coalescedIdx); 550 551 auto lbs = vectorBoundsCapture.getLbs(); 552 auto ubs = vectorBoundsCapture.getUbs(); 553 SmallVector<Value, 8> steps; 554 steps.reserve(vectorBoundsCapture.getSteps().size()); 555 for (auto step : vectorBoundsCapture.getSteps()) 556 steps.push_back(std_constant_index(step)); 557 558 // 2. Emit alloc-copy-load-dealloc. 559 MLIRContext *ctx = op->getContext(); 560 Value tmp = setAllocAtFunctionEntry(tmpMemRefType(transfer), transfer); 561 StdIndexedValue local(tmp); 562 loopNestBuilder(lbs, ubs, steps, [&](ValueRange loopIvs) { 563 auto ivsStorage = llvm::to_vector<8>(loopIvs); 564 // Swap the ivs which will reorder memory accesses. 565 if (coalescedIdx >= 0) 566 std::swap(ivsStorage.back(), ivsStorage[coalescedIdx]); 567 568 ArrayRef<Value> ivs(ivsStorage); 569 Value pos = std_index_cast(IntegerType::get(32, ctx), ivs.back()); 570 Value inVector = local(ivs.drop_back()); 571 auto loadValue = [&](ArrayRef<Value> indices) { 572 Value vector = vector_insert_element(remote(indices), inVector, pos); 573 local(ivs.drop_back()) = vector; 574 }; 575 auto loadPadding = [&](ArrayRef<Value>) { 576 Value vector = vector_insert_element(transfer.padding(), inVector, pos); 577 local(ivs.drop_back()) = vector; 578 }; 579 emitWithBoundsChecks( 580 rewriter, cast<VectorTransferOpInterface>(transfer.getOperation()), ivs, 581 memRefBoundsCapture, loadValue, loadPadding); 582 }); 583 Value vectorValue = std_load(vector_type_cast(tmp)); 584 585 // 3. Propagate. 586 rewriter.replaceOp(op, vectorValue); 587 return success(); 588 } 589 590 /// Lowers TransferWriteOp into a combination of: 591 /// 1. local memory allocation; 592 /// 2. vector_store to local buffer (viewed as a memref<1 x vector>); 593 /// 3. perfect loop nest over: 594 /// a. scalar load from local buffers (viewed as a scalar memref); 595 /// a. scalar store to original memref (if in bounds). 596 /// 4. local memory deallocation. 597 /// 598 /// More specifically, lowers the data transfer part while ensuring no 599 /// out-of-bounds accesses are possible. 600 template <> 601 LogicalResult VectorTransferRewriter<TransferWriteOp>::matchAndRewrite( 602 Operation *op, PatternRewriter &rewriter) const { 603 using namespace edsc::op; 604 605 TransferWriteOp transfer = cast<TransferWriteOp>(op); 606 607 // Fall back to a loop if the fastest varying stride is not 1 or it is 608 // permuted. 609 int64_t offset; 610 SmallVector<int64_t, 4> strides; 611 auto successStrides = 612 getStridesAndOffset(transfer.getMemRefType(), strides, offset); 613 if (succeeded(successStrides) && strides.back() == 1 && 614 transfer.permutation_map().isMinorIdentity()) { 615 // If > 1D, emit a bunch of loops around 1-D vector transfers. 616 if (transfer.getVectorType().getRank() > 1) 617 return NDTransferOpHelper<TransferWriteOp>(rewriter, transfer, options) 618 .doReplace(); 619 // If 1-D this is now handled by the target-specific lowering. 620 if (transfer.getVectorType().getRank() == 1) 621 return failure(); 622 } 623 624 // 1. Setup all the captures. 625 ScopedContext scope(rewriter, transfer.getLoc()); 626 StdIndexedValue remote(transfer.memref()); 627 MemRefBoundsCapture memRefBoundsCapture(transfer.memref()); 628 Value vectorValue(transfer.vector()); 629 VectorBoundsCapture vectorBoundsCapture(transfer.vector()); 630 int coalescedIdx = computeCoalescedIndex(transfer); 631 // Swap the vectorBoundsCapture which will reorder loop bounds. 632 if (coalescedIdx >= 0) 633 vectorBoundsCapture.swapRanges(vectorBoundsCapture.rank() - 1, 634 coalescedIdx); 635 636 auto lbs = vectorBoundsCapture.getLbs(); 637 auto ubs = vectorBoundsCapture.getUbs(); 638 SmallVector<Value, 8> steps; 639 steps.reserve(vectorBoundsCapture.getSteps().size()); 640 for (auto step : vectorBoundsCapture.getSteps()) 641 steps.push_back(std_constant_index(step)); 642 643 // 2. Emit alloc-store-copy-dealloc. 644 Value tmp = setAllocAtFunctionEntry(tmpMemRefType(transfer), transfer); 645 StdIndexedValue local(tmp); 646 Value vec = vector_type_cast(tmp); 647 std_store(vectorValue, vec); 648 loopNestBuilder(lbs, ubs, steps, [&](ValueRange loopIvs) { 649 auto ivsStorage = llvm::to_vector<8>(loopIvs); 650 // Swap the ivsStorage which will reorder memory accesses. 651 if (coalescedIdx >= 0) 652 std::swap(ivsStorage.back(), ivsStorage[coalescedIdx]); 653 654 ArrayRef<Value> ivs(ivsStorage); 655 Value pos = 656 std_index_cast(IntegerType::get(32, op->getContext()), ivs.back()); 657 auto storeValue = [&](ArrayRef<Value> indices) { 658 Value scalar = vector_extract_element(local(ivs.drop_back()), pos); 659 remote(indices) = scalar; 660 }; 661 emitWithBoundsChecks( 662 rewriter, cast<VectorTransferOpInterface>(transfer.getOperation()), ivs, 663 memRefBoundsCapture, storeValue); 664 }); 665 666 // 3. Erase. 667 rewriter.eraseOp(op); 668 return success(); 669 } 670 671 void populateVectorToSCFConversionPatterns( 672 OwningRewritePatternList &patterns, MLIRContext *context, 673 const VectorTransferToSCFOptions &options) { 674 patterns.insert<VectorTransferRewriter<vector::TransferReadOp>, 675 VectorTransferRewriter<vector::TransferWriteOp>>(options, 676 context); 677 } 678 679 } // namespace mlir 680 681 namespace { 682 683 struct ConvertVectorToSCFPass 684 : public ConvertVectorToSCFBase<ConvertVectorToSCFPass> { 685 ConvertVectorToSCFPass() = default; 686 ConvertVectorToSCFPass(const VectorTransferToSCFOptions &options) { 687 this->fullUnroll = options.unroll; 688 } 689 690 void runOnFunction() override { 691 OwningRewritePatternList patterns; 692 auto *context = getFunction().getContext(); 693 populateVectorToSCFConversionPatterns( 694 patterns, context, VectorTransferToSCFOptions().setUnroll(fullUnroll)); 695 applyPatternsAndFoldGreedily(getFunction(), patterns); 696 } 697 }; 698 699 } // namespace 700 701 std::unique_ptr<Pass> 702 mlir::createConvertVectorToSCFPass(const VectorTransferToSCFOptions &options) { 703 return std::make_unique<ConvertVectorToSCFPass>(options); 704 } 705