1 //===- VectorToSCF.cpp - Conversion from Vector to mix of SCF and Std -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements target-dependent lowering of vector transfer operations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <type_traits> 14 15 #include "mlir/Conversion/VectorToSCF/VectorToSCF.h" 16 17 #include "../PassDetail.h" 18 #include "mlir/Dialect/Affine/EDSC/Intrinsics.h" 19 #include "mlir/Dialect/SCF/EDSC/Builders.h" 20 #include "mlir/Dialect/SCF/EDSC/Intrinsics.h" 21 #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h" 22 #include "mlir/Dialect/Vector/EDSC/Intrinsics.h" 23 #include "mlir/Dialect/Vector/VectorOps.h" 24 #include "mlir/Dialect/Vector/VectorUtils.h" 25 #include "mlir/IR/AffineExpr.h" 26 #include "mlir/IR/AffineMap.h" 27 #include "mlir/IR/Attributes.h" 28 #include "mlir/IR/Builders.h" 29 #include "mlir/IR/Location.h" 30 #include "mlir/IR/Matchers.h" 31 #include "mlir/IR/OperationSupport.h" 32 #include "mlir/IR/PatternMatch.h" 33 #include "mlir/IR/Types.h" 34 #include "mlir/Pass/Pass.h" 35 #include "mlir/Transforms/Passes.h" 36 37 using namespace mlir; 38 using namespace mlir::edsc; 39 using namespace mlir::edsc::intrinsics; 40 using vector::TransferReadOp; 41 using vector::TransferWriteOp; 42 43 // Return a list of Values that correspond to multiple AffineApplyOp, one for 44 // each result of `map`. Each `expr` in `map` is canonicalized and folded 45 // greedily according to its operands. 46 // TODO: factor out in a common location that both linalg and vector can use. 47 static SmallVector<Value, 4> 48 applyMapToValues(OpBuilder &b, Location loc, AffineMap map, ValueRange values) { 49 SmallVector<Value, 4> res; 50 res.reserve(map.getNumResults()); 51 unsigned numDims = map.getNumDims(), numSym = map.getNumSymbols(); 52 // For each `expr` in `map`, applies the `expr` to the values extracted from 53 // ranges. If the resulting application can be folded into a Value, the 54 // folding occurs eagerly. Otherwise, an affine.apply operation is emitted. 55 for (auto expr : map.getResults()) { 56 AffineMap map = AffineMap::get(numDims, numSym, expr); 57 SmallVector<Value, 4> operands(values.begin(), values.end()); 58 fullyComposeAffineMapAndOperands(&map, &operands); 59 canonicalizeMapAndOperands(&map, &operands); 60 res.push_back(b.createOrFold<AffineApplyOp>(loc, map, operands)); 61 } 62 return res; 63 } 64 65 namespace { 66 /// Helper class captures the common information needed to lower N>1-D vector 67 /// transfer operations (read and write). 68 /// On construction, this class opens an edsc::ScopedContext for simpler IR 69 /// manipulation. 70 /// In pseudo-IR, for an n-D vector_transfer_read such as: 71 /// 72 /// ``` 73 /// vector_transfer_read(%m, %offsets, identity_map, %fill) : 74 /// memref<(leading_dims) x (major_dims) x (minor_dims) x type>, 75 /// vector<(major_dims) x (minor_dims) x type> 76 /// ``` 77 /// 78 /// where rank(minor_dims) is the lower-level vector rank (e.g. 1 for LLVM or 79 /// higher). 80 /// 81 /// This is the entry point to emitting pseudo-IR resembling: 82 /// 83 /// ``` 84 /// %tmp = alloc(): memref<(major_dims) x vector<minor_dim x type>> 85 /// for (%ivs_major, {0}, {vector_shape}, {1}) { // (N-1)-D loop nest 86 /// if (any_of(%ivs_major + %offsets, <, major_dims)) { 87 /// %v = vector_transfer_read( 88 /// {%offsets_leading, %ivs_major + %offsets_major, %offsets_minor}, 89 /// %ivs_minor): 90 /// memref<(leading_dims) x (major_dims) x (minor_dims) x type>, 91 /// vector<(minor_dims) x type>; 92 /// store(%v, %tmp); 93 /// } else { 94 /// %v = splat(vector<(minor_dims) x type>, %fill) 95 /// store(%v, %tmp, %ivs_major); 96 /// } 97 /// } 98 /// %res = load(%tmp, %0): memref<(major_dims) x vector<minor_dim x type>>): 99 // vector<(major_dims) x (minor_dims) x type> 100 /// ``` 101 /// 102 template <typename ConcreteOp> 103 class NDTransferOpHelper { 104 public: 105 NDTransferOpHelper(PatternRewriter &rewriter, ConcreteOp xferOp, 106 const VectorTransferToSCFOptions &options) 107 : rewriter(rewriter), options(options), loc(xferOp.getLoc()), 108 scope(std::make_unique<ScopedContext>(rewriter, loc)), xferOp(xferOp), 109 op(xferOp.getOperation()) { 110 vectorType = xferOp.getVectorType(); 111 // TODO: when we go to k > 1-D vectors adapt minorRank. 112 minorRank = 1; 113 majorRank = vectorType.getRank() - minorRank; 114 leadingRank = xferOp.getLeadingMemRefRank(); 115 majorVectorType = 116 VectorType::get(vectorType.getShape().take_front(majorRank), 117 vectorType.getElementType()); 118 minorVectorType = 119 VectorType::get(vectorType.getShape().take_back(minorRank), 120 vectorType.getElementType()); 121 /// Memref of minor vector type is used for individual transfers. 122 memRefMinorVectorType = 123 MemRefType::get(majorVectorType.getShape(), minorVectorType, {}, 124 xferOp.getMemRefType().getMemorySpace()); 125 } 126 127 LogicalResult doReplace(); 128 129 private: 130 /// Creates the loop nest on the "major" dimensions and calls the 131 /// `loopBodyBuilder` lambda in the context of the loop nest. 132 void 133 emitLoops(llvm::function_ref<void(ValueRange, ValueRange, ValueRange, 134 ValueRange, const MemRefBoundsCapture &)> 135 loopBodyBuilder); 136 137 /// Common state to lower vector transfer ops. 138 PatternRewriter &rewriter; 139 const VectorTransferToSCFOptions &options; 140 Location loc; 141 std::unique_ptr<ScopedContext> scope; 142 ConcreteOp xferOp; 143 Operation *op; 144 // A vector transfer copies data between: 145 // - memref<(leading_dims) x (major_dims) x (minor_dims) x type> 146 // - vector<(major_dims) x (minor_dims) x type> 147 unsigned minorRank; // for now always 1 148 unsigned majorRank; // vector rank - minorRank 149 unsigned leadingRank; // memref rank - vector rank 150 VectorType vectorType; // vector<(major_dims) x (minor_dims) x type> 151 VectorType majorVectorType; // vector<(major_dims) x type> 152 VectorType minorVectorType; // vector<(minor_dims) x type> 153 MemRefType memRefMinorVectorType; // memref<vector<(minor_dims) x type>> 154 }; 155 156 template <typename ConcreteOp> 157 void NDTransferOpHelper<ConcreteOp>::emitLoops( 158 llvm::function_ref<void(ValueRange, ValueRange, ValueRange, ValueRange, 159 const MemRefBoundsCapture &)> 160 loopBodyBuilder) { 161 /// Loop nest operates on the major dimensions 162 MemRefBoundsCapture memrefBoundsCapture(xferOp.memref()); 163 164 if (options.unroll) { 165 auto shape = majorVectorType.getShape(); 166 auto strides = computeStrides(shape); 167 unsigned numUnrolledInstances = computeMaxLinearIndex(shape); 168 ValueRange indices(xferOp.indices()); 169 for (unsigned idx = 0; idx < numUnrolledInstances; ++idx) { 170 SmallVector<int64_t, 4> offsets = delinearize(strides, idx); 171 SmallVector<Value, 4> offsetValues = 172 llvm::to_vector<4>(llvm::map_range(offsets, [](int64_t off) -> Value { 173 return std_constant_index(off); 174 })); 175 loopBodyBuilder(offsetValues, indices.take_front(leadingRank), 176 indices.drop_front(leadingRank).take_front(majorRank), 177 indices.take_back(minorRank), memrefBoundsCapture); 178 } 179 } else { 180 VectorBoundsCapture vectorBoundsCapture(majorVectorType); 181 auto majorLbs = vectorBoundsCapture.getLbs(); 182 auto majorUbs = vectorBoundsCapture.getUbs(); 183 auto majorSteps = vectorBoundsCapture.getSteps(); 184 affineLoopNestBuilder( 185 majorLbs, majorUbs, majorSteps, [&](ValueRange majorIvs) { 186 ValueRange indices(xferOp.indices()); 187 loopBodyBuilder(majorIvs, indices.take_front(leadingRank), 188 indices.drop_front(leadingRank).take_front(majorRank), 189 indices.take_back(minorRank), memrefBoundsCapture); 190 }); 191 } 192 } 193 194 static Optional<int64_t> extractConstantIndex(Value v) { 195 if (auto cstOp = v.getDefiningOp<ConstantIndexOp>()) 196 return cstOp.getValue(); 197 if (auto affineApplyOp = v.getDefiningOp<AffineApplyOp>()) 198 if (affineApplyOp.getAffineMap().isSingleConstant()) 199 return affineApplyOp.getAffineMap().getSingleConstantResult(); 200 return None; 201 } 202 203 // Missing foldings of scf.if make it necessary to perform poor man's folding 204 // eagerly, especially in the case of unrolling. In the future, this should go 205 // away once scf.if folds properly. 206 static Value onTheFlyFoldSLT(Value v, Value ub) { 207 using namespace mlir::edsc::op; 208 auto maybeCstV = extractConstantIndex(v); 209 auto maybeCstUb = extractConstantIndex(ub); 210 if (maybeCstV && maybeCstUb && *maybeCstV < *maybeCstUb) 211 return Value(); 212 return slt(v, ub); 213 } 214 215 /// 1. Compute the indexings `majorIvs + majorOffsets` and save them in 216 /// `majorIvsPlusOffsets`. 217 /// 2. Return a value of i1 that determines whether the first 218 /// `majorIvs.rank()` 219 /// dimensions `majorIvs + majorOffsets` are all within `memrefBounds`. 220 static Value 221 emitInBoundsCondition(PatternRewriter &rewriter, 222 VectorTransferOpInterface xferOp, unsigned leadingRank, 223 ValueRange majorIvs, ValueRange majorOffsets, 224 const MemRefBoundsCapture &memrefBounds, 225 SmallVectorImpl<Value> &majorIvsPlusOffsets) { 226 Value inBoundsCondition; 227 majorIvsPlusOffsets.reserve(majorIvs.size()); 228 unsigned idx = 0; 229 SmallVector<Value, 4> bounds = 230 applyMapToValues(rewriter, xferOp.getLoc(), xferOp.permutation_map(), 231 memrefBounds.getUbs()); 232 for (auto it : llvm::zip(majorIvs, majorOffsets, bounds)) { 233 Value iv = std::get<0>(it), off = std::get<1>(it), ub = std::get<2>(it); 234 using namespace mlir::edsc::op; 235 majorIvsPlusOffsets.push_back(iv + off); 236 if (xferOp.isMaskedDim(leadingRank + idx)) { 237 Value inBoundsCond = onTheFlyFoldSLT(majorIvsPlusOffsets.back(), ub); 238 if (inBoundsCond) 239 inBoundsCondition = (inBoundsCondition) 240 ? (inBoundsCondition && inBoundsCond) 241 : inBoundsCond; 242 } 243 ++idx; 244 } 245 return inBoundsCondition; 246 } 247 248 // TODO: Parallelism and threadlocal considerations. 249 static Value setAllocAtFunctionEntry(MemRefType memRefMinorVectorType, 250 Operation *op) { 251 auto &b = ScopedContext::getBuilderRef(); 252 OpBuilder::InsertionGuard guard(b); 253 Operation *scope = 254 op->getParentWithTrait<OpTrait::AutomaticAllocationScope>(); 255 assert(scope && "Expected op to be inside automatic allocation scope"); 256 b.setInsertionPointToStart(&scope->getRegion(0).front()); 257 Value res = std_alloca(memRefMinorVectorType); 258 return res; 259 } 260 261 template <> 262 LogicalResult NDTransferOpHelper<TransferReadOp>::doReplace() { 263 Value alloc, result; 264 if (options.unroll) 265 result = std_splat(vectorType, xferOp.padding()); 266 else 267 alloc = setAllocAtFunctionEntry(memRefMinorVectorType, op); 268 269 emitLoops([&](ValueRange majorIvs, ValueRange leadingOffsets, 270 ValueRange majorOffsets, ValueRange minorOffsets, 271 const MemRefBoundsCapture &memrefBounds) { 272 /// Lambda to load 1-D vector in the current loop ivs + offset context. 273 auto load1DVector = [&](ValueRange majorIvsPlusOffsets) -> Value { 274 SmallVector<Value, 8> indexing; 275 indexing.reserve(leadingRank + majorRank + minorRank); 276 indexing.append(leadingOffsets.begin(), leadingOffsets.end()); 277 indexing.append(majorIvsPlusOffsets.begin(), majorIvsPlusOffsets.end()); 278 indexing.append(minorOffsets.begin(), minorOffsets.end()); 279 Value memref = xferOp.memref(); 280 auto map = 281 getTransferMinorIdentityMap(xferOp.getMemRefType(), minorVectorType); 282 ArrayAttr masked; 283 if (!xferOp.isMaskedDim(xferOp.getVectorType().getRank() - 1)) { 284 OpBuilder &b = ScopedContext::getBuilderRef(); 285 masked = b.getBoolArrayAttr({false}); 286 } 287 return vector_transfer_read(minorVectorType, memref, indexing, 288 AffineMapAttr::get(map), xferOp.padding(), 289 masked); 290 }; 291 292 // 1. Compute the inBoundsCondition in the current loops ivs + offset 293 // context. 294 SmallVector<Value, 4> majorIvsPlusOffsets; 295 Value inBoundsCondition = emitInBoundsCondition( 296 rewriter, cast<VectorTransferOpInterface>(xferOp.getOperation()), 297 leadingRank, majorIvs, majorOffsets, memrefBounds, majorIvsPlusOffsets); 298 299 if (inBoundsCondition) { 300 // 2. If the condition is not null, we need an IfOp, which may yield 301 // if `options.unroll` is true. 302 SmallVector<Type, 1> resultType; 303 if (options.unroll) 304 resultType.push_back(vectorType); 305 306 // 3. If in-bounds, progressively lower to a 1-D transfer read, otherwise 307 // splat a 1-D vector. 308 ValueRange ifResults = conditionBuilder( 309 resultType, inBoundsCondition, 310 [&]() -> scf::ValueVector { 311 Value vector = load1DVector(majorIvsPlusOffsets); 312 // 3.a. If `options.unroll` is true, insert the 1-D vector in the 313 // aggregate. We must yield and merge with the `else` branch. 314 if (options.unroll) { 315 vector = vector_insert(vector, result, majorIvs); 316 return {vector}; 317 } 318 // 3.b. Otherwise, just go through the temporary `alloc`. 319 std_store(vector, alloc, majorIvs); 320 return {}; 321 }, 322 [&]() -> scf::ValueVector { 323 Value vector = std_splat(minorVectorType, xferOp.padding()); 324 // 3.c. If `options.unroll` is true, insert the 1-D vector in the 325 // aggregate. We must yield and merge with the `then` branch. 326 if (options.unroll) { 327 vector = vector_insert(vector, result, majorIvs); 328 return {vector}; 329 } 330 // 3.d. Otherwise, just go through the temporary `alloc`. 331 std_store(vector, alloc, majorIvs); 332 return {}; 333 }); 334 335 if (!resultType.empty()) 336 result = *ifResults.begin(); 337 } else { 338 // 4. Guaranteed in-bounds, progressively lower to a 1-D transfer read. 339 Value loaded1D = load1DVector(majorIvsPlusOffsets); 340 // 5.a. If `options.unroll` is true, insert the 1-D vector in the 341 // aggregate. 342 if (options.unroll) 343 result = vector_insert(loaded1D, result, majorIvs); 344 // 5.b. Otherwise, just go through the temporary `alloc`. 345 else 346 std_store(loaded1D, alloc, majorIvs); 347 } 348 }); 349 350 assert((!options.unroll ^ (bool)result) && 351 "Expected resulting Value iff unroll"); 352 if (!result) 353 result = std_load(vector_type_cast(MemRefType::get({}, vectorType), alloc)); 354 rewriter.replaceOp(op, result); 355 356 return success(); 357 } 358 359 template <> 360 LogicalResult NDTransferOpHelper<TransferWriteOp>::doReplace() { 361 Value alloc; 362 if (!options.unroll) { 363 alloc = setAllocAtFunctionEntry(memRefMinorVectorType, op); 364 std_store(xferOp.vector(), 365 vector_type_cast(MemRefType::get({}, vectorType), alloc)); 366 } 367 368 emitLoops([&](ValueRange majorIvs, ValueRange leadingOffsets, 369 ValueRange majorOffsets, ValueRange minorOffsets, 370 const MemRefBoundsCapture &memrefBounds) { 371 // Lower to 1-D vector_transfer_write and let recursion handle it. 372 auto emitTransferWrite = [&](ValueRange majorIvsPlusOffsets) { 373 SmallVector<Value, 8> indexing; 374 indexing.reserve(leadingRank + majorRank + minorRank); 375 indexing.append(leadingOffsets.begin(), leadingOffsets.end()); 376 indexing.append(majorIvsPlusOffsets.begin(), majorIvsPlusOffsets.end()); 377 indexing.append(minorOffsets.begin(), minorOffsets.end()); 378 Value result; 379 // If `options.unroll` is true, extract the 1-D vector from the 380 // aggregate. 381 if (options.unroll) 382 result = vector_extract(xferOp.vector(), majorIvs); 383 else 384 result = std_load(alloc, majorIvs); 385 auto map = 386 getTransferMinorIdentityMap(xferOp.getMemRefType(), minorVectorType); 387 ArrayAttr masked; 388 if (!xferOp.isMaskedDim(xferOp.getVectorType().getRank() - 1)) { 389 OpBuilder &b = ScopedContext::getBuilderRef(); 390 masked = b.getBoolArrayAttr({false}); 391 } 392 vector_transfer_write(result, xferOp.memref(), indexing, 393 AffineMapAttr::get(map), masked); 394 }; 395 396 // 1. Compute the inBoundsCondition in the current loops ivs + offset 397 // context. 398 SmallVector<Value, 4> majorIvsPlusOffsets; 399 Value inBoundsCondition = emitInBoundsCondition( 400 rewriter, cast<VectorTransferOpInterface>(xferOp.getOperation()), 401 leadingRank, majorIvs, majorOffsets, memrefBounds, majorIvsPlusOffsets); 402 403 if (inBoundsCondition) { 404 // 2.a. If the condition is not null, we need an IfOp, to write 405 // conditionally. Progressively lower to a 1-D transfer write. 406 conditionBuilder(inBoundsCondition, 407 [&] { emitTransferWrite(majorIvsPlusOffsets); }); 408 } else { 409 // 2.b. Guaranteed in-bounds. Progressively lower to a 1-D transfer write. 410 emitTransferWrite(majorIvsPlusOffsets); 411 } 412 }); 413 414 rewriter.eraseOp(op); 415 416 return success(); 417 } 418 419 } // namespace 420 421 /// Analyzes the `transfer` to find an access dimension along the fastest remote 422 /// MemRef dimension. If such a dimension with coalescing properties is found, 423 /// `pivs` and `vectorBoundsCapture` are swapped so that the invocation of 424 /// LoopNestBuilder captures it in the innermost loop. 425 template <typename TransferOpTy> 426 static int computeCoalescedIndex(TransferOpTy transfer) { 427 // rank of the remote memory access, coalescing behavior occurs on the 428 // innermost memory dimension. 429 auto remoteRank = transfer.getMemRefType().getRank(); 430 // Iterate over the results expressions of the permutation map to determine 431 // the loop order for creating pointwise copies between remote and local 432 // memories. 433 int coalescedIdx = -1; 434 auto exprs = transfer.permutation_map().getResults(); 435 for (auto en : llvm::enumerate(exprs)) { 436 auto dim = en.value().template dyn_cast<AffineDimExpr>(); 437 if (!dim) { 438 continue; 439 } 440 auto memRefDim = dim.getPosition(); 441 if (memRefDim == remoteRank - 1) { 442 // memRefDim has coalescing properties, it should be swapped in the last 443 // position. 444 assert(coalescedIdx == -1 && "Unexpected > 1 coalesced indices"); 445 coalescedIdx = en.index(); 446 } 447 } 448 return coalescedIdx; 449 } 450 451 template <typename TransferOpTy> 452 VectorTransferRewriter<TransferOpTy>::VectorTransferRewriter( 453 VectorTransferToSCFOptions options, MLIRContext *context) 454 : RewritePattern(TransferOpTy::getOperationName(), 1, context), 455 options(options) {} 456 457 /// Used for staging the transfer in a local buffer. 458 template <typename TransferOpTy> 459 MemRefType VectorTransferRewriter<TransferOpTy>::tmpMemRefType( 460 TransferOpTy transfer) const { 461 auto vectorType = transfer.getVectorType(); 462 return MemRefType::get(vectorType.getShape().drop_back(), 463 VectorType::get(vectorType.getShape().take_back(), 464 vectorType.getElementType()), 465 {}, 0); 466 } 467 468 static void emitWithBoundsChecks( 469 PatternRewriter &rewriter, VectorTransferOpInterface transfer, 470 ValueRange ivs, const MemRefBoundsCapture &memRefBoundsCapture, 471 function_ref<void(ArrayRef<Value>)> inBoundsFun, 472 function_ref<void(ArrayRef<Value>)> outOfBoundsFun = nullptr) { 473 // Permute the incoming indices according to the permutation map. 474 SmallVector<Value, 4> indices = 475 applyMapToValues(rewriter, transfer.getLoc(), transfer.permutation_map(), 476 transfer.indices()); 477 478 // Generate a bounds check if necessary. 479 SmallVector<Value, 4> majorIvsPlusOffsets; 480 Value inBoundsCondition = 481 emitInBoundsCondition(rewriter, transfer, 0, ivs, indices, 482 memRefBoundsCapture, majorIvsPlusOffsets); 483 484 // Apply the permutation map to the ivs. The permutation map may not use all 485 // the inputs. 486 SmallVector<Value, 4> scalarAccessExprs(transfer.indices().size()); 487 for (unsigned memRefDim = 0; memRefDim < transfer.indices().size(); 488 ++memRefDim) { 489 // Linear search on a small number of entries. 490 int loopIndex = -1; 491 auto exprs = transfer.permutation_map().getResults(); 492 for (auto en : llvm::enumerate(exprs)) { 493 auto expr = en.value(); 494 auto dim = expr.dyn_cast<AffineDimExpr>(); 495 // Sanity check. 496 assert((dim || expr.cast<AffineConstantExpr>().getValue() == 0) && 497 "Expected dim or 0 in permutationMap"); 498 if (dim && memRefDim == dim.getPosition()) { 499 loopIndex = en.index(); 500 break; 501 } 502 } 503 504 using namespace edsc::op; 505 auto i = transfer.indices()[memRefDim]; 506 scalarAccessExprs[memRefDim] = loopIndex < 0 ? i : i + ivs[loopIndex]; 507 } 508 509 if (inBoundsCondition) 510 conditionBuilder( 511 /* scf.if */ inBoundsCondition, // { 512 [&] { inBoundsFun(scalarAccessExprs); }, 513 // } else { 514 outOfBoundsFun ? [&] { outOfBoundsFun(scalarAccessExprs); } 515 : function_ref<void()>() 516 // } 517 ); 518 else 519 inBoundsFun(scalarAccessExprs); 520 } 521 522 namespace mlir { 523 524 /// Lowers TransferReadOp into a combination of: 525 /// 1. local memory allocation; 526 /// 2. perfect loop nest over: 527 /// a. scalar load from local buffers (viewed as a scalar memref); 528 /// a. scalar store to original memref (with padding). 529 /// 3. vector_load from local buffer (viewed as a memref<1 x vector>); 530 /// 4. local memory deallocation. 531 /// 532 /// Lowers the data transfer part of a TransferReadOp while ensuring no 533 /// out-of-bounds accesses are possible. Out-of-bounds behavior is handled by 534 /// padding. 535 536 /// Performs the rewrite. 537 template <> 538 LogicalResult VectorTransferRewriter<TransferReadOp>::matchAndRewrite( 539 Operation *op, PatternRewriter &rewriter) const { 540 using namespace mlir::edsc::op; 541 542 TransferReadOp transfer = cast<TransferReadOp>(op); 543 544 // Fall back to a loop if the fastest varying stride is not 1 or it is 545 // permuted. 546 int64_t offset; 547 SmallVector<int64_t, 4> strides; 548 auto successStrides = 549 getStridesAndOffset(transfer.getMemRefType(), strides, offset); 550 if (succeeded(successStrides) && strides.back() == 1 && 551 transfer.permutation_map().isMinorIdentity()) { 552 // If > 1D, emit a bunch of loops around 1-D vector transfers. 553 if (transfer.getVectorType().getRank() > 1) 554 return NDTransferOpHelper<TransferReadOp>(rewriter, transfer, options) 555 .doReplace(); 556 // If 1-D this is now handled by the target-specific lowering. 557 if (transfer.getVectorType().getRank() == 1) 558 return failure(); 559 } 560 561 // Conservative lowering to scalar load / stores. 562 // 1. Setup all the captures. 563 ScopedContext scope(rewriter, transfer.getLoc()); 564 StdIndexedValue remote(transfer.memref()); 565 MemRefBoundsCapture memRefBoundsCapture(transfer.memref()); 566 VectorBoundsCapture vectorBoundsCapture(transfer.vector()); 567 int coalescedIdx = computeCoalescedIndex(transfer); 568 // Swap the vectorBoundsCapture which will reorder loop bounds. 569 if (coalescedIdx >= 0) 570 vectorBoundsCapture.swapRanges(vectorBoundsCapture.rank() - 1, 571 coalescedIdx); 572 573 auto lbs = vectorBoundsCapture.getLbs(); 574 auto ubs = vectorBoundsCapture.getUbs(); 575 SmallVector<Value, 8> steps; 576 steps.reserve(vectorBoundsCapture.getSteps().size()); 577 for (auto step : vectorBoundsCapture.getSteps()) 578 steps.push_back(std_constant_index(step)); 579 580 // 2. Emit alloc-copy-load-dealloc. 581 MLIRContext *ctx = op->getContext(); 582 Value tmp = setAllocAtFunctionEntry(tmpMemRefType(transfer), transfer); 583 StdIndexedValue local(tmp); 584 loopNestBuilder(lbs, ubs, steps, [&](ValueRange loopIvs) { 585 auto ivsStorage = llvm::to_vector<8>(loopIvs); 586 // Swap the ivs which will reorder memory accesses. 587 if (coalescedIdx >= 0) 588 std::swap(ivsStorage.back(), ivsStorage[coalescedIdx]); 589 590 ArrayRef<Value> ivs(ivsStorage); 591 Value pos = std_index_cast(IntegerType::get(32, ctx), ivs.back()); 592 Value inVector = local(ivs.drop_back()); 593 auto loadValue = [&](ArrayRef<Value> indices) { 594 Value vector = vector_insert_element(remote(indices), inVector, pos); 595 local(ivs.drop_back()) = vector; 596 }; 597 auto loadPadding = [&](ArrayRef<Value>) { 598 Value vector = vector_insert_element(transfer.padding(), inVector, pos); 599 local(ivs.drop_back()) = vector; 600 }; 601 emitWithBoundsChecks( 602 rewriter, cast<VectorTransferOpInterface>(transfer.getOperation()), ivs, 603 memRefBoundsCapture, loadValue, loadPadding); 604 }); 605 Value vectorValue = std_load(vector_type_cast(tmp)); 606 607 // 3. Propagate. 608 rewriter.replaceOp(op, vectorValue); 609 return success(); 610 } 611 612 /// Lowers TransferWriteOp into a combination of: 613 /// 1. local memory allocation; 614 /// 2. vector_store to local buffer (viewed as a memref<1 x vector>); 615 /// 3. perfect loop nest over: 616 /// a. scalar load from local buffers (viewed as a scalar memref); 617 /// a. scalar store to original memref (if in bounds). 618 /// 4. local memory deallocation. 619 /// 620 /// More specifically, lowers the data transfer part while ensuring no 621 /// out-of-bounds accesses are possible. 622 template <> 623 LogicalResult VectorTransferRewriter<TransferWriteOp>::matchAndRewrite( 624 Operation *op, PatternRewriter &rewriter) const { 625 using namespace edsc::op; 626 627 TransferWriteOp transfer = cast<TransferWriteOp>(op); 628 629 // Fall back to a loop if the fastest varying stride is not 1 or it is 630 // permuted. 631 int64_t offset; 632 SmallVector<int64_t, 4> strides; 633 auto successStrides = 634 getStridesAndOffset(transfer.getMemRefType(), strides, offset); 635 if (succeeded(successStrides) && strides.back() == 1 && 636 transfer.permutation_map().isMinorIdentity()) { 637 // If > 1D, emit a bunch of loops around 1-D vector transfers. 638 if (transfer.getVectorType().getRank() > 1) 639 return NDTransferOpHelper<TransferWriteOp>(rewriter, transfer, options) 640 .doReplace(); 641 // If 1-D this is now handled by the target-specific lowering. 642 if (transfer.getVectorType().getRank() == 1) 643 return failure(); 644 } 645 646 // 1. Setup all the captures. 647 ScopedContext scope(rewriter, transfer.getLoc()); 648 StdIndexedValue remote(transfer.memref()); 649 MemRefBoundsCapture memRefBoundsCapture(transfer.memref()); 650 Value vectorValue(transfer.vector()); 651 VectorBoundsCapture vectorBoundsCapture(transfer.vector()); 652 int coalescedIdx = computeCoalescedIndex(transfer); 653 // Swap the vectorBoundsCapture which will reorder loop bounds. 654 if (coalescedIdx >= 0) 655 vectorBoundsCapture.swapRanges(vectorBoundsCapture.rank() - 1, 656 coalescedIdx); 657 658 auto lbs = vectorBoundsCapture.getLbs(); 659 auto ubs = vectorBoundsCapture.getUbs(); 660 SmallVector<Value, 8> steps; 661 steps.reserve(vectorBoundsCapture.getSteps().size()); 662 for (auto step : vectorBoundsCapture.getSteps()) 663 steps.push_back(std_constant_index(step)); 664 665 // 2. Emit alloc-store-copy-dealloc. 666 Value tmp = setAllocAtFunctionEntry(tmpMemRefType(transfer), transfer); 667 StdIndexedValue local(tmp); 668 Value vec = vector_type_cast(tmp); 669 std_store(vectorValue, vec); 670 loopNestBuilder(lbs, ubs, steps, [&](ValueRange loopIvs) { 671 auto ivsStorage = llvm::to_vector<8>(loopIvs); 672 // Swap the ivsStorage which will reorder memory accesses. 673 if (coalescedIdx >= 0) 674 std::swap(ivsStorage.back(), ivsStorage[coalescedIdx]); 675 676 ArrayRef<Value> ivs(ivsStorage); 677 Value pos = 678 std_index_cast(IntegerType::get(32, op->getContext()), ivs.back()); 679 auto storeValue = [&](ArrayRef<Value> indices) { 680 Value scalar = vector_extract_element(local(ivs.drop_back()), pos); 681 remote(indices) = scalar; 682 }; 683 emitWithBoundsChecks( 684 rewriter, cast<VectorTransferOpInterface>(transfer.getOperation()), ivs, 685 memRefBoundsCapture, storeValue); 686 }); 687 688 // 3. Erase. 689 rewriter.eraseOp(op); 690 return success(); 691 } 692 693 void populateVectorToSCFConversionPatterns( 694 OwningRewritePatternList &patterns, MLIRContext *context, 695 const VectorTransferToSCFOptions &options) { 696 patterns.insert<VectorTransferRewriter<vector::TransferReadOp>, 697 VectorTransferRewriter<vector::TransferWriteOp>>(options, 698 context); 699 } 700 701 } // namespace mlir 702 703 namespace { 704 705 struct ConvertVectorToSCFPass 706 : public ConvertVectorToSCFBase<ConvertVectorToSCFPass> { 707 ConvertVectorToSCFPass() = default; 708 ConvertVectorToSCFPass(const VectorTransferToSCFOptions &options) { 709 this->fullUnroll = options.unroll; 710 } 711 712 void runOnFunction() override { 713 OwningRewritePatternList patterns; 714 auto *context = getFunction().getContext(); 715 populateVectorToSCFConversionPatterns( 716 patterns, context, VectorTransferToSCFOptions().setUnroll(fullUnroll)); 717 applyPatternsAndFoldGreedily(getFunction(), patterns); 718 } 719 }; 720 721 } // namespace 722 723 std::unique_ptr<Pass> 724 mlir::createConvertVectorToSCFPass(const VectorTransferToSCFOptions &options) { 725 return std::make_unique<ConvertVectorToSCFPass>(options); 726 } 727