1 //===- VectorToSCF.cpp - Conversion from Vector to mix of SCF and Std -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements target-dependent lowering of vector transfer operations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <type_traits> 14 15 #include "mlir/Conversion/VectorToSCF/VectorToSCF.h" 16 #include "mlir/Dialect/Affine/EDSC/Intrinsics.h" 17 #include "mlir/Dialect/SCF/EDSC/Builders.h" 18 #include "mlir/Dialect/SCF/EDSC/Intrinsics.h" 19 #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h" 20 #include "mlir/Dialect/Vector/EDSC/Intrinsics.h" 21 #include "mlir/Dialect/Vector/VectorOps.h" 22 #include "mlir/IR/AffineExpr.h" 23 #include "mlir/IR/AffineMap.h" 24 #include "mlir/IR/Attributes.h" 25 #include "mlir/IR/Builders.h" 26 #include "mlir/IR/Location.h" 27 #include "mlir/IR/Matchers.h" 28 #include "mlir/IR/OperationSupport.h" 29 #include "mlir/IR/PatternMatch.h" 30 #include "mlir/IR/Types.h" 31 32 using namespace mlir; 33 using namespace mlir::edsc; 34 using namespace mlir::edsc::intrinsics; 35 using vector::TransferReadOp; 36 using vector::TransferWriteOp; 37 38 namespace { 39 /// Helper class captures the common information needed to lower N>1-D vector 40 /// transfer operations (read and write). 41 /// On construction, this class opens an edsc::ScopedContext for simpler IR 42 /// manipulation. 43 /// In pseudo-IR, for an n-D vector_transfer_read such as: 44 /// 45 /// ``` 46 /// vector_transfer_read(%m, %offsets, identity_map, %fill) : 47 /// memref<(leading_dims) x (major_dims) x (minor_dims) x type>, 48 /// vector<(major_dims) x (minor_dims) x type> 49 /// ``` 50 /// 51 /// where rank(minor_dims) is the lower-level vector rank (e.g. 1 for LLVM or 52 /// higher). 53 /// 54 /// This is the entry point to emitting pseudo-IR resembling: 55 /// 56 /// ``` 57 /// %tmp = alloc(): memref<(major_dims) x vector<minor_dim x type>> 58 /// for (%ivs_major, {0}, {vector_shape}, {1}) { // (N-1)-D loop nest 59 /// if (any_of(%ivs_major + %offsets, <, major_dims)) { 60 /// %v = vector_transfer_read( 61 /// {%offsets_leading, %ivs_major + %offsets_major, %offsets_minor}, 62 /// %ivs_minor): 63 /// memref<(leading_dims) x (major_dims) x (minor_dims) x type>, 64 /// vector<(minor_dims) x type>; 65 /// store(%v, %tmp); 66 /// } else { 67 /// %v = splat(vector<(minor_dims) x type>, %fill) 68 /// store(%v, %tmp, %ivs_major); 69 /// } 70 /// } 71 /// %res = load(%tmp, %0): memref<(major_dims) x vector<minor_dim x type>>): 72 // vector<(major_dims) x (minor_dims) x type> 73 /// ``` 74 /// 75 template <typename ConcreteOp> 76 class NDTransferOpHelper { 77 public: 78 NDTransferOpHelper(PatternRewriter &rewriter, ConcreteOp xferOp) 79 : rewriter(rewriter), loc(xferOp.getLoc()), 80 scope(std::make_unique<ScopedContext>(rewriter, loc)), xferOp(xferOp), 81 op(xferOp.getOperation()) { 82 vectorType = xferOp.getVectorType(); 83 // TODO(ntv, ajcbik): when we go to k > 1-D vectors adapt minorRank. 84 minorRank = 1; 85 majorRank = vectorType.getRank() - minorRank; 86 leadingRank = xferOp.getMemRefType().getRank() - (majorRank + minorRank); 87 majorVectorType = 88 VectorType::get(vectorType.getShape().take_front(majorRank), 89 vectorType.getElementType()); 90 minorVectorType = 91 VectorType::get(vectorType.getShape().take_back(minorRank), 92 vectorType.getElementType()); 93 /// Memref of minor vector type is used for individual transfers. 94 memRefMinorVectorType = 95 MemRefType::get(majorVectorType.getShape(), minorVectorType, {}, 96 xferOp.getMemRefType().getMemorySpace()); 97 } 98 99 LogicalResult doReplace(); 100 101 private: 102 /// Creates the loop nest on the "major" dimensions and calls the 103 /// `loopBodyBuilder` lambda in the context of the loop nest. 104 template <typename Lambda> 105 void emitLoops(Lambda loopBodyBuilder); 106 107 /// Operate within the body of `emitLoops` to: 108 /// 1. Compute the indexings `majorIvs + majorOffsets`. 109 /// 2. Compute a boolean that determines whether the first `majorIvs.rank()` 110 /// dimensions `majorIvs + majorOffsets` are all within `memrefBounds`. 111 /// 3. Create an IfOp conditioned on the boolean in step 2. 112 /// 4. Call a `thenBlockBuilder` and an `elseBlockBuilder` to append 113 /// operations to the IfOp blocks as appropriate. 114 template <typename LambdaThen, typename LambdaElse> 115 void emitInBounds(ValueRange majorIvs, ValueRange majorOffsets, 116 MemRefBoundsCapture &memrefBounds, 117 LambdaThen thenBlockBuilder, LambdaElse elseBlockBuilder); 118 119 /// Common state to lower vector transfer ops. 120 PatternRewriter &rewriter; 121 Location loc; 122 std::unique_ptr<ScopedContext> scope; 123 ConcreteOp xferOp; 124 Operation *op; 125 // A vector transfer copies data between: 126 // - memref<(leading_dims) x (major_dims) x (minor_dims) x type> 127 // - vector<(major_dims) x (minor_dims) x type> 128 unsigned minorRank; // for now always 1 129 unsigned majorRank; // vector rank - minorRank 130 unsigned leadingRank; // memref rank - vector rank 131 VectorType vectorType; // vector<(major_dims) x (minor_dims) x type> 132 VectorType majorVectorType; // vector<(major_dims) x type> 133 VectorType minorVectorType; // vector<(minor_dims) x type> 134 MemRefType memRefMinorVectorType; // memref<vector<(minor_dims) x type>> 135 }; 136 137 template <typename ConcreteOp> 138 template <typename Lambda> 139 void NDTransferOpHelper<ConcreteOp>::emitLoops(Lambda loopBodyBuilder) { 140 /// Loop nest operates on the major dimensions 141 MemRefBoundsCapture memrefBoundsCapture(xferOp.memref()); 142 VectorBoundsCapture vectorBoundsCapture(majorVectorType); 143 auto majorLbs = vectorBoundsCapture.getLbs(); 144 auto majorUbs = vectorBoundsCapture.getUbs(); 145 auto majorSteps = vectorBoundsCapture.getSteps(); 146 SmallVector<Value, 8> majorIvs(vectorBoundsCapture.rank()); 147 AffineLoopNestBuilder(majorIvs, majorLbs, majorUbs, majorSteps)([&] { 148 ValueRange indices(xferOp.indices()); 149 loopBodyBuilder(majorIvs, indices.take_front(leadingRank), 150 indices.drop_front(leadingRank).take_front(majorRank), 151 indices.take_back(minorRank), memrefBoundsCapture); 152 }); 153 } 154 155 template <typename ConcreteOp> 156 template <typename LambdaThen, typename LambdaElse> 157 void NDTransferOpHelper<ConcreteOp>::emitInBounds( 158 ValueRange majorIvs, ValueRange majorOffsets, 159 MemRefBoundsCapture &memrefBounds, LambdaThen thenBlockBuilder, 160 LambdaElse elseBlockBuilder) { 161 Value inBounds; 162 SmallVector<Value, 4> majorIvsPlusOffsets; 163 majorIvsPlusOffsets.reserve(majorIvs.size()); 164 unsigned idx = 0; 165 for (auto it : llvm::zip(majorIvs, majorOffsets, memrefBounds.getUbs())) { 166 Value iv = std::get<0>(it), off = std::get<1>(it), ub = std::get<2>(it); 167 using namespace mlir::edsc::op; 168 majorIvsPlusOffsets.push_back(iv + off); 169 if (xferOp.isMaskedDim(leadingRank + idx)) { 170 Value inBounds2 = majorIvsPlusOffsets.back() < ub; 171 inBounds = (inBounds) ? (inBounds && inBounds2) : inBounds2; 172 } 173 ++idx; 174 } 175 176 if (inBounds) { 177 auto ifOp = ScopedContext::getBuilderRef().create<scf::IfOp>( 178 ScopedContext::getLocation(), TypeRange{}, inBounds, 179 /*withElseRegion=*/std::is_same<ConcreteOp, TransferReadOp>()); 180 BlockBuilder(&ifOp.thenRegion().front(), 181 Append())([&] { thenBlockBuilder(majorIvsPlusOffsets); }); 182 if (std::is_same<ConcreteOp, TransferReadOp>()) 183 BlockBuilder(&ifOp.elseRegion().front(), 184 Append())([&] { elseBlockBuilder(majorIvsPlusOffsets); }); 185 } else { 186 // Just build the body of the then block right here. 187 thenBlockBuilder(majorIvsPlusOffsets); 188 } 189 } 190 191 template <> 192 LogicalResult NDTransferOpHelper<TransferReadOp>::doReplace() { 193 Value alloc = std_alloc(memRefMinorVectorType); 194 195 emitLoops([&](ValueRange majorIvs, ValueRange leadingOffsets, 196 ValueRange majorOffsets, ValueRange minorOffsets, 197 MemRefBoundsCapture &memrefBounds) { 198 // If in-bounds, index into memref and lower to 1-D transfer read. 199 auto thenBlockBuilder = [&](ValueRange majorIvsPlusOffsets) { 200 SmallVector<Value, 8> indexing; 201 indexing.reserve(leadingRank + majorRank + minorRank); 202 indexing.append(leadingOffsets.begin(), leadingOffsets.end()); 203 indexing.append(majorIvsPlusOffsets.begin(), majorIvsPlusOffsets.end()); 204 indexing.append(minorOffsets.begin(), minorOffsets.end()); 205 206 Value memref = xferOp.memref(); 207 auto map = TransferReadOp::getTransferMinorIdentityMap( 208 xferOp.getMemRefType(), minorVectorType); 209 ArrayAttr masked; 210 if (xferOp.isMaskedDim(xferOp.getVectorType().getRank() - 1)) { 211 OpBuilder &b = ScopedContext::getBuilderRef(); 212 masked = b.getBoolArrayAttr({true}); 213 } 214 auto loaded1D = vector_transfer_read(minorVectorType, memref, indexing, 215 AffineMapAttr::get(map), 216 xferOp.padding(), masked); 217 // Store the 1-D vector. 218 std_store(loaded1D, alloc, majorIvs); 219 }; 220 // If out-of-bounds, just store a splatted vector. 221 auto elseBlockBuilder = [&](ValueRange majorIvsPlusOffsets) { 222 auto vector = std_splat(minorVectorType, xferOp.padding()); 223 std_store(vector, alloc, majorIvs); 224 }; 225 emitInBounds(majorIvs, majorOffsets, memrefBounds, thenBlockBuilder, 226 elseBlockBuilder); 227 }); 228 229 Value loaded = 230 std_load(vector_type_cast(MemRefType::get({}, vectorType), alloc)); 231 rewriter.replaceOp(op, loaded); 232 233 return success(); 234 } 235 236 template <> 237 LogicalResult NDTransferOpHelper<TransferWriteOp>::doReplace() { 238 Value alloc = std_alloc(memRefMinorVectorType); 239 240 std_store(xferOp.vector(), 241 vector_type_cast(MemRefType::get({}, vectorType), alloc)); 242 243 emitLoops([&](ValueRange majorIvs, ValueRange leadingOffsets, 244 ValueRange majorOffsets, ValueRange minorOffsets, 245 MemRefBoundsCapture &memrefBounds) { 246 auto thenBlockBuilder = [&](ValueRange majorIvsPlusOffsets) { 247 SmallVector<Value, 8> indexing; 248 indexing.reserve(leadingRank + majorRank + minorRank); 249 indexing.append(leadingOffsets.begin(), leadingOffsets.end()); 250 indexing.append(majorIvsPlusOffsets.begin(), majorIvsPlusOffsets.end()); 251 indexing.append(minorOffsets.begin(), minorOffsets.end()); 252 // Lower to 1-D vector_transfer_write and let recursion handle it. 253 Value loaded1D = std_load(alloc, majorIvs); 254 auto map = TransferWriteOp::getTransferMinorIdentityMap( 255 xferOp.getMemRefType(), minorVectorType); 256 ArrayAttr masked; 257 if (xferOp.isMaskedDim(xferOp.getVectorType().getRank() - 1)) { 258 OpBuilder &b = ScopedContext::getBuilderRef(); 259 masked = b.getBoolArrayAttr({true}); 260 } 261 vector_transfer_write(loaded1D, xferOp.memref(), indexing, 262 AffineMapAttr::get(map), masked); 263 }; 264 // Don't write anything when out of bounds. 265 auto elseBlockBuilder = [&](ValueRange majorIvsPlusOffsets) {}; 266 emitInBounds(majorIvs, majorOffsets, memrefBounds, thenBlockBuilder, 267 elseBlockBuilder); 268 }); 269 270 rewriter.eraseOp(op); 271 272 return success(); 273 } 274 275 } // namespace 276 277 /// Analyzes the `transfer` to find an access dimension along the fastest remote 278 /// MemRef dimension. If such a dimension with coalescing properties is found, 279 /// `pivs` and `vectorBoundsCapture` are swapped so that the invocation of 280 /// LoopNestBuilder captures it in the innermost loop. 281 template <typename TransferOpTy> 282 static int computeCoalescedIndex(TransferOpTy transfer) { 283 // rank of the remote memory access, coalescing behavior occurs on the 284 // innermost memory dimension. 285 auto remoteRank = transfer.getMemRefType().getRank(); 286 // Iterate over the results expressions of the permutation map to determine 287 // the loop order for creating pointwise copies between remote and local 288 // memories. 289 int coalescedIdx = -1; 290 auto exprs = transfer.permutation_map().getResults(); 291 for (auto en : llvm::enumerate(exprs)) { 292 auto dim = en.value().template dyn_cast<AffineDimExpr>(); 293 if (!dim) { 294 continue; 295 } 296 auto memRefDim = dim.getPosition(); 297 if (memRefDim == remoteRank - 1) { 298 // memRefDim has coalescing properties, it should be swapped in the last 299 // position. 300 assert(coalescedIdx == -1 && "Unexpected > 1 coalesced indices"); 301 coalescedIdx = en.index(); 302 } 303 } 304 return coalescedIdx; 305 } 306 307 /// Emits remote memory accesses that are clipped to the boundaries of the 308 /// MemRef. 309 template <typename TransferOpTy> 310 static SmallVector<Value, 8> 311 clip(TransferOpTy transfer, MemRefBoundsCapture &bounds, ArrayRef<Value> ivs) { 312 using namespace mlir::edsc; 313 314 Value zero(std_constant_index(0)), one(std_constant_index(1)); 315 SmallVector<Value, 8> memRefAccess(transfer.indices()); 316 SmallVector<Value, 8> clippedScalarAccessExprs(memRefAccess.size()); 317 // Indices accessing to remote memory are clipped and their expressions are 318 // returned in clippedScalarAccessExprs. 319 for (unsigned memRefDim = 0; memRefDim < clippedScalarAccessExprs.size(); 320 ++memRefDim) { 321 // Linear search on a small number of entries. 322 int loopIndex = -1; 323 auto exprs = transfer.permutation_map().getResults(); 324 for (auto en : llvm::enumerate(exprs)) { 325 auto expr = en.value(); 326 auto dim = expr.template dyn_cast<AffineDimExpr>(); 327 // Sanity check. 328 assert( 329 (dim || expr.template cast<AffineConstantExpr>().getValue() == 0) && 330 "Expected dim or 0 in permutationMap"); 331 if (dim && memRefDim == dim.getPosition()) { 332 loopIndex = en.index(); 333 break; 334 } 335 } 336 337 // We cannot distinguish atm between unrolled dimensions that implement 338 // the "always full" tile abstraction and need clipping from the other 339 // ones. So we conservatively clip everything. 340 using namespace edsc::op; 341 auto N = bounds.ub(memRefDim); 342 auto i = memRefAccess[memRefDim]; 343 if (loopIndex < 0) { 344 auto N_minus_1 = N - one; 345 auto select_1 = std_select(i < N, i, N_minus_1); 346 clippedScalarAccessExprs[memRefDim] = 347 std_select(i < zero, zero, select_1); 348 } else { 349 auto ii = ivs[loopIndex]; 350 auto i_plus_ii = i + ii; 351 auto N_minus_1 = N - one; 352 auto select_1 = std_select(i_plus_ii < N, i_plus_ii, N_minus_1); 353 clippedScalarAccessExprs[memRefDim] = 354 std_select(i_plus_ii < zero, zero, select_1); 355 } 356 } 357 358 return clippedScalarAccessExprs; 359 } 360 361 namespace { 362 363 /// Implements lowering of TransferReadOp and TransferWriteOp to a 364 /// proper abstraction for the hardware. 365 /// 366 /// For now, we only emit a simple loop nest that performs clipped pointwise 367 /// copies from a remote to a locally allocated memory. 368 /// 369 /// Consider the case: 370 /// 371 /// ```mlir 372 /// // Read the slice `%A[%i0, %i1:%i1+256, %i2:%i2+32]` into 373 /// // vector<32x256xf32> and pad with %f0 to handle the boundary case: 374 /// %f0 = constant 0.0f : f32 375 /// scf.for %i0 = 0 to %0 { 376 /// scf.for %i1 = 0 to %1 step %c256 { 377 /// scf.for %i2 = 0 to %2 step %c32 { 378 /// %v = vector.transfer_read %A[%i0, %i1, %i2], %f0 379 /// {permutation_map: (d0, d1, d2) -> (d2, d1)} : 380 /// memref<?x?x?xf32>, vector<32x256xf32> 381 /// }}} 382 /// ``` 383 /// 384 /// The rewriters construct loop and indices that access MemRef A in a pattern 385 /// resembling the following (while guaranteeing an always full-tile 386 /// abstraction): 387 /// 388 /// ```mlir 389 /// scf.for %d2 = 0 to %c256 { 390 /// scf.for %d1 = 0 to %c32 { 391 /// %s = %A[%i0, %i1 + %d1, %i2 + %d2] : f32 392 /// %tmp[%d2, %d1] = %s 393 /// } 394 /// } 395 /// ``` 396 /// 397 /// In the current state, only a clipping transfer is implemented by `clip`, 398 /// which creates individual indexing expressions of the form: 399 /// 400 /// ```mlir-dsc 401 /// auto condMax = i + ii < N; 402 /// auto max = std_select(condMax, i + ii, N - one) 403 /// auto cond = i + ii < zero; 404 /// std_select(cond, zero, max); 405 /// ``` 406 /// 407 /// In the future, clipping should not be the only way and instead we should 408 /// load vectors + mask them. Similarly on the write side, load/mask/store for 409 /// implementing RMW behavior. 410 /// 411 /// Lowers TransferOp into a combination of: 412 /// 1. local memory allocation; 413 /// 2. perfect loop nest over: 414 /// a. scalar load/stores from local buffers (viewed as a scalar memref); 415 /// a. scalar store/load to original memref (with clipping). 416 /// 3. vector_load/store 417 /// 4. local memory deallocation. 418 /// Minor variations occur depending on whether a TransferReadOp or 419 /// a TransferWriteOp is rewritten. 420 template <typename TransferOpTy> 421 struct VectorTransferRewriter : public RewritePattern { 422 explicit VectorTransferRewriter(MLIRContext *context) 423 : RewritePattern(TransferOpTy::getOperationName(), 1, context) {} 424 425 /// Used for staging the transfer in a local scalar buffer. 426 MemRefType tmpMemRefType(TransferOpTy transfer) const { 427 auto vectorType = transfer.getVectorType(); 428 return MemRefType::get(vectorType.getShape(), vectorType.getElementType(), 429 {}, 0); 430 } 431 432 /// Performs the rewrite. 433 LogicalResult matchAndRewrite(Operation *op, 434 PatternRewriter &rewriter) const override; 435 }; 436 437 /// Lowers TransferReadOp into a combination of: 438 /// 1. local memory allocation; 439 /// 2. perfect loop nest over: 440 /// a. scalar load from local buffers (viewed as a scalar memref); 441 /// a. scalar store to original memref (with clipping). 442 /// 3. vector_load from local buffer (viewed as a memref<1 x vector>); 443 /// 4. local memory deallocation. 444 /// 445 /// Lowers the data transfer part of a TransferReadOp while ensuring no 446 /// out-of-bounds accesses are possible. Out-of-bounds behavior is handled by 447 /// clipping. This means that a given value in memory can be read multiple 448 /// times and concurrently. 449 /// 450 /// Important notes about clipping and "full-tiles only" abstraction: 451 /// ================================================================= 452 /// When using clipping for dealing with boundary conditions, the same edge 453 /// value will appear multiple times (a.k.a edge padding). This is fine if the 454 /// subsequent vector operations are all data-parallel but **is generally 455 /// incorrect** in the presence of reductions or extract operations. 456 /// 457 /// More generally, clipping is a scalar abstraction that is expected to work 458 /// fine as a baseline for CPUs and GPUs but not for vector_load and DMAs. 459 /// To deal with real vector_load and DMAs, a "padded allocation + view" 460 /// abstraction with the ability to read out-of-memref-bounds (but still within 461 /// the allocated region) is necessary. 462 /// 463 /// Whether using scalar loops or vector_load/DMAs to perform the transfer, 464 /// junk values will be materialized in the vectors and generally need to be 465 /// filtered out and replaced by the "neutral element". This neutral element is 466 /// op-dependent so, in the future, we expect to create a vector filter and 467 /// apply it to a splatted constant vector with the proper neutral element at 468 /// each ssa-use. This filtering is not necessary for pure data-parallel 469 /// operations. 470 /// 471 /// In the case of vector_store/DMAs, Read-Modify-Write will be required, which 472 /// also have concurrency implications. Note that by using clipped scalar stores 473 /// in the presence of data-parallel only operations, we generate code that 474 /// writes the same value multiple time on the edge locations. 475 /// 476 /// TODO(ntv): implement alternatives to clipping. 477 /// TODO(ntv): support non-data-parallel operations. 478 479 /// Performs the rewrite. 480 template <> 481 LogicalResult VectorTransferRewriter<TransferReadOp>::matchAndRewrite( 482 Operation *op, PatternRewriter &rewriter) const { 483 using namespace mlir::edsc::op; 484 485 TransferReadOp transfer = cast<TransferReadOp>(op); 486 if (AffineMap::isMinorIdentity(transfer.permutation_map())) { 487 // If > 1D, emit a bunch of loops around 1-D vector transfers. 488 if (transfer.getVectorType().getRank() > 1) 489 return NDTransferOpHelper<TransferReadOp>(rewriter, transfer).doReplace(); 490 // If 1-D this is now handled by the target-specific lowering. 491 if (transfer.getVectorType().getRank() == 1) 492 return failure(); 493 } 494 495 // Conservative lowering to scalar load / stores. 496 // 1. Setup all the captures. 497 ScopedContext scope(rewriter, transfer.getLoc()); 498 StdIndexedValue remote(transfer.memref()); 499 MemRefBoundsCapture memRefBoundsCapture(transfer.memref()); 500 VectorBoundsCapture vectorBoundsCapture(transfer.vector()); 501 int coalescedIdx = computeCoalescedIndex(transfer); 502 // Swap the vectorBoundsCapture which will reorder loop bounds. 503 if (coalescedIdx >= 0) 504 vectorBoundsCapture.swapRanges(vectorBoundsCapture.rank() - 1, 505 coalescedIdx); 506 507 auto lbs = vectorBoundsCapture.getLbs(); 508 auto ubs = vectorBoundsCapture.getUbs(); 509 SmallVector<Value, 8> steps; 510 steps.reserve(vectorBoundsCapture.getSteps().size()); 511 for (auto step : vectorBoundsCapture.getSteps()) 512 steps.push_back(std_constant_index(step)); 513 514 // 2. Emit alloc-copy-load-dealloc. 515 Value tmp = std_alloc(tmpMemRefType(transfer)); 516 StdIndexedValue local(tmp); 517 Value vec = vector_type_cast(tmp); 518 loopNestBuilder(lbs, ubs, steps, [&](ValueRange loopIvs) { 519 auto ivs = llvm::to_vector<8>(loopIvs); 520 // Swap the ivs which will reorder memory accesses. 521 if (coalescedIdx >= 0) 522 std::swap(ivs.back(), ivs[coalescedIdx]); 523 // Computes clippedScalarAccessExprs in the loop nest scope (ivs exist). 524 local(ivs) = remote(clip(transfer, memRefBoundsCapture, ivs)); 525 }); 526 Value vectorValue = std_load(vec); 527 (std_dealloc(tmp)); // vexing parse 528 529 // 3. Propagate. 530 rewriter.replaceOp(op, vectorValue); 531 return success(); 532 } 533 534 /// Lowers TransferWriteOp into a combination of: 535 /// 1. local memory allocation; 536 /// 2. vector_store to local buffer (viewed as a memref<1 x vector>); 537 /// 3. perfect loop nest over: 538 /// a. scalar load from local buffers (viewed as a scalar memref); 539 /// a. scalar store to original memref (with clipping). 540 /// 4. local memory deallocation. 541 /// 542 /// More specifically, lowers the data transfer part while ensuring no 543 /// out-of-bounds accesses are possible. Out-of-bounds behavior is handled by 544 /// clipping. This means that a given value in memory can be written to multiple 545 /// times and concurrently. 546 /// 547 /// See `Important notes about clipping and full-tiles only abstraction` in the 548 /// description of `readClipped` above. 549 /// 550 /// TODO(ntv): implement alternatives to clipping. 551 /// TODO(ntv): support non-data-parallel operations. 552 template <> 553 LogicalResult VectorTransferRewriter<TransferWriteOp>::matchAndRewrite( 554 Operation *op, PatternRewriter &rewriter) const { 555 using namespace edsc::op; 556 557 TransferWriteOp transfer = cast<TransferWriteOp>(op); 558 if (AffineMap::isMinorIdentity(transfer.permutation_map())) { 559 // If > 1D, emit a bunch of loops around 1-D vector transfers. 560 if (transfer.getVectorType().getRank() > 1) 561 return NDTransferOpHelper<TransferWriteOp>(rewriter, transfer) 562 .doReplace(); 563 // If 1-D this is now handled by the target-specific lowering. 564 if (transfer.getVectorType().getRank() == 1) 565 return failure(); 566 } 567 568 // 1. Setup all the captures. 569 ScopedContext scope(rewriter, transfer.getLoc()); 570 StdIndexedValue remote(transfer.memref()); 571 MemRefBoundsCapture memRefBoundsCapture(transfer.memref()); 572 Value vectorValue(transfer.vector()); 573 VectorBoundsCapture vectorBoundsCapture(transfer.vector()); 574 int coalescedIdx = computeCoalescedIndex(transfer); 575 // Swap the vectorBoundsCapture which will reorder loop bounds. 576 if (coalescedIdx >= 0) 577 vectorBoundsCapture.swapRanges(vectorBoundsCapture.rank() - 1, 578 coalescedIdx); 579 580 auto lbs = vectorBoundsCapture.getLbs(); 581 auto ubs = vectorBoundsCapture.getUbs(); 582 SmallVector<Value, 8> steps; 583 steps.reserve(vectorBoundsCapture.getSteps().size()); 584 for (auto step : vectorBoundsCapture.getSteps()) 585 steps.push_back(std_constant_index(step)); 586 587 // 2. Emit alloc-store-copy-dealloc. 588 Value tmp = std_alloc(tmpMemRefType(transfer)); 589 StdIndexedValue local(tmp); 590 Value vec = vector_type_cast(tmp); 591 std_store(vectorValue, vec); 592 loopNestBuilder(lbs, ubs, steps, [&](ValueRange loopIvs) { 593 auto ivs = llvm::to_vector<8>(loopIvs); 594 // Swap the ivs which will reorder memory accesses. 595 if (coalescedIdx >= 0) 596 std::swap(ivs.back(), ivs[coalescedIdx]); 597 // Computes clippedScalarAccessExprs in the loop nest scope (ivs exist). 598 remote(clip(transfer, memRefBoundsCapture, ivs)) = local(ivs); 599 }); 600 (std_dealloc(tmp)); // vexing parse... 601 602 rewriter.eraseOp(op); 603 return success(); 604 } 605 606 } // namespace 607 608 void mlir::populateVectorToSCFConversionPatterns( 609 OwningRewritePatternList &patterns, MLIRContext *context) { 610 patterns.insert<VectorTransferRewriter<vector::TransferReadOp>, 611 VectorTransferRewriter<vector::TransferWriteOp>>(context); 612 } 613