1 //===- VectorToSCF.cpp - Conversion from Vector to mix of SCF and Std -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements target-dependent lowering of vector transfer operations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <type_traits> 14 15 #include "mlir/Conversion/VectorToSCF/VectorToSCF.h" 16 17 #include "../PassDetail.h" 18 #include "mlir/Dialect/Affine/EDSC/Intrinsics.h" 19 #include "mlir/Dialect/Linalg/Utils/Utils.h" 20 #include "mlir/Dialect/SCF/EDSC/Builders.h" 21 #include "mlir/Dialect/SCF/EDSC/Intrinsics.h" 22 #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h" 23 #include "mlir/Dialect/Vector/EDSC/Intrinsics.h" 24 #include "mlir/Dialect/Vector/VectorOps.h" 25 #include "mlir/Dialect/Vector/VectorUtils.h" 26 #include "mlir/IR/AffineExpr.h" 27 #include "mlir/IR/AffineMap.h" 28 #include "mlir/IR/Attributes.h" 29 #include "mlir/IR/Builders.h" 30 #include "mlir/IR/Location.h" 31 #include "mlir/IR/Matchers.h" 32 #include "mlir/IR/OperationSupport.h" 33 #include "mlir/IR/PatternMatch.h" 34 #include "mlir/IR/Types.h" 35 #include "mlir/Pass/Pass.h" 36 #include "mlir/Transforms/Passes.h" 37 38 using namespace mlir; 39 using namespace mlir::edsc; 40 using namespace mlir::edsc::intrinsics; 41 using vector::TransferReadOp; 42 using vector::TransferWriteOp; 43 44 namespace { 45 /// Helper class captures the common information needed to lower N>1-D vector 46 /// transfer operations (read and write). 47 /// On construction, this class opens an edsc::ScopedContext for simpler IR 48 /// manipulation. 49 /// In pseudo-IR, for an n-D vector_transfer_read such as: 50 /// 51 /// ``` 52 /// vector_transfer_read(%m, %offsets, identity_map, %fill) : 53 /// memref<(leading_dims) x (major_dims) x (minor_dims) x type>, 54 /// vector<(major_dims) x (minor_dims) x type> 55 /// ``` 56 /// 57 /// where rank(minor_dims) is the lower-level vector rank (e.g. 1 for LLVM or 58 /// higher). 59 /// 60 /// This is the entry point to emitting pseudo-IR resembling: 61 /// 62 /// ``` 63 /// %tmp = alloc(): memref<(major_dims) x vector<minor_dim x type>> 64 /// for (%ivs_major, {0}, {vector_shape}, {1}) { // (N-1)-D loop nest 65 /// if (any_of(%ivs_major + %offsets, <, major_dims)) { 66 /// %v = vector_transfer_read( 67 /// {%offsets_leading, %ivs_major + %offsets_major, %offsets_minor}, 68 /// %ivs_minor): 69 /// memref<(leading_dims) x (major_dims) x (minor_dims) x type>, 70 /// vector<(minor_dims) x type>; 71 /// store(%v, %tmp); 72 /// } else { 73 /// %v = splat(vector<(minor_dims) x type>, %fill) 74 /// store(%v, %tmp, %ivs_major); 75 /// } 76 /// } 77 /// %res = load(%tmp, %0): memref<(major_dims) x vector<minor_dim x type>>): 78 // vector<(major_dims) x (minor_dims) x type> 79 /// ``` 80 /// 81 template <typename ConcreteOp> 82 class NDTransferOpHelper { 83 public: 84 NDTransferOpHelper(PatternRewriter &rewriter, ConcreteOp xferOp, 85 const VectorTransferToSCFOptions &options) 86 : rewriter(rewriter), options(options), loc(xferOp.getLoc()), 87 scope(std::make_unique<ScopedContext>(rewriter, loc)), xferOp(xferOp), 88 op(xferOp.getOperation()) { 89 vectorType = xferOp.getVectorType(); 90 // TODO: when we go to k > 1-D vectors adapt minorRank. 91 minorRank = 1; 92 majorRank = vectorType.getRank() - minorRank; 93 leadingRank = xferOp.getLeadingMemRefRank(); 94 majorVectorType = 95 VectorType::get(vectorType.getShape().take_front(majorRank), 96 vectorType.getElementType()); 97 minorVectorType = 98 VectorType::get(vectorType.getShape().take_back(minorRank), 99 vectorType.getElementType()); 100 /// Memref of minor vector type is used for individual transfers. 101 memRefMinorVectorType = 102 MemRefType::get(majorVectorType.getShape(), minorVectorType, {}, 103 xferOp.getMemRefType().getMemorySpace()); 104 } 105 106 LogicalResult doReplace(); 107 108 private: 109 /// Creates the loop nest on the "major" dimensions and calls the 110 /// `loopBodyBuilder` lambda in the context of the loop nest. 111 template <typename Lambda> 112 void emitLoops(Lambda loopBodyBuilder); 113 114 /// Operate within the body of `emitLoops` to: 115 /// 1. Compute the indexings `majorIvs + majorOffsets` and save them in 116 /// `majorIvsPlusOffsets`. 117 /// 2. Return a boolean that determines whether the first `majorIvs.rank()` 118 /// dimensions `majorIvs + majorOffsets` are all within `memrefBounds`. 119 Value emitInBoundsCondition(ValueRange majorIvs, ValueRange majorOffsets, 120 MemRefBoundsCapture &memrefBounds, 121 SmallVectorImpl<Value> &majorIvsPlusOffsets); 122 123 /// Common state to lower vector transfer ops. 124 PatternRewriter &rewriter; 125 const VectorTransferToSCFOptions &options; 126 Location loc; 127 std::unique_ptr<ScopedContext> scope; 128 ConcreteOp xferOp; 129 Operation *op; 130 // A vector transfer copies data between: 131 // - memref<(leading_dims) x (major_dims) x (minor_dims) x type> 132 // - vector<(major_dims) x (minor_dims) x type> 133 unsigned minorRank; // for now always 1 134 unsigned majorRank; // vector rank - minorRank 135 unsigned leadingRank; // memref rank - vector rank 136 VectorType vectorType; // vector<(major_dims) x (minor_dims) x type> 137 VectorType majorVectorType; // vector<(major_dims) x type> 138 VectorType minorVectorType; // vector<(minor_dims) x type> 139 MemRefType memRefMinorVectorType; // memref<vector<(minor_dims) x type>> 140 }; 141 142 template <typename ConcreteOp> 143 template <typename Lambda> 144 void NDTransferOpHelper<ConcreteOp>::emitLoops(Lambda loopBodyBuilder) { 145 /// Loop nest operates on the major dimensions 146 MemRefBoundsCapture memrefBoundsCapture(xferOp.memref()); 147 148 if (options.unroll) { 149 auto shape = majorVectorType.getShape(); 150 auto strides = computeStrides(shape); 151 unsigned numUnrolledInstances = computeMaxLinearIndex(shape); 152 ValueRange indices(xferOp.indices()); 153 for (unsigned idx = 0; idx < numUnrolledInstances; ++idx) { 154 SmallVector<int64_t, 4> offsets = delinearize(strides, idx); 155 SmallVector<Value, 4> offsetValues = 156 llvm::to_vector<4>(llvm::map_range(offsets, [](int64_t off) -> Value { 157 return std_constant_index(off); 158 })); 159 loopBodyBuilder(offsetValues, indices.take_front(leadingRank), 160 indices.drop_front(leadingRank).take_front(majorRank), 161 indices.take_back(minorRank), memrefBoundsCapture); 162 } 163 } else { 164 VectorBoundsCapture vectorBoundsCapture(majorVectorType); 165 auto majorLbs = vectorBoundsCapture.getLbs(); 166 auto majorUbs = vectorBoundsCapture.getUbs(); 167 auto majorSteps = vectorBoundsCapture.getSteps(); 168 affineLoopNestBuilder( 169 majorLbs, majorUbs, majorSteps, [&](ValueRange majorIvs) { 170 ValueRange indices(xferOp.indices()); 171 loopBodyBuilder(majorIvs, indices.take_front(leadingRank), 172 indices.drop_front(leadingRank).take_front(majorRank), 173 indices.take_back(minorRank), memrefBoundsCapture); 174 }); 175 } 176 } 177 178 static Optional<int64_t> extractConstantIndex(Value v) { 179 if (auto cstOp = v.getDefiningOp<ConstantIndexOp>()) 180 return cstOp.getValue(); 181 if (auto affineApplyOp = v.getDefiningOp<AffineApplyOp>()) 182 if (affineApplyOp.getAffineMap().isSingleConstant()) 183 return affineApplyOp.getAffineMap().getSingleConstantResult(); 184 return None; 185 } 186 187 // Missing foldings of scf.if make it necessary to perform poor man's folding 188 // eagerly, especially in the case of unrolling. In the future, this should go 189 // away once scf.if folds properly. 190 static Value onTheFlyFoldSLT(Value v, Value ub) { 191 using namespace mlir::edsc::op; 192 auto maybeCstV = extractConstantIndex(v); 193 auto maybeCstUb = extractConstantIndex(ub); 194 if (maybeCstV && maybeCstUb && *maybeCstV < *maybeCstUb) 195 return Value(); 196 return slt(v, ub); 197 } 198 199 template <typename ConcreteOp> 200 Value NDTransferOpHelper<ConcreteOp>::emitInBoundsCondition( 201 ValueRange majorIvs, ValueRange majorOffsets, 202 MemRefBoundsCapture &memrefBounds, 203 SmallVectorImpl<Value> &majorIvsPlusOffsets) { 204 Value inBoundsCondition; 205 majorIvsPlusOffsets.reserve(majorIvs.size()); 206 unsigned idx = 0; 207 SmallVector<Value, 4> bounds = 208 linalg::applyMapToValues(rewriter, xferOp.getLoc(), 209 xferOp.permutation_map(), memrefBounds.getUbs()); 210 for (auto it : llvm::zip(majorIvs, majorOffsets, bounds)) { 211 Value iv = std::get<0>(it), off = std::get<1>(it), ub = std::get<2>(it); 212 using namespace mlir::edsc::op; 213 majorIvsPlusOffsets.push_back(iv + off); 214 if (xferOp.isMaskedDim(leadingRank + idx)) { 215 Value inBoundsCond = onTheFlyFoldSLT(majorIvsPlusOffsets.back(), ub); 216 if (inBoundsCond) 217 inBoundsCondition = (inBoundsCondition) 218 ? (inBoundsCondition && inBoundsCond) 219 : inBoundsCond; 220 } 221 ++idx; 222 } 223 return inBoundsCondition; 224 } 225 226 // TODO: Parallelism and threadlocal considerations. 227 static Value setAllocAtFunctionEntry(MemRefType memRefMinorVectorType, 228 Operation *op) { 229 auto &b = ScopedContext::getBuilderRef(); 230 OpBuilder::InsertionGuard guard(b); 231 Operation *scope = 232 op->getParentWithTrait<OpTrait::AutomaticAllocationScope>(); 233 assert(scope && "Expected op to be inside automatic allocation scope"); 234 b.setInsertionPointToStart(&scope->getRegion(0).front()); 235 Value res = 236 std_alloca(memRefMinorVectorType, ValueRange{}, b.getI64IntegerAttr(128)); 237 return res; 238 } 239 240 template <> 241 LogicalResult NDTransferOpHelper<TransferReadOp>::doReplace() { 242 Value alloc, result; 243 if (options.unroll) 244 result = std_splat(vectorType, xferOp.padding()); 245 else 246 alloc = setAllocAtFunctionEntry(memRefMinorVectorType, op); 247 248 emitLoops([&](ValueRange majorIvs, ValueRange leadingOffsets, 249 ValueRange majorOffsets, ValueRange minorOffsets, 250 MemRefBoundsCapture &memrefBounds) { 251 /// Lambda to load 1-D vector in the current loop ivs + offset context. 252 auto load1DVector = [&](ValueRange majorIvsPlusOffsets) -> Value { 253 SmallVector<Value, 8> indexing; 254 indexing.reserve(leadingRank + majorRank + minorRank); 255 indexing.append(leadingOffsets.begin(), leadingOffsets.end()); 256 indexing.append(majorIvsPlusOffsets.begin(), majorIvsPlusOffsets.end()); 257 indexing.append(minorOffsets.begin(), minorOffsets.end()); 258 Value memref = xferOp.memref(); 259 auto map = 260 getTransferMinorIdentityMap(xferOp.getMemRefType(), minorVectorType); 261 ArrayAttr masked; 262 if (!xferOp.isMaskedDim(xferOp.getVectorType().getRank() - 1)) { 263 OpBuilder &b = ScopedContext::getBuilderRef(); 264 masked = b.getBoolArrayAttr({false}); 265 } 266 return vector_transfer_read(minorVectorType, memref, indexing, 267 AffineMapAttr::get(map), xferOp.padding(), 268 masked); 269 }; 270 271 // 1. Compute the inBoundsCondition in the current loops ivs + offset 272 // context. 273 SmallVector<Value, 4> majorIvsPlusOffsets; 274 Value inBoundsCondition = emitInBoundsCondition( 275 majorIvs, majorOffsets, memrefBounds, majorIvsPlusOffsets); 276 277 if (inBoundsCondition) { 278 // 2. If the condition is not null, we need an IfOp, which may yield 279 // if `options.unroll` is true. 280 SmallVector<Type, 1> resultType; 281 if (options.unroll) 282 resultType.push_back(vectorType); 283 284 // 3. If in-bounds, progressively lower to a 1-D transfer read, otherwise 285 // splat a 1-D vector. 286 ValueRange ifResults = conditionBuilder( 287 resultType, inBoundsCondition, 288 [&]() -> scf::ValueVector { 289 Value vector = load1DVector(majorIvsPlusOffsets); 290 // 3.a. If `options.unroll` is true, insert the 1-D vector in the 291 // aggregate. We must yield and merge with the `else` branch. 292 if (options.unroll) { 293 vector = vector_insert(vector, result, majorIvs); 294 return {vector}; 295 } 296 // 3.b. Otherwise, just go through the temporary `alloc`. 297 std_store(vector, alloc, majorIvs); 298 return {}; 299 }, 300 [&]() -> scf::ValueVector { 301 Value vector = std_splat(minorVectorType, xferOp.padding()); 302 // 3.c. If `options.unroll` is true, insert the 1-D vector in the 303 // aggregate. We must yield and merge with the `then` branch. 304 if (options.unroll) { 305 vector = vector_insert(vector, result, majorIvs); 306 return {vector}; 307 } 308 // 3.d. Otherwise, just go through the temporary `alloc`. 309 std_store(vector, alloc, majorIvs); 310 return {}; 311 }); 312 313 if (!resultType.empty()) 314 result = *ifResults.begin(); 315 } else { 316 // 4. Guaranteed in-bounds, progressively lower to a 1-D transfer read. 317 Value loaded1D = load1DVector(majorIvsPlusOffsets); 318 // 5.a. If `options.unroll` is true, insert the 1-D vector in the 319 // aggregate. 320 if (options.unroll) 321 result = vector_insert(loaded1D, result, majorIvs); 322 // 5.b. Otherwise, just go through the temporary `alloc`. 323 else 324 std_store(loaded1D, alloc, majorIvs); 325 } 326 }); 327 328 assert((!options.unroll ^ (bool)result) && 329 "Expected resulting Value iff unroll"); 330 if (!result) 331 result = std_load(vector_type_cast(MemRefType::get({}, vectorType), alloc)); 332 rewriter.replaceOp(op, result); 333 334 return success(); 335 } 336 337 template <> 338 LogicalResult NDTransferOpHelper<TransferWriteOp>::doReplace() { 339 Value alloc; 340 if (!options.unroll) { 341 alloc = setAllocAtFunctionEntry(memRefMinorVectorType, op); 342 std_store(xferOp.vector(), 343 vector_type_cast(MemRefType::get({}, vectorType), alloc)); 344 } 345 346 emitLoops([&](ValueRange majorIvs, ValueRange leadingOffsets, 347 ValueRange majorOffsets, ValueRange minorOffsets, 348 MemRefBoundsCapture &memrefBounds) { 349 // Lower to 1-D vector_transfer_write and let recursion handle it. 350 auto emitTransferWrite = [&](ValueRange majorIvsPlusOffsets) { 351 SmallVector<Value, 8> indexing; 352 indexing.reserve(leadingRank + majorRank + minorRank); 353 indexing.append(leadingOffsets.begin(), leadingOffsets.end()); 354 indexing.append(majorIvsPlusOffsets.begin(), majorIvsPlusOffsets.end()); 355 indexing.append(minorOffsets.begin(), minorOffsets.end()); 356 Value result; 357 // If `options.unroll` is true, extract the 1-D vector from the 358 // aggregate. 359 if (options.unroll) 360 result = vector_extract(xferOp.vector(), majorIvs); 361 else 362 result = std_load(alloc, majorIvs); 363 auto map = 364 getTransferMinorIdentityMap(xferOp.getMemRefType(), minorVectorType); 365 ArrayAttr masked; 366 if (!xferOp.isMaskedDim(xferOp.getVectorType().getRank() - 1)) { 367 OpBuilder &b = ScopedContext::getBuilderRef(); 368 masked = b.getBoolArrayAttr({false}); 369 } 370 vector_transfer_write(result, xferOp.memref(), indexing, 371 AffineMapAttr::get(map), masked); 372 }; 373 374 // 1. Compute the inBoundsCondition in the current loops ivs + offset 375 // context. 376 SmallVector<Value, 4> majorIvsPlusOffsets; 377 Value inBoundsCondition = emitInBoundsCondition( 378 majorIvs, majorOffsets, memrefBounds, majorIvsPlusOffsets); 379 380 if (inBoundsCondition) { 381 // 2.a. If the condition is not null, we need an IfOp, to write 382 // conditionally. Progressively lower to a 1-D transfer write. 383 conditionBuilder(inBoundsCondition, 384 [&] { emitTransferWrite(majorIvsPlusOffsets); }); 385 } else { 386 // 2.b. Guaranteed in-bounds. Progressively lower to a 1-D transfer write. 387 emitTransferWrite(majorIvsPlusOffsets); 388 } 389 }); 390 391 rewriter.eraseOp(op); 392 393 return success(); 394 } 395 396 } // namespace 397 398 /// Analyzes the `transfer` to find an access dimension along the fastest remote 399 /// MemRef dimension. If such a dimension with coalescing properties is found, 400 /// `pivs` and `vectorBoundsCapture` are swapped so that the invocation of 401 /// LoopNestBuilder captures it in the innermost loop. 402 template <typename TransferOpTy> 403 static int computeCoalescedIndex(TransferOpTy transfer) { 404 // rank of the remote memory access, coalescing behavior occurs on the 405 // innermost memory dimension. 406 auto remoteRank = transfer.getMemRefType().getRank(); 407 // Iterate over the results expressions of the permutation map to determine 408 // the loop order for creating pointwise copies between remote and local 409 // memories. 410 int coalescedIdx = -1; 411 auto exprs = transfer.permutation_map().getResults(); 412 for (auto en : llvm::enumerate(exprs)) { 413 auto dim = en.value().template dyn_cast<AffineDimExpr>(); 414 if (!dim) { 415 continue; 416 } 417 auto memRefDim = dim.getPosition(); 418 if (memRefDim == remoteRank - 1) { 419 // memRefDim has coalescing properties, it should be swapped in the last 420 // position. 421 assert(coalescedIdx == -1 && "Unexpected > 1 coalesced indices"); 422 coalescedIdx = en.index(); 423 } 424 } 425 return coalescedIdx; 426 } 427 428 /// Emits remote memory accesses that are clipped to the boundaries of the 429 /// MemRef. 430 template <typename TransferOpTy> 431 static SmallVector<Value, 8> 432 clip(TransferOpTy transfer, MemRefBoundsCapture &bounds, ArrayRef<Value> ivs) { 433 using namespace mlir::edsc; 434 435 Value zero(std_constant_index(0)), one(std_constant_index(1)); 436 SmallVector<Value, 8> memRefAccess(transfer.indices()); 437 SmallVector<Value, 8> clippedScalarAccessExprs(memRefAccess.size()); 438 // Indices accessing to remote memory are clipped and their expressions are 439 // returned in clippedScalarAccessExprs. 440 for (unsigned memRefDim = 0; memRefDim < clippedScalarAccessExprs.size(); 441 ++memRefDim) { 442 // Linear search on a small number of entries. 443 int loopIndex = -1; 444 auto exprs = transfer.permutation_map().getResults(); 445 for (auto en : llvm::enumerate(exprs)) { 446 auto expr = en.value(); 447 auto dim = expr.template dyn_cast<AffineDimExpr>(); 448 // Sanity check. 449 assert( 450 (dim || expr.template cast<AffineConstantExpr>().getValue() == 0) && 451 "Expected dim or 0 in permutationMap"); 452 if (dim && memRefDim == dim.getPosition()) { 453 loopIndex = en.index(); 454 break; 455 } 456 } 457 458 // We cannot distinguish atm between unrolled dimensions that implement 459 // the "always full" tile abstraction and need clipping from the other 460 // ones. So we conservatively clip everything. 461 using namespace edsc::op; 462 auto N = bounds.ub(memRefDim); 463 auto i = memRefAccess[memRefDim]; 464 if (loopIndex < 0) { 465 auto N_minus_1 = N - one; 466 auto select_1 = std_select(slt(i, N), i, N_minus_1); 467 clippedScalarAccessExprs[memRefDim] = 468 std_select(slt(i, zero), zero, select_1); 469 } else { 470 auto ii = ivs[loopIndex]; 471 auto i_plus_ii = i + ii; 472 auto N_minus_1 = N - one; 473 auto select_1 = std_select(slt(i_plus_ii, N), i_plus_ii, N_minus_1); 474 clippedScalarAccessExprs[memRefDim] = 475 std_select(slt(i_plus_ii, zero), zero, select_1); 476 } 477 } 478 479 return clippedScalarAccessExprs; 480 } 481 482 namespace mlir { 483 484 template <typename TransferOpTy> 485 VectorTransferRewriter<TransferOpTy>::VectorTransferRewriter( 486 VectorTransferToSCFOptions options, MLIRContext *context) 487 : RewritePattern(TransferOpTy::getOperationName(), 1, context), 488 options(options) {} 489 490 /// Used for staging the transfer in a local buffer. 491 template <typename TransferOpTy> 492 MemRefType VectorTransferRewriter<TransferOpTy>::tmpMemRefType( 493 TransferOpTy transfer) const { 494 auto vectorType = transfer.getVectorType(); 495 return MemRefType::get(vectorType.getShape(), vectorType.getElementType(), {}, 496 0); 497 } 498 499 /// Lowers TransferReadOp into a combination of: 500 /// 1. local memory allocation; 501 /// 2. perfect loop nest over: 502 /// a. scalar load from local buffers (viewed as a scalar memref); 503 /// a. scalar store to original memref (with clipping). 504 /// 3. vector_load from local buffer (viewed as a memref<1 x vector>); 505 /// 4. local memory deallocation. 506 /// 507 /// Lowers the data transfer part of a TransferReadOp while ensuring no 508 /// out-of-bounds accesses are possible. Out-of-bounds behavior is handled by 509 /// clipping. This means that a given value in memory can be read multiple 510 /// times and concurrently. 511 /// 512 /// Important notes about clipping and "full-tiles only" abstraction: 513 /// ================================================================= 514 /// When using clipping for dealing with boundary conditions, the same edge 515 /// value will appear multiple times (a.k.a edge padding). This is fine if the 516 /// subsequent vector operations are all data-parallel but **is generally 517 /// incorrect** in the presence of reductions or extract operations. 518 /// 519 /// More generally, clipping is a scalar abstraction that is expected to work 520 /// fine as a baseline for CPUs and GPUs but not for vector_load and DMAs. 521 /// To deal with real vector_load and DMAs, a "padded allocation + view" 522 /// abstraction with the ability to read out-of-memref-bounds (but still within 523 /// the allocated region) is necessary. 524 /// 525 /// Whether using scalar loops or vector_load/DMAs to perform the transfer, 526 /// junk values will be materialized in the vectors and generally need to be 527 /// filtered out and replaced by the "neutral element". This neutral element is 528 /// op-dependent so, in the future, we expect to create a vector filter and 529 /// apply it to a splatted constant vector with the proper neutral element at 530 /// each ssa-use. This filtering is not necessary for pure data-parallel 531 /// operations. 532 /// 533 /// In the case of vector_store/DMAs, Read-Modify-Write will be required, which 534 /// also have concurrency implications. Note that by using clipped scalar stores 535 /// in the presence of data-parallel only operations, we generate code that 536 /// writes the same value multiple time on the edge locations. 537 /// 538 /// TODO: implement alternatives to clipping. 539 /// TODO: support non-data-parallel operations. 540 541 /// Performs the rewrite. 542 template <> 543 LogicalResult VectorTransferRewriter<TransferReadOp>::matchAndRewrite( 544 Operation *op, PatternRewriter &rewriter) const { 545 using namespace mlir::edsc::op; 546 547 TransferReadOp transfer = cast<TransferReadOp>(op); 548 if (transfer.permutation_map().isMinorIdentity()) { 549 // If > 1D, emit a bunch of loops around 1-D vector transfers. 550 if (transfer.getVectorType().getRank() > 1) 551 return NDTransferOpHelper<TransferReadOp>(rewriter, transfer, options) 552 .doReplace(); 553 // If 1-D this is now handled by the target-specific lowering. 554 if (transfer.getVectorType().getRank() == 1) 555 return failure(); 556 } 557 558 // Conservative lowering to scalar load / stores. 559 // 1. Setup all the captures. 560 ScopedContext scope(rewriter, transfer.getLoc()); 561 StdIndexedValue remote(transfer.memref()); 562 MemRefBoundsCapture memRefBoundsCapture(transfer.memref()); 563 VectorBoundsCapture vectorBoundsCapture(transfer.vector()); 564 int coalescedIdx = computeCoalescedIndex(transfer); 565 // Swap the vectorBoundsCapture which will reorder loop bounds. 566 if (coalescedIdx >= 0) 567 vectorBoundsCapture.swapRanges(vectorBoundsCapture.rank() - 1, 568 coalescedIdx); 569 570 auto lbs = vectorBoundsCapture.getLbs(); 571 auto ubs = vectorBoundsCapture.getUbs(); 572 SmallVector<Value, 8> steps; 573 steps.reserve(vectorBoundsCapture.getSteps().size()); 574 for (auto step : vectorBoundsCapture.getSteps()) 575 steps.push_back(std_constant_index(step)); 576 577 // 2. Emit alloc-copy-load-dealloc. 578 Value tmp = std_alloc(tmpMemRefType(transfer)); 579 StdIndexedValue local(tmp); 580 Value vec = vector_type_cast(tmp); 581 loopNestBuilder(lbs, ubs, steps, [&](ValueRange loopIvs) { 582 auto ivs = llvm::to_vector<8>(loopIvs); 583 // Swap the ivs which will reorder memory accesses. 584 if (coalescedIdx >= 0) 585 std::swap(ivs.back(), ivs[coalescedIdx]); 586 // Computes clippedScalarAccessExprs in the loop nest scope (ivs exist). 587 local(ivs) = remote(clip(transfer, memRefBoundsCapture, ivs)); 588 }); 589 Value vectorValue = std_load(vec); 590 (std_dealloc(tmp)); // vexing parse 591 592 // 3. Propagate. 593 rewriter.replaceOp(op, vectorValue); 594 return success(); 595 } 596 597 /// Lowers TransferWriteOp into a combination of: 598 /// 1. local memory allocation; 599 /// 2. vector_store to local buffer (viewed as a memref<1 x vector>); 600 /// 3. perfect loop nest over: 601 /// a. scalar load from local buffers (viewed as a scalar memref); 602 /// a. scalar store to original memref (with clipping). 603 /// 4. local memory deallocation. 604 /// 605 /// More specifically, lowers the data transfer part while ensuring no 606 /// out-of-bounds accesses are possible. Out-of-bounds behavior is handled by 607 /// clipping. This means that a given value in memory can be written to multiple 608 /// times and concurrently. 609 /// 610 /// See `Important notes about clipping and full-tiles only abstraction` in the 611 /// description of `readClipped` above. 612 /// 613 /// TODO: implement alternatives to clipping. 614 /// TODO: support non-data-parallel operations. 615 template <> 616 LogicalResult VectorTransferRewriter<TransferWriteOp>::matchAndRewrite( 617 Operation *op, PatternRewriter &rewriter) const { 618 using namespace edsc::op; 619 620 TransferWriteOp transfer = cast<TransferWriteOp>(op); 621 if (transfer.permutation_map().isMinorIdentity()) { 622 // If > 1D, emit a bunch of loops around 1-D vector transfers. 623 if (transfer.getVectorType().getRank() > 1) 624 return NDTransferOpHelper<TransferWriteOp>(rewriter, transfer, options) 625 .doReplace(); 626 // If 1-D this is now handled by the target-specific lowering. 627 if (transfer.getVectorType().getRank() == 1) 628 return failure(); 629 } 630 631 // 1. Setup all the captures. 632 ScopedContext scope(rewriter, transfer.getLoc()); 633 StdIndexedValue remote(transfer.memref()); 634 MemRefBoundsCapture memRefBoundsCapture(transfer.memref()); 635 Value vectorValue(transfer.vector()); 636 VectorBoundsCapture vectorBoundsCapture(transfer.vector()); 637 int coalescedIdx = computeCoalescedIndex(transfer); 638 // Swap the vectorBoundsCapture which will reorder loop bounds. 639 if (coalescedIdx >= 0) 640 vectorBoundsCapture.swapRanges(vectorBoundsCapture.rank() - 1, 641 coalescedIdx); 642 643 auto lbs = vectorBoundsCapture.getLbs(); 644 auto ubs = vectorBoundsCapture.getUbs(); 645 SmallVector<Value, 8> steps; 646 steps.reserve(vectorBoundsCapture.getSteps().size()); 647 for (auto step : vectorBoundsCapture.getSteps()) 648 steps.push_back(std_constant_index(step)); 649 650 // 2. Emit alloc-store-copy-dealloc. 651 Value tmp = std_alloc(tmpMemRefType(transfer)); 652 StdIndexedValue local(tmp); 653 Value vec = vector_type_cast(tmp); 654 std_store(vectorValue, vec); 655 loopNestBuilder(lbs, ubs, steps, [&](ValueRange loopIvs) { 656 auto ivs = llvm::to_vector<8>(loopIvs); 657 // Swap the ivs which will reorder memory accesses. 658 if (coalescedIdx >= 0) 659 std::swap(ivs.back(), ivs[coalescedIdx]); 660 // Computes clippedScalarAccessExprs in the loop nest scope (ivs exist). 661 remote(clip(transfer, memRefBoundsCapture, ivs)) = local(ivs); 662 }); 663 (std_dealloc(tmp)); // vexing parse... 664 665 rewriter.eraseOp(op); 666 return success(); 667 } 668 669 void populateVectorToSCFConversionPatterns( 670 OwningRewritePatternList &patterns, MLIRContext *context, 671 const VectorTransferToSCFOptions &options) { 672 patterns.insert<VectorTransferRewriter<vector::TransferReadOp>, 673 VectorTransferRewriter<vector::TransferWriteOp>>(options, 674 context); 675 } 676 677 } // namespace mlir 678 679 namespace { 680 681 struct ConvertVectorToSCFPass 682 : public ConvertVectorToSCFBase<ConvertVectorToSCFPass> { 683 ConvertVectorToSCFPass() = default; 684 ConvertVectorToSCFPass(const VectorTransferToSCFOptions &options) { 685 this->fullUnroll = options.unroll; 686 } 687 688 void runOnFunction() override { 689 OwningRewritePatternList patterns; 690 auto *context = getFunction().getContext(); 691 populateVectorToSCFConversionPatterns( 692 patterns, context, VectorTransferToSCFOptions().setUnroll(fullUnroll)); 693 applyPatternsAndFoldGreedily(getFunction(), patterns); 694 } 695 }; 696 697 } // namespace 698 699 std::unique_ptr<Pass> 700 mlir::createConvertVectorToSCFPass(const VectorTransferToSCFOptions &options) { 701 return std::make_unique<ConvertVectorToSCFPass>(options); 702 } 703