1 //===- VectorToSCF.cpp - Conversion from Vector to mix of SCF and Std -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements target-dependent lowering of vector transfer operations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <type_traits> 14 15 #include "mlir/Conversion/VectorToSCF/VectorToSCF.h" 16 17 #include "../PassDetail.h" 18 #include "mlir/Dialect/Affine/EDSC/Intrinsics.h" 19 #include "mlir/Dialect/SCF/EDSC/Builders.h" 20 #include "mlir/Dialect/SCF/EDSC/Intrinsics.h" 21 #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h" 22 #include "mlir/Dialect/Vector/EDSC/Intrinsics.h" 23 #include "mlir/Dialect/Vector/VectorOps.h" 24 #include "mlir/Dialect/Vector/VectorUtils.h" 25 #include "mlir/IR/AffineExpr.h" 26 #include "mlir/IR/AffineMap.h" 27 #include "mlir/IR/Builders.h" 28 #include "mlir/IR/Matchers.h" 29 #include "mlir/Pass/Pass.h" 30 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 31 #include "mlir/Transforms/Passes.h" 32 33 using namespace mlir; 34 using namespace mlir::edsc; 35 using namespace mlir::edsc::intrinsics; 36 using vector::TransferReadOp; 37 using vector::TransferWriteOp; 38 39 // Return a list of Values that correspond to multiple AffineApplyOp, one for 40 // each result of `map`. Each `expr` in `map` is canonicalized and folded 41 // greedily according to its operands. 42 // TODO: factor out in a common location that both linalg and vector can use. 43 static SmallVector<Value, 4> 44 applyMapToValues(OpBuilder &b, Location loc, AffineMap map, ValueRange values) { 45 SmallVector<Value, 4> res; 46 res.reserve(map.getNumResults()); 47 unsigned numDims = map.getNumDims(), numSym = map.getNumSymbols(); 48 // For each `expr` in `map`, applies the `expr` to the values extracted from 49 // ranges. If the resulting application can be folded into a Value, the 50 // folding occurs eagerly. Otherwise, an affine.apply operation is emitted. 51 for (auto expr : map.getResults()) { 52 AffineMap map = AffineMap::get(numDims, numSym, expr); 53 SmallVector<Value, 4> operands(values.begin(), values.end()); 54 fullyComposeAffineMapAndOperands(&map, &operands); 55 canonicalizeMapAndOperands(&map, &operands); 56 res.push_back(b.createOrFold<AffineApplyOp>(loc, map, operands)); 57 } 58 return res; 59 } 60 61 namespace { 62 /// Helper class captures the common information needed to lower N>1-D vector 63 /// transfer operations (read and write). 64 /// On construction, this class opens an edsc::ScopedContext for simpler IR 65 /// manipulation. 66 /// In pseudo-IR, for an n-D vector_transfer_read such as: 67 /// 68 /// ``` 69 /// vector_transfer_read(%m, %offsets, identity_map, %fill) : 70 /// memref<(leading_dims) x (major_dims) x (minor_dims) x type>, 71 /// vector<(major_dims) x (minor_dims) x type> 72 /// ``` 73 /// 74 /// where rank(minor_dims) is the lower-level vector rank (e.g. 1 for LLVM or 75 /// higher). 76 /// 77 /// This is the entry point to emitting pseudo-IR resembling: 78 /// 79 /// ``` 80 /// %tmp = alloc(): memref<(major_dims) x vector<minor_dim x type>> 81 /// for (%ivs_major, {0}, {vector_shape}, {1}) { // (N-1)-D loop nest 82 /// if (any_of(%ivs_major + %offsets, <, major_dims)) { 83 /// %v = vector_transfer_read( 84 /// {%offsets_leading, %ivs_major + %offsets_major, %offsets_minor}, 85 /// %ivs_minor): 86 /// memref<(leading_dims) x (major_dims) x (minor_dims) x type>, 87 /// vector<(minor_dims) x type>; 88 /// store(%v, %tmp); 89 /// } else { 90 /// %v = splat(vector<(minor_dims) x type>, %fill) 91 /// store(%v, %tmp, %ivs_major); 92 /// } 93 /// } 94 /// %res = load(%tmp, %0): memref<(major_dims) x vector<minor_dim x type>>): 95 // vector<(major_dims) x (minor_dims) x type> 96 /// ``` 97 /// 98 template <typename ConcreteOp> 99 class NDTransferOpHelper { 100 public: 101 NDTransferOpHelper(PatternRewriter &rewriter, ConcreteOp xferOp, 102 const VectorTransferToSCFOptions &options) 103 : rewriter(rewriter), options(options), loc(xferOp.getLoc()), 104 scope(std::make_unique<ScopedContext>(rewriter, loc)), xferOp(xferOp), 105 op(xferOp.getOperation()) { 106 vectorType = xferOp.getVectorType(); 107 // TODO: when we go to k > 1-D vectors adapt minorRank. 108 minorRank = 1; 109 majorRank = vectorType.getRank() - minorRank; 110 leadingRank = xferOp.getLeadingMemRefRank(); 111 majorVectorType = 112 VectorType::get(vectorType.getShape().take_front(majorRank), 113 vectorType.getElementType()); 114 minorVectorType = 115 VectorType::get(vectorType.getShape().take_back(minorRank), 116 vectorType.getElementType()); 117 /// Memref of minor vector type is used for individual transfers. 118 memRefMinorVectorType = 119 MemRefType::get(majorVectorType.getShape(), minorVectorType, {}, 120 xferOp.getMemRefType().getMemorySpace()); 121 } 122 123 LogicalResult doReplace(); 124 125 private: 126 /// Creates the loop nest on the "major" dimensions and calls the 127 /// `loopBodyBuilder` lambda in the context of the loop nest. 128 void 129 emitLoops(llvm::function_ref<void(ValueRange, ValueRange, ValueRange, 130 ValueRange, const MemRefBoundsCapture &)> 131 loopBodyBuilder); 132 133 /// Common state to lower vector transfer ops. 134 PatternRewriter &rewriter; 135 const VectorTransferToSCFOptions &options; 136 Location loc; 137 std::unique_ptr<ScopedContext> scope; 138 ConcreteOp xferOp; 139 Operation *op; 140 // A vector transfer copies data between: 141 // - memref<(leading_dims) x (major_dims) x (minor_dims) x type> 142 // - vector<(major_dims) x (minor_dims) x type> 143 unsigned minorRank; // for now always 1 144 unsigned majorRank; // vector rank - minorRank 145 unsigned leadingRank; // memref rank - vector rank 146 VectorType vectorType; // vector<(major_dims) x (minor_dims) x type> 147 VectorType majorVectorType; // vector<(major_dims) x type> 148 VectorType minorVectorType; // vector<(minor_dims) x type> 149 MemRefType memRefMinorVectorType; // memref<vector<(minor_dims) x type>> 150 }; 151 152 template <typename ConcreteOp> 153 void NDTransferOpHelper<ConcreteOp>::emitLoops( 154 llvm::function_ref<void(ValueRange, ValueRange, ValueRange, ValueRange, 155 const MemRefBoundsCapture &)> 156 loopBodyBuilder) { 157 /// Loop nest operates on the major dimensions 158 MemRefBoundsCapture memrefBoundsCapture(xferOp.memref()); 159 160 if (options.unroll) { 161 auto shape = majorVectorType.getShape(); 162 auto strides = computeStrides(shape); 163 unsigned numUnrolledInstances = computeMaxLinearIndex(shape); 164 ValueRange indices(xferOp.indices()); 165 for (unsigned idx = 0; idx < numUnrolledInstances; ++idx) { 166 SmallVector<int64_t, 4> offsets = delinearize(strides, idx); 167 SmallVector<Value, 4> offsetValues = 168 llvm::to_vector<4>(llvm::map_range(offsets, [](int64_t off) -> Value { 169 return std_constant_index(off); 170 })); 171 loopBodyBuilder(offsetValues, indices.take_front(leadingRank), 172 indices.drop_front(leadingRank).take_front(majorRank), 173 indices.take_back(minorRank), memrefBoundsCapture); 174 } 175 } else { 176 VectorBoundsCapture vectorBoundsCapture(majorVectorType); 177 auto majorLbs = vectorBoundsCapture.getLbs(); 178 auto majorUbs = vectorBoundsCapture.getUbs(); 179 auto majorSteps = vectorBoundsCapture.getSteps(); 180 affineLoopNestBuilder( 181 majorLbs, majorUbs, majorSteps, [&](ValueRange majorIvs) { 182 ValueRange indices(xferOp.indices()); 183 loopBodyBuilder(majorIvs, indices.take_front(leadingRank), 184 indices.drop_front(leadingRank).take_front(majorRank), 185 indices.take_back(minorRank), memrefBoundsCapture); 186 }); 187 } 188 } 189 190 static Optional<int64_t> extractConstantIndex(Value v) { 191 if (auto cstOp = v.getDefiningOp<ConstantIndexOp>()) 192 return cstOp.getValue(); 193 if (auto affineApplyOp = v.getDefiningOp<AffineApplyOp>()) 194 if (affineApplyOp.getAffineMap().isSingleConstant()) 195 return affineApplyOp.getAffineMap().getSingleConstantResult(); 196 return None; 197 } 198 199 // Missing foldings of scf.if make it necessary to perform poor man's folding 200 // eagerly, especially in the case of unrolling. In the future, this should go 201 // away once scf.if folds properly. 202 static Value onTheFlyFoldSLT(Value v, Value ub) { 203 using namespace mlir::edsc::op; 204 auto maybeCstV = extractConstantIndex(v); 205 auto maybeCstUb = extractConstantIndex(ub); 206 if (maybeCstV && maybeCstUb && *maybeCstV < *maybeCstUb) 207 return Value(); 208 return slt(v, ub); 209 } 210 211 /// 1. Compute the indexings `majorIvs + majorOffsets` and save them in 212 /// `majorIvsPlusOffsets`. 213 /// 2. Return a value of i1 that determines whether the first 214 /// `majorIvs.rank()` 215 /// dimensions `majorIvs + majorOffsets` are all within `memrefBounds`. 216 static Value 217 emitInBoundsCondition(PatternRewriter &rewriter, 218 VectorTransferOpInterface xferOp, unsigned leadingRank, 219 ValueRange majorIvs, ValueRange majorOffsets, 220 const MemRefBoundsCapture &memrefBounds, 221 SmallVectorImpl<Value> &majorIvsPlusOffsets) { 222 Value inBoundsCondition; 223 majorIvsPlusOffsets.reserve(majorIvs.size()); 224 unsigned idx = 0; 225 SmallVector<Value, 4> bounds = 226 applyMapToValues(rewriter, xferOp.getLoc(), xferOp.permutation_map(), 227 memrefBounds.getUbs()); 228 for (auto it : llvm::zip(majorIvs, majorOffsets, bounds)) { 229 Value iv = std::get<0>(it), off = std::get<1>(it), ub = std::get<2>(it); 230 using namespace mlir::edsc::op; 231 majorIvsPlusOffsets.push_back(iv + off); 232 if (xferOp.isMaskedDim(leadingRank + idx)) { 233 Value inBoundsCond = onTheFlyFoldSLT(majorIvsPlusOffsets.back(), ub); 234 if (inBoundsCond) 235 inBoundsCondition = (inBoundsCondition) 236 ? (inBoundsCondition && inBoundsCond) 237 : inBoundsCond; 238 } 239 ++idx; 240 } 241 return inBoundsCondition; 242 } 243 244 // TODO: Parallelism and threadlocal considerations. 245 static Value setAllocAtFunctionEntry(MemRefType memRefMinorVectorType, 246 Operation *op) { 247 auto &b = ScopedContext::getBuilderRef(); 248 OpBuilder::InsertionGuard guard(b); 249 Operation *scope = 250 op->getParentWithTrait<OpTrait::AutomaticAllocationScope>(); 251 assert(scope && "Expected op to be inside automatic allocation scope"); 252 b.setInsertionPointToStart(&scope->getRegion(0).front()); 253 Value res = std_alloca(memRefMinorVectorType); 254 return res; 255 } 256 257 template <> 258 LogicalResult NDTransferOpHelper<TransferReadOp>::doReplace() { 259 Value alloc, result; 260 if (options.unroll) 261 result = std_splat(vectorType, xferOp.padding()); 262 else 263 alloc = setAllocAtFunctionEntry(memRefMinorVectorType, op); 264 265 emitLoops([&](ValueRange majorIvs, ValueRange leadingOffsets, 266 ValueRange majorOffsets, ValueRange minorOffsets, 267 const MemRefBoundsCapture &memrefBounds) { 268 /// Lambda to load 1-D vector in the current loop ivs + offset context. 269 auto load1DVector = [&](ValueRange majorIvsPlusOffsets) -> Value { 270 SmallVector<Value, 8> indexing; 271 indexing.reserve(leadingRank + majorRank + minorRank); 272 indexing.append(leadingOffsets.begin(), leadingOffsets.end()); 273 indexing.append(majorIvsPlusOffsets.begin(), majorIvsPlusOffsets.end()); 274 indexing.append(minorOffsets.begin(), minorOffsets.end()); 275 Value memref = xferOp.memref(); 276 auto map = 277 getTransferMinorIdentityMap(xferOp.getMemRefType(), minorVectorType); 278 ArrayAttr masked; 279 if (!xferOp.isMaskedDim(xferOp.getVectorType().getRank() - 1)) { 280 OpBuilder &b = ScopedContext::getBuilderRef(); 281 masked = b.getBoolArrayAttr({false}); 282 } 283 return vector_transfer_read(minorVectorType, memref, indexing, 284 AffineMapAttr::get(map), xferOp.padding(), 285 masked); 286 }; 287 288 // 1. Compute the inBoundsCondition in the current loops ivs + offset 289 // context. 290 SmallVector<Value, 4> majorIvsPlusOffsets; 291 Value inBoundsCondition = emitInBoundsCondition( 292 rewriter, cast<VectorTransferOpInterface>(xferOp.getOperation()), 293 leadingRank, majorIvs, majorOffsets, memrefBounds, majorIvsPlusOffsets); 294 295 if (inBoundsCondition) { 296 // 2. If the condition is not null, we need an IfOp, which may yield 297 // if `options.unroll` is true. 298 SmallVector<Type, 1> resultType; 299 if (options.unroll) 300 resultType.push_back(vectorType); 301 302 // 3. If in-bounds, progressively lower to a 1-D transfer read, otherwise 303 // splat a 1-D vector. 304 ValueRange ifResults = conditionBuilder( 305 resultType, inBoundsCondition, 306 [&]() -> scf::ValueVector { 307 Value vector = load1DVector(majorIvsPlusOffsets); 308 // 3.a. If `options.unroll` is true, insert the 1-D vector in the 309 // aggregate. We must yield and merge with the `else` branch. 310 if (options.unroll) { 311 vector = vector_insert(vector, result, majorIvs); 312 return {vector}; 313 } 314 // 3.b. Otherwise, just go through the temporary `alloc`. 315 std_store(vector, alloc, majorIvs); 316 return {}; 317 }, 318 [&]() -> scf::ValueVector { 319 Value vector = std_splat(minorVectorType, xferOp.padding()); 320 // 3.c. If `options.unroll` is true, insert the 1-D vector in the 321 // aggregate. We must yield and merge with the `then` branch. 322 if (options.unroll) { 323 vector = vector_insert(vector, result, majorIvs); 324 return {vector}; 325 } 326 // 3.d. Otherwise, just go through the temporary `alloc`. 327 std_store(vector, alloc, majorIvs); 328 return {}; 329 }); 330 331 if (!resultType.empty()) 332 result = *ifResults.begin(); 333 } else { 334 // 4. Guaranteed in-bounds, progressively lower to a 1-D transfer read. 335 Value loaded1D = load1DVector(majorIvsPlusOffsets); 336 // 5.a. If `options.unroll` is true, insert the 1-D vector in the 337 // aggregate. 338 if (options.unroll) 339 result = vector_insert(loaded1D, result, majorIvs); 340 // 5.b. Otherwise, just go through the temporary `alloc`. 341 else 342 std_store(loaded1D, alloc, majorIvs); 343 } 344 }); 345 346 assert((!options.unroll ^ (bool)result) && 347 "Expected resulting Value iff unroll"); 348 if (!result) 349 result = std_load(vector_type_cast(MemRefType::get({}, vectorType), alloc)); 350 rewriter.replaceOp(op, result); 351 352 return success(); 353 } 354 355 template <> 356 LogicalResult NDTransferOpHelper<TransferWriteOp>::doReplace() { 357 Value alloc; 358 if (!options.unroll) { 359 alloc = setAllocAtFunctionEntry(memRefMinorVectorType, op); 360 std_store(xferOp.vector(), 361 vector_type_cast(MemRefType::get({}, vectorType), alloc)); 362 } 363 364 emitLoops([&](ValueRange majorIvs, ValueRange leadingOffsets, 365 ValueRange majorOffsets, ValueRange minorOffsets, 366 const MemRefBoundsCapture &memrefBounds) { 367 // Lower to 1-D vector_transfer_write and let recursion handle it. 368 auto emitTransferWrite = [&](ValueRange majorIvsPlusOffsets) { 369 SmallVector<Value, 8> indexing; 370 indexing.reserve(leadingRank + majorRank + minorRank); 371 indexing.append(leadingOffsets.begin(), leadingOffsets.end()); 372 indexing.append(majorIvsPlusOffsets.begin(), majorIvsPlusOffsets.end()); 373 indexing.append(minorOffsets.begin(), minorOffsets.end()); 374 Value result; 375 // If `options.unroll` is true, extract the 1-D vector from the 376 // aggregate. 377 if (options.unroll) 378 result = vector_extract(xferOp.vector(), majorIvs); 379 else 380 result = std_load(alloc, majorIvs); 381 auto map = 382 getTransferMinorIdentityMap(xferOp.getMemRefType(), minorVectorType); 383 ArrayAttr masked; 384 if (!xferOp.isMaskedDim(xferOp.getVectorType().getRank() - 1)) { 385 OpBuilder &b = ScopedContext::getBuilderRef(); 386 masked = b.getBoolArrayAttr({false}); 387 } 388 vector_transfer_write(result, xferOp.memref(), indexing, 389 AffineMapAttr::get(map), masked); 390 }; 391 392 // 1. Compute the inBoundsCondition in the current loops ivs + offset 393 // context. 394 SmallVector<Value, 4> majorIvsPlusOffsets; 395 Value inBoundsCondition = emitInBoundsCondition( 396 rewriter, cast<VectorTransferOpInterface>(xferOp.getOperation()), 397 leadingRank, majorIvs, majorOffsets, memrefBounds, majorIvsPlusOffsets); 398 399 if (inBoundsCondition) { 400 // 2.a. If the condition is not null, we need an IfOp, to write 401 // conditionally. Progressively lower to a 1-D transfer write. 402 conditionBuilder(inBoundsCondition, 403 [&] { emitTransferWrite(majorIvsPlusOffsets); }); 404 } else { 405 // 2.b. Guaranteed in-bounds. Progressively lower to a 1-D transfer write. 406 emitTransferWrite(majorIvsPlusOffsets); 407 } 408 }); 409 410 rewriter.eraseOp(op); 411 412 return success(); 413 } 414 415 } // namespace 416 417 /// Analyzes the `transfer` to find an access dimension along the fastest remote 418 /// MemRef dimension. If such a dimension with coalescing properties is found, 419 /// `pivs` and `vectorBoundsCapture` are swapped so that the invocation of 420 /// LoopNestBuilder captures it in the innermost loop. 421 template <typename TransferOpTy> 422 static int computeCoalescedIndex(TransferOpTy transfer) { 423 // rank of the remote memory access, coalescing behavior occurs on the 424 // innermost memory dimension. 425 auto remoteRank = transfer.getMemRefType().getRank(); 426 // Iterate over the results expressions of the permutation map to determine 427 // the loop order for creating pointwise copies between remote and local 428 // memories. 429 int coalescedIdx = -1; 430 auto exprs = transfer.permutation_map().getResults(); 431 for (auto en : llvm::enumerate(exprs)) { 432 auto dim = en.value().template dyn_cast<AffineDimExpr>(); 433 if (!dim) { 434 continue; 435 } 436 auto memRefDim = dim.getPosition(); 437 if (memRefDim == remoteRank - 1) { 438 // memRefDim has coalescing properties, it should be swapped in the last 439 // position. 440 assert(coalescedIdx == -1 && "Unexpected > 1 coalesced indices"); 441 coalescedIdx = en.index(); 442 } 443 } 444 return coalescedIdx; 445 } 446 447 template <typename TransferOpTy> 448 VectorTransferRewriter<TransferOpTy>::VectorTransferRewriter( 449 VectorTransferToSCFOptions options, MLIRContext *context) 450 : RewritePattern(TransferOpTy::getOperationName(), 1, context), 451 options(options) {} 452 453 /// Used for staging the transfer in a local buffer. 454 template <typename TransferOpTy> 455 MemRefType VectorTransferRewriter<TransferOpTy>::tmpMemRefType( 456 TransferOpTy transfer) const { 457 auto vectorType = transfer.getVectorType(); 458 return MemRefType::get(vectorType.getShape().drop_back(), 459 VectorType::get(vectorType.getShape().take_back(), 460 vectorType.getElementType()), 461 {}, 0); 462 } 463 464 static void emitWithBoundsChecks( 465 PatternRewriter &rewriter, VectorTransferOpInterface transfer, 466 ValueRange ivs, const MemRefBoundsCapture &memRefBoundsCapture, 467 function_ref<void(ArrayRef<Value>)> inBoundsFun, 468 function_ref<void(ArrayRef<Value>)> outOfBoundsFun = nullptr) { 469 // Permute the incoming indices according to the permutation map. 470 SmallVector<Value, 4> indices = 471 applyMapToValues(rewriter, transfer.getLoc(), transfer.permutation_map(), 472 transfer.indices()); 473 474 // Generate a bounds check if necessary. 475 SmallVector<Value, 4> majorIvsPlusOffsets; 476 Value inBoundsCondition = 477 emitInBoundsCondition(rewriter, transfer, 0, ivs, indices, 478 memRefBoundsCapture, majorIvsPlusOffsets); 479 480 // Apply the permutation map to the ivs. The permutation map may not use all 481 // the inputs. 482 SmallVector<Value, 4> scalarAccessExprs(transfer.indices().size()); 483 for (unsigned memRefDim = 0; memRefDim < transfer.indices().size(); 484 ++memRefDim) { 485 // Linear search on a small number of entries. 486 int loopIndex = -1; 487 auto exprs = transfer.permutation_map().getResults(); 488 for (auto en : llvm::enumerate(exprs)) { 489 auto expr = en.value(); 490 auto dim = expr.dyn_cast<AffineDimExpr>(); 491 // Sanity check. 492 assert((dim || expr.cast<AffineConstantExpr>().getValue() == 0) && 493 "Expected dim or 0 in permutationMap"); 494 if (dim && memRefDim == dim.getPosition()) { 495 loopIndex = en.index(); 496 break; 497 } 498 } 499 500 using namespace edsc::op; 501 auto i = transfer.indices()[memRefDim]; 502 scalarAccessExprs[memRefDim] = loopIndex < 0 ? i : i + ivs[loopIndex]; 503 } 504 505 if (inBoundsCondition) 506 conditionBuilder( 507 /* scf.if */ inBoundsCondition, // { 508 [&] { inBoundsFun(scalarAccessExprs); }, 509 // } else { 510 outOfBoundsFun ? [&] { outOfBoundsFun(scalarAccessExprs); } 511 : function_ref<void()>() 512 // } 513 ); 514 else 515 inBoundsFun(scalarAccessExprs); 516 } 517 518 namespace mlir { 519 520 /// Lowers TransferReadOp into a combination of: 521 /// 1. local memory allocation; 522 /// 2. perfect loop nest over: 523 /// a. scalar load from local buffers (viewed as a scalar memref); 524 /// a. scalar store to original memref (with padding). 525 /// 3. vector_load from local buffer (viewed as a memref<1 x vector>); 526 /// 4. local memory deallocation. 527 /// 528 /// Lowers the data transfer part of a TransferReadOp while ensuring no 529 /// out-of-bounds accesses are possible. Out-of-bounds behavior is handled by 530 /// padding. 531 532 /// Performs the rewrite. 533 template <> 534 LogicalResult VectorTransferRewriter<TransferReadOp>::matchAndRewrite( 535 Operation *op, PatternRewriter &rewriter) const { 536 using namespace mlir::edsc::op; 537 538 TransferReadOp transfer = cast<TransferReadOp>(op); 539 540 // Fall back to a loop if the fastest varying stride is not 1 or it is 541 // permuted. 542 int64_t offset; 543 SmallVector<int64_t, 4> strides; 544 auto successStrides = 545 getStridesAndOffset(transfer.getMemRefType(), strides, offset); 546 if (succeeded(successStrides) && strides.back() == 1 && 547 transfer.permutation_map().isMinorIdentity()) { 548 // If > 1D, emit a bunch of loops around 1-D vector transfers. 549 if (transfer.getVectorType().getRank() > 1) 550 return NDTransferOpHelper<TransferReadOp>(rewriter, transfer, options) 551 .doReplace(); 552 // If 1-D this is now handled by the target-specific lowering. 553 if (transfer.getVectorType().getRank() == 1) 554 return failure(); 555 } 556 557 // Conservative lowering to scalar load / stores. 558 // 1. Setup all the captures. 559 ScopedContext scope(rewriter, transfer.getLoc()); 560 StdIndexedValue remote(transfer.memref()); 561 MemRefBoundsCapture memRefBoundsCapture(transfer.memref()); 562 VectorBoundsCapture vectorBoundsCapture(transfer.vector()); 563 int coalescedIdx = computeCoalescedIndex(transfer); 564 // Swap the vectorBoundsCapture which will reorder loop bounds. 565 if (coalescedIdx >= 0) 566 vectorBoundsCapture.swapRanges(vectorBoundsCapture.rank() - 1, 567 coalescedIdx); 568 569 auto lbs = vectorBoundsCapture.getLbs(); 570 auto ubs = vectorBoundsCapture.getUbs(); 571 SmallVector<Value, 8> steps; 572 steps.reserve(vectorBoundsCapture.getSteps().size()); 573 for (auto step : vectorBoundsCapture.getSteps()) 574 steps.push_back(std_constant_index(step)); 575 576 // 2. Emit alloc-copy-load-dealloc. 577 MLIRContext *ctx = op->getContext(); 578 Value tmp = setAllocAtFunctionEntry(tmpMemRefType(transfer), transfer); 579 StdIndexedValue local(tmp); 580 loopNestBuilder(lbs, ubs, steps, [&](ValueRange loopIvs) { 581 auto ivsStorage = llvm::to_vector<8>(loopIvs); 582 // Swap the ivs which will reorder memory accesses. 583 if (coalescedIdx >= 0) 584 std::swap(ivsStorage.back(), ivsStorage[coalescedIdx]); 585 586 ArrayRef<Value> ivs(ivsStorage); 587 Value pos = std_index_cast(IntegerType::get(32, ctx), ivs.back()); 588 Value inVector = local(ivs.drop_back()); 589 auto loadValue = [&](ArrayRef<Value> indices) { 590 Value vector = vector_insert_element(remote(indices), inVector, pos); 591 local(ivs.drop_back()) = vector; 592 }; 593 auto loadPadding = [&](ArrayRef<Value>) { 594 Value vector = vector_insert_element(transfer.padding(), inVector, pos); 595 local(ivs.drop_back()) = vector; 596 }; 597 emitWithBoundsChecks( 598 rewriter, cast<VectorTransferOpInterface>(transfer.getOperation()), ivs, 599 memRefBoundsCapture, loadValue, loadPadding); 600 }); 601 Value vectorValue = std_load(vector_type_cast(tmp)); 602 603 // 3. Propagate. 604 rewriter.replaceOp(op, vectorValue); 605 return success(); 606 } 607 608 /// Lowers TransferWriteOp into a combination of: 609 /// 1. local memory allocation; 610 /// 2. vector_store to local buffer (viewed as a memref<1 x vector>); 611 /// 3. perfect loop nest over: 612 /// a. scalar load from local buffers (viewed as a scalar memref); 613 /// a. scalar store to original memref (if in bounds). 614 /// 4. local memory deallocation. 615 /// 616 /// More specifically, lowers the data transfer part while ensuring no 617 /// out-of-bounds accesses are possible. 618 template <> 619 LogicalResult VectorTransferRewriter<TransferWriteOp>::matchAndRewrite( 620 Operation *op, PatternRewriter &rewriter) const { 621 using namespace edsc::op; 622 623 TransferWriteOp transfer = cast<TransferWriteOp>(op); 624 625 // Fall back to a loop if the fastest varying stride is not 1 or it is 626 // permuted. 627 int64_t offset; 628 SmallVector<int64_t, 4> strides; 629 auto successStrides = 630 getStridesAndOffset(transfer.getMemRefType(), strides, offset); 631 if (succeeded(successStrides) && strides.back() == 1 && 632 transfer.permutation_map().isMinorIdentity()) { 633 // If > 1D, emit a bunch of loops around 1-D vector transfers. 634 if (transfer.getVectorType().getRank() > 1) 635 return NDTransferOpHelper<TransferWriteOp>(rewriter, transfer, options) 636 .doReplace(); 637 // If 1-D this is now handled by the target-specific lowering. 638 if (transfer.getVectorType().getRank() == 1) 639 return failure(); 640 } 641 642 // 1. Setup all the captures. 643 ScopedContext scope(rewriter, transfer.getLoc()); 644 StdIndexedValue remote(transfer.memref()); 645 MemRefBoundsCapture memRefBoundsCapture(transfer.memref()); 646 Value vectorValue(transfer.vector()); 647 VectorBoundsCapture vectorBoundsCapture(transfer.vector()); 648 int coalescedIdx = computeCoalescedIndex(transfer); 649 // Swap the vectorBoundsCapture which will reorder loop bounds. 650 if (coalescedIdx >= 0) 651 vectorBoundsCapture.swapRanges(vectorBoundsCapture.rank() - 1, 652 coalescedIdx); 653 654 auto lbs = vectorBoundsCapture.getLbs(); 655 auto ubs = vectorBoundsCapture.getUbs(); 656 SmallVector<Value, 8> steps; 657 steps.reserve(vectorBoundsCapture.getSteps().size()); 658 for (auto step : vectorBoundsCapture.getSteps()) 659 steps.push_back(std_constant_index(step)); 660 661 // 2. Emit alloc-store-copy-dealloc. 662 Value tmp = setAllocAtFunctionEntry(tmpMemRefType(transfer), transfer); 663 StdIndexedValue local(tmp); 664 Value vec = vector_type_cast(tmp); 665 std_store(vectorValue, vec); 666 loopNestBuilder(lbs, ubs, steps, [&](ValueRange loopIvs) { 667 auto ivsStorage = llvm::to_vector<8>(loopIvs); 668 // Swap the ivsStorage which will reorder memory accesses. 669 if (coalescedIdx >= 0) 670 std::swap(ivsStorage.back(), ivsStorage[coalescedIdx]); 671 672 ArrayRef<Value> ivs(ivsStorage); 673 Value pos = 674 std_index_cast(IntegerType::get(32, op->getContext()), ivs.back()); 675 auto storeValue = [&](ArrayRef<Value> indices) { 676 Value scalar = vector_extract_element(local(ivs.drop_back()), pos); 677 remote(indices) = scalar; 678 }; 679 emitWithBoundsChecks( 680 rewriter, cast<VectorTransferOpInterface>(transfer.getOperation()), ivs, 681 memRefBoundsCapture, storeValue); 682 }); 683 684 // 3. Erase. 685 rewriter.eraseOp(op); 686 return success(); 687 } 688 689 void populateVectorToSCFConversionPatterns( 690 OwningRewritePatternList &patterns, MLIRContext *context, 691 const VectorTransferToSCFOptions &options) { 692 patterns.insert<VectorTransferRewriter<vector::TransferReadOp>, 693 VectorTransferRewriter<vector::TransferWriteOp>>(options, 694 context); 695 } 696 697 } // namespace mlir 698 699 namespace { 700 701 struct ConvertVectorToSCFPass 702 : public ConvertVectorToSCFBase<ConvertVectorToSCFPass> { 703 ConvertVectorToSCFPass() = default; 704 ConvertVectorToSCFPass(const VectorTransferToSCFOptions &options) { 705 this->fullUnroll = options.unroll; 706 } 707 708 void runOnFunction() override { 709 OwningRewritePatternList patterns; 710 auto *context = getFunction().getContext(); 711 populateVectorToSCFConversionPatterns( 712 patterns, context, VectorTransferToSCFOptions().setUnroll(fullUnroll)); 713 applyPatternsAndFoldGreedily(getFunction(), std::move(patterns)); 714 } 715 }; 716 717 } // namespace 718 719 std::unique_ptr<Pass> 720 mlir::createConvertVectorToSCFPass(const VectorTransferToSCFOptions &options) { 721 return std::make_unique<ConvertVectorToSCFPass>(options); 722 } 723