14ead2cf7SAlex Zinenko //===- VectorToSCF.cpp - Conversion from Vector to mix of SCF and Std -----===//
24ead2cf7SAlex Zinenko //
34ead2cf7SAlex Zinenko // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
44ead2cf7SAlex Zinenko // See https://llvm.org/LICENSE.txt for license information.
54ead2cf7SAlex Zinenko // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
64ead2cf7SAlex Zinenko //
74ead2cf7SAlex Zinenko //===----------------------------------------------------------------------===//
84ead2cf7SAlex Zinenko //
94ead2cf7SAlex Zinenko // This file implements target-dependent lowering of vector transfer operations.
104ead2cf7SAlex Zinenko //
114ead2cf7SAlex Zinenko //===----------------------------------------------------------------------===//
124ead2cf7SAlex Zinenko 
134ead2cf7SAlex Zinenko #include <type_traits>
144ead2cf7SAlex Zinenko 
154ead2cf7SAlex Zinenko #include "mlir/Conversion/VectorToSCF/VectorToSCF.h"
165f9e0466SNicolas Vasilache 
175f9e0466SNicolas Vasilache #include "../PassDetail.h"
184ead2cf7SAlex Zinenko #include "mlir/Dialect/Affine/EDSC/Intrinsics.h"
198dace28fSJakub Lichman #include "mlir/Dialect/Linalg/Utils/Utils.h"
204ead2cf7SAlex Zinenko #include "mlir/Dialect/SCF/EDSC/Builders.h"
214ead2cf7SAlex Zinenko #include "mlir/Dialect/SCF/EDSC/Intrinsics.h"
224ead2cf7SAlex Zinenko #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
234ead2cf7SAlex Zinenko #include "mlir/Dialect/Vector/EDSC/Intrinsics.h"
244ead2cf7SAlex Zinenko #include "mlir/Dialect/Vector/VectorOps.h"
257c3c5b11SNicolas Vasilache #include "mlir/Dialect/Vector/VectorUtils.h"
264ead2cf7SAlex Zinenko #include "mlir/IR/AffineExpr.h"
274ead2cf7SAlex Zinenko #include "mlir/IR/AffineMap.h"
284ead2cf7SAlex Zinenko #include "mlir/IR/Attributes.h"
294ead2cf7SAlex Zinenko #include "mlir/IR/Builders.h"
304ead2cf7SAlex Zinenko #include "mlir/IR/Location.h"
314ead2cf7SAlex Zinenko #include "mlir/IR/Matchers.h"
324ead2cf7SAlex Zinenko #include "mlir/IR/OperationSupport.h"
334ead2cf7SAlex Zinenko #include "mlir/IR/PatternMatch.h"
344ead2cf7SAlex Zinenko #include "mlir/IR/Types.h"
355f9e0466SNicolas Vasilache #include "mlir/Pass/Pass.h"
365f9e0466SNicolas Vasilache #include "mlir/Transforms/Passes.h"
374ead2cf7SAlex Zinenko 
38f5ed22f0SJakub Lichman #define ALIGNMENT_SIZE 128
39f5ed22f0SJakub Lichman 
404ead2cf7SAlex Zinenko using namespace mlir;
414ead2cf7SAlex Zinenko using namespace mlir::edsc;
424ead2cf7SAlex Zinenko using namespace mlir::edsc::intrinsics;
434ead2cf7SAlex Zinenko using vector::TransferReadOp;
444ead2cf7SAlex Zinenko using vector::TransferWriteOp;
454ead2cf7SAlex Zinenko 
46350dadaaSBenjamin Kramer namespace {
474ead2cf7SAlex Zinenko /// Helper class captures the common information needed to lower N>1-D vector
484ead2cf7SAlex Zinenko /// transfer operations (read and write).
494ead2cf7SAlex Zinenko /// On construction, this class opens an edsc::ScopedContext for simpler IR
504ead2cf7SAlex Zinenko /// manipulation.
514ead2cf7SAlex Zinenko /// In pseudo-IR, for an n-D vector_transfer_read such as:
524ead2cf7SAlex Zinenko ///
534ead2cf7SAlex Zinenko /// ```
544ead2cf7SAlex Zinenko ///   vector_transfer_read(%m, %offsets, identity_map, %fill) :
554ead2cf7SAlex Zinenko ///     memref<(leading_dims) x (major_dims) x (minor_dims) x type>,
564ead2cf7SAlex Zinenko ///     vector<(major_dims) x (minor_dims) x type>
574ead2cf7SAlex Zinenko /// ```
584ead2cf7SAlex Zinenko ///
594ead2cf7SAlex Zinenko /// where rank(minor_dims) is the lower-level vector rank (e.g. 1 for LLVM or
604ead2cf7SAlex Zinenko /// higher).
614ead2cf7SAlex Zinenko ///
624ead2cf7SAlex Zinenko /// This is the entry point to emitting pseudo-IR resembling:
634ead2cf7SAlex Zinenko ///
644ead2cf7SAlex Zinenko /// ```
654ead2cf7SAlex Zinenko ///   %tmp = alloc(): memref<(major_dims) x vector<minor_dim x type>>
664ead2cf7SAlex Zinenko ///   for (%ivs_major, {0}, {vector_shape}, {1}) { // (N-1)-D loop nest
674ead2cf7SAlex Zinenko ///     if (any_of(%ivs_major + %offsets, <, major_dims)) {
684ead2cf7SAlex Zinenko ///       %v = vector_transfer_read(
694ead2cf7SAlex Zinenko ///         {%offsets_leading, %ivs_major + %offsets_major, %offsets_minor},
704ead2cf7SAlex Zinenko ///          %ivs_minor):
714ead2cf7SAlex Zinenko ///         memref<(leading_dims) x (major_dims) x (minor_dims) x type>,
724ead2cf7SAlex Zinenko ///         vector<(minor_dims) x type>;
734ead2cf7SAlex Zinenko ///       store(%v, %tmp);
744ead2cf7SAlex Zinenko ///     } else {
754ead2cf7SAlex Zinenko ///       %v = splat(vector<(minor_dims) x type>, %fill)
764ead2cf7SAlex Zinenko ///       store(%v, %tmp, %ivs_major);
774ead2cf7SAlex Zinenko ///     }
784ead2cf7SAlex Zinenko ///   }
794ead2cf7SAlex Zinenko ///   %res = load(%tmp, %0): memref<(major_dims) x vector<minor_dim x type>>):
804ead2cf7SAlex Zinenko //      vector<(major_dims) x (minor_dims) x type>
814ead2cf7SAlex Zinenko /// ```
824ead2cf7SAlex Zinenko ///
834ead2cf7SAlex Zinenko template <typename ConcreteOp>
844ead2cf7SAlex Zinenko class NDTransferOpHelper {
854ead2cf7SAlex Zinenko public:
867c3c5b11SNicolas Vasilache   NDTransferOpHelper(PatternRewriter &rewriter, ConcreteOp xferOp,
877c3c5b11SNicolas Vasilache                      const VectorTransferToSCFOptions &options)
887c3c5b11SNicolas Vasilache       : rewriter(rewriter), options(options), loc(xferOp.getLoc()),
894ead2cf7SAlex Zinenko         scope(std::make_unique<ScopedContext>(rewriter, loc)), xferOp(xferOp),
904ead2cf7SAlex Zinenko         op(xferOp.getOperation()) {
914ead2cf7SAlex Zinenko     vectorType = xferOp.getVectorType();
929db53a18SRiver Riddle     // TODO: when we go to k > 1-D vectors adapt minorRank.
934ead2cf7SAlex Zinenko     minorRank = 1;
944ead2cf7SAlex Zinenko     majorRank = vectorType.getRank() - minorRank;
95ec2f2cecSNicolas Vasilache     leadingRank = xferOp.getLeadingMemRefRank();
964ead2cf7SAlex Zinenko     majorVectorType =
974ead2cf7SAlex Zinenko         VectorType::get(vectorType.getShape().take_front(majorRank),
984ead2cf7SAlex Zinenko                         vectorType.getElementType());
994ead2cf7SAlex Zinenko     minorVectorType =
1004ead2cf7SAlex Zinenko         VectorType::get(vectorType.getShape().take_back(minorRank),
1014ead2cf7SAlex Zinenko                         vectorType.getElementType());
1024ead2cf7SAlex Zinenko     /// Memref of minor vector type is used for individual transfers.
1034ead2cf7SAlex Zinenko     memRefMinorVectorType =
1044ead2cf7SAlex Zinenko         MemRefType::get(majorVectorType.getShape(), minorVectorType, {},
1054ead2cf7SAlex Zinenko                         xferOp.getMemRefType().getMemorySpace());
1064ead2cf7SAlex Zinenko   }
1074ead2cf7SAlex Zinenko 
1084ead2cf7SAlex Zinenko   LogicalResult doReplace();
1094ead2cf7SAlex Zinenko 
1104ead2cf7SAlex Zinenko private:
1114ead2cf7SAlex Zinenko   /// Creates the loop nest on the "major" dimensions and calls the
1124ead2cf7SAlex Zinenko   /// `loopBodyBuilder` lambda in the context of the loop nest.
1134ead2cf7SAlex Zinenko   template <typename Lambda>
1144ead2cf7SAlex Zinenko   void emitLoops(Lambda loopBodyBuilder);
1154ead2cf7SAlex Zinenko 
1164ead2cf7SAlex Zinenko   /// Operate within the body of `emitLoops` to:
1177c3c5b11SNicolas Vasilache   ///   1. Compute the indexings `majorIvs + majorOffsets` and save them in
1187c3c5b11SNicolas Vasilache   ///      `majorIvsPlusOffsets`.
1197c3c5b11SNicolas Vasilache   ///   2. Return a boolean that determines whether the first `majorIvs.rank()`
1204ead2cf7SAlex Zinenko   ///      dimensions `majorIvs + majorOffsets` are all within `memrefBounds`.
1217c3c5b11SNicolas Vasilache   Value emitInBoundsCondition(ValueRange majorIvs, ValueRange majorOffsets,
1224ead2cf7SAlex Zinenko                               MemRefBoundsCapture &memrefBounds,
1237c3c5b11SNicolas Vasilache                               SmallVectorImpl<Value> &majorIvsPlusOffsets);
1244ead2cf7SAlex Zinenko 
1254ead2cf7SAlex Zinenko   /// Common state to lower vector transfer ops.
1264ead2cf7SAlex Zinenko   PatternRewriter &rewriter;
1277c3c5b11SNicolas Vasilache   const VectorTransferToSCFOptions &options;
1284ead2cf7SAlex Zinenko   Location loc;
1294ead2cf7SAlex Zinenko   std::unique_ptr<ScopedContext> scope;
1304ead2cf7SAlex Zinenko   ConcreteOp xferOp;
1314ead2cf7SAlex Zinenko   Operation *op;
1324ead2cf7SAlex Zinenko   // A vector transfer copies data between:
1334ead2cf7SAlex Zinenko   //   - memref<(leading_dims) x (major_dims) x (minor_dims) x type>
1344ead2cf7SAlex Zinenko   //   - vector<(major_dims) x (minor_dims) x type>
1354ead2cf7SAlex Zinenko   unsigned minorRank;         // for now always 1
1364ead2cf7SAlex Zinenko   unsigned majorRank;         // vector rank - minorRank
1374ead2cf7SAlex Zinenko   unsigned leadingRank;       // memref rank - vector rank
1384ead2cf7SAlex Zinenko   VectorType vectorType;      // vector<(major_dims) x (minor_dims) x type>
1394ead2cf7SAlex Zinenko   VectorType majorVectorType; // vector<(major_dims) x type>
1404ead2cf7SAlex Zinenko   VectorType minorVectorType; // vector<(minor_dims) x type>
1414ead2cf7SAlex Zinenko   MemRefType memRefMinorVectorType; // memref<vector<(minor_dims) x type>>
1424ead2cf7SAlex Zinenko };
1434ead2cf7SAlex Zinenko 
1444ead2cf7SAlex Zinenko template <typename ConcreteOp>
1454ead2cf7SAlex Zinenko template <typename Lambda>
1464ead2cf7SAlex Zinenko void NDTransferOpHelper<ConcreteOp>::emitLoops(Lambda loopBodyBuilder) {
1474ead2cf7SAlex Zinenko   /// Loop nest operates on the major dimensions
1484ead2cf7SAlex Zinenko   MemRefBoundsCapture memrefBoundsCapture(xferOp.memref());
1497c3c5b11SNicolas Vasilache 
1507c3c5b11SNicolas Vasilache   if (options.unroll) {
1517c3c5b11SNicolas Vasilache     auto shape = majorVectorType.getShape();
1527c3c5b11SNicolas Vasilache     auto strides = computeStrides(shape);
1537c3c5b11SNicolas Vasilache     unsigned numUnrolledInstances = computeMaxLinearIndex(shape);
1547c3c5b11SNicolas Vasilache     ValueRange indices(xferOp.indices());
1557c3c5b11SNicolas Vasilache     for (unsigned idx = 0; idx < numUnrolledInstances; ++idx) {
1567c3c5b11SNicolas Vasilache       SmallVector<int64_t, 4> offsets = delinearize(strides, idx);
1577c3c5b11SNicolas Vasilache       SmallVector<Value, 4> offsetValues =
1587c3c5b11SNicolas Vasilache           llvm::to_vector<4>(llvm::map_range(offsets, [](int64_t off) -> Value {
1597c3c5b11SNicolas Vasilache             return std_constant_index(off);
1607c3c5b11SNicolas Vasilache           }));
1617c3c5b11SNicolas Vasilache       loopBodyBuilder(offsetValues, indices.take_front(leadingRank),
1627c3c5b11SNicolas Vasilache                       indices.drop_front(leadingRank).take_front(majorRank),
1637c3c5b11SNicolas Vasilache                       indices.take_back(minorRank), memrefBoundsCapture);
1647c3c5b11SNicolas Vasilache     }
1657c3c5b11SNicolas Vasilache   } else {
1664ead2cf7SAlex Zinenko     VectorBoundsCapture vectorBoundsCapture(majorVectorType);
1674ead2cf7SAlex Zinenko     auto majorLbs = vectorBoundsCapture.getLbs();
1684ead2cf7SAlex Zinenko     auto majorUbs = vectorBoundsCapture.getUbs();
1694ead2cf7SAlex Zinenko     auto majorSteps = vectorBoundsCapture.getSteps();
1703f5bd53eSAlex Zinenko     affineLoopNestBuilder(
1713f5bd53eSAlex Zinenko         majorLbs, majorUbs, majorSteps, [&](ValueRange majorIvs) {
1724ead2cf7SAlex Zinenko           ValueRange indices(xferOp.indices());
1734ead2cf7SAlex Zinenko           loopBodyBuilder(majorIvs, indices.take_front(leadingRank),
1744ead2cf7SAlex Zinenko                           indices.drop_front(leadingRank).take_front(majorRank),
1754ead2cf7SAlex Zinenko                           indices.take_back(minorRank), memrefBoundsCapture);
1764ead2cf7SAlex Zinenko         });
1774ead2cf7SAlex Zinenko   }
1787c3c5b11SNicolas Vasilache }
1794ead2cf7SAlex Zinenko 
180bd87c6bcSNicolas Vasilache static Optional<int64_t> extractConstantIndex(Value v) {
181bd87c6bcSNicolas Vasilache   if (auto cstOp = v.getDefiningOp<ConstantIndexOp>())
182bd87c6bcSNicolas Vasilache     return cstOp.getValue();
183bd87c6bcSNicolas Vasilache   if (auto affineApplyOp = v.getDefiningOp<AffineApplyOp>())
184bd87c6bcSNicolas Vasilache     if (affineApplyOp.getAffineMap().isSingleConstant())
185bd87c6bcSNicolas Vasilache       return affineApplyOp.getAffineMap().getSingleConstantResult();
186bd87c6bcSNicolas Vasilache   return None;
187bd87c6bcSNicolas Vasilache }
188bd87c6bcSNicolas Vasilache 
189bd87c6bcSNicolas Vasilache // Missing foldings of scf.if make it necessary to perform poor man's folding
190bd87c6bcSNicolas Vasilache // eagerly, especially in the case of unrolling. In the future, this should go
191bd87c6bcSNicolas Vasilache // away once scf.if folds properly.
192bd87c6bcSNicolas Vasilache static Value onTheFlyFoldSLT(Value v, Value ub) {
193bd87c6bcSNicolas Vasilache   using namespace mlir::edsc::op;
194bd87c6bcSNicolas Vasilache   auto maybeCstV = extractConstantIndex(v);
195bd87c6bcSNicolas Vasilache   auto maybeCstUb = extractConstantIndex(ub);
196bd87c6bcSNicolas Vasilache   if (maybeCstV && maybeCstUb && *maybeCstV < *maybeCstUb)
197bd87c6bcSNicolas Vasilache     return Value();
198bd87c6bcSNicolas Vasilache   return slt(v, ub);
199bd87c6bcSNicolas Vasilache }
200bd87c6bcSNicolas Vasilache 
2014ead2cf7SAlex Zinenko template <typename ConcreteOp>
2027c3c5b11SNicolas Vasilache Value NDTransferOpHelper<ConcreteOp>::emitInBoundsCondition(
2034ead2cf7SAlex Zinenko     ValueRange majorIvs, ValueRange majorOffsets,
2047c3c5b11SNicolas Vasilache     MemRefBoundsCapture &memrefBounds,
2057c3c5b11SNicolas Vasilache     SmallVectorImpl<Value> &majorIvsPlusOffsets) {
2067c3c5b11SNicolas Vasilache   Value inBoundsCondition;
2074ead2cf7SAlex Zinenko   majorIvsPlusOffsets.reserve(majorIvs.size());
2081870e787SNicolas Vasilache   unsigned idx = 0;
2098dace28fSJakub Lichman   SmallVector<Value, 4> bounds =
2108dace28fSJakub Lichman       linalg::applyMapToValues(rewriter, xferOp.getLoc(),
2118dace28fSJakub Lichman                                xferOp.permutation_map(), memrefBounds.getUbs());
2128dace28fSJakub Lichman   for (auto it : llvm::zip(majorIvs, majorOffsets, bounds)) {
2134ead2cf7SAlex Zinenko     Value iv = std::get<0>(it), off = std::get<1>(it), ub = std::get<2>(it);
2144ead2cf7SAlex Zinenko     using namespace mlir::edsc::op;
2154ead2cf7SAlex Zinenko     majorIvsPlusOffsets.push_back(iv + off);
2161870e787SNicolas Vasilache     if (xferOp.isMaskedDim(leadingRank + idx)) {
217bd87c6bcSNicolas Vasilache       Value inBoundsCond = onTheFlyFoldSLT(majorIvsPlusOffsets.back(), ub);
218bd87c6bcSNicolas Vasilache       if (inBoundsCond)
219bd87c6bcSNicolas Vasilache         inBoundsCondition = (inBoundsCondition)
220bd87c6bcSNicolas Vasilache                                 ? (inBoundsCondition && inBoundsCond)
221bd87c6bcSNicolas Vasilache                                 : inBoundsCond;
2221870e787SNicolas Vasilache     }
2231870e787SNicolas Vasilache     ++idx;
2244ead2cf7SAlex Zinenko   }
2257c3c5b11SNicolas Vasilache   return inBoundsCondition;
2264ead2cf7SAlex Zinenko }
2274ead2cf7SAlex Zinenko 
228247e185dSNicolas Vasilache // TODO: Parallelism and threadlocal considerations.
229247e185dSNicolas Vasilache static Value setAllocAtFunctionEntry(MemRefType memRefMinorVectorType,
230247e185dSNicolas Vasilache                                      Operation *op) {
231247e185dSNicolas Vasilache   auto &b = ScopedContext::getBuilderRef();
232247e185dSNicolas Vasilache   OpBuilder::InsertionGuard guard(b);
233a4b8c2deSJakub Lichman   Operation *scope =
234a4b8c2deSJakub Lichman       op->getParentWithTrait<OpTrait::AutomaticAllocationScope>();
235a4b8c2deSJakub Lichman   assert(scope && "Expected op to be inside automatic allocation scope");
236a4b8c2deSJakub Lichman   b.setInsertionPointToStart(&scope->getRegion(0).front());
237f5ed22f0SJakub Lichman   Value res = std_alloca(memRefMinorVectorType, ValueRange{},
238f5ed22f0SJakub Lichman                          b.getI64IntegerAttr(ALIGNMENT_SIZE));
239247e185dSNicolas Vasilache   return res;
240247e185dSNicolas Vasilache }
241247e185dSNicolas Vasilache 
2424ead2cf7SAlex Zinenko template <>
2434ead2cf7SAlex Zinenko LogicalResult NDTransferOpHelper<TransferReadOp>::doReplace() {
2447c3c5b11SNicolas Vasilache   Value alloc, result;
2457c3c5b11SNicolas Vasilache   if (options.unroll)
2467c3c5b11SNicolas Vasilache     result = std_splat(vectorType, xferOp.padding());
2477c3c5b11SNicolas Vasilache   else
248247e185dSNicolas Vasilache     alloc = setAllocAtFunctionEntry(memRefMinorVectorType, op);
2494ead2cf7SAlex Zinenko 
2504ead2cf7SAlex Zinenko   emitLoops([&](ValueRange majorIvs, ValueRange leadingOffsets,
2514ead2cf7SAlex Zinenko                 ValueRange majorOffsets, ValueRange minorOffsets,
2524ead2cf7SAlex Zinenko                 MemRefBoundsCapture &memrefBounds) {
2537c3c5b11SNicolas Vasilache     /// Lambda to load 1-D vector in the current loop ivs + offset context.
2547c3c5b11SNicolas Vasilache     auto load1DVector = [&](ValueRange majorIvsPlusOffsets) -> Value {
2554ead2cf7SAlex Zinenko       SmallVector<Value, 8> indexing;
2564ead2cf7SAlex Zinenko       indexing.reserve(leadingRank + majorRank + minorRank);
2574ead2cf7SAlex Zinenko       indexing.append(leadingOffsets.begin(), leadingOffsets.end());
2584ead2cf7SAlex Zinenko       indexing.append(majorIvsPlusOffsets.begin(), majorIvsPlusOffsets.end());
2594ead2cf7SAlex Zinenko       indexing.append(minorOffsets.begin(), minorOffsets.end());
26036cdc17fSNicolas Vasilache       Value memref = xferOp.memref();
26147cbd9f9SNicolas Vasilache       auto map =
26247cbd9f9SNicolas Vasilache           getTransferMinorIdentityMap(xferOp.getMemRefType(), minorVectorType);
2631870e787SNicolas Vasilache       ArrayAttr masked;
264cc0a58d7SNicolas Vasilache       if (!xferOp.isMaskedDim(xferOp.getVectorType().getRank() - 1)) {
2651870e787SNicolas Vasilache         OpBuilder &b = ScopedContext::getBuilderRef();
266cc0a58d7SNicolas Vasilache         masked = b.getBoolArrayAttr({false});
2671870e787SNicolas Vasilache       }
2687c3c5b11SNicolas Vasilache       return vector_transfer_read(minorVectorType, memref, indexing,
2697c3c5b11SNicolas Vasilache                                   AffineMapAttr::get(map), xferOp.padding(),
2707c3c5b11SNicolas Vasilache                                   masked);
2714ead2cf7SAlex Zinenko     };
2727c3c5b11SNicolas Vasilache 
2737c3c5b11SNicolas Vasilache     // 1. Compute the inBoundsCondition in the current loops ivs + offset
2747c3c5b11SNicolas Vasilache     // context.
2757c3c5b11SNicolas Vasilache     SmallVector<Value, 4> majorIvsPlusOffsets;
2767c3c5b11SNicolas Vasilache     Value inBoundsCondition = emitInBoundsCondition(
2777c3c5b11SNicolas Vasilache         majorIvs, majorOffsets, memrefBounds, majorIvsPlusOffsets);
2787c3c5b11SNicolas Vasilache 
2797c3c5b11SNicolas Vasilache     if (inBoundsCondition) {
2807c3c5b11SNicolas Vasilache       // 2. If the condition is not null, we need an IfOp, which may yield
2817c3c5b11SNicolas Vasilache       // if `options.unroll` is true.
2827c3c5b11SNicolas Vasilache       SmallVector<Type, 1> resultType;
2837c3c5b11SNicolas Vasilache       if (options.unroll)
2847c3c5b11SNicolas Vasilache         resultType.push_back(vectorType);
2857c3c5b11SNicolas Vasilache 
286cadb7ccfSAlex Zinenko       // 3. If in-bounds, progressively lower to a 1-D transfer read, otherwise
287cadb7ccfSAlex Zinenko       // splat a 1-D vector.
288cadb7ccfSAlex Zinenko       ValueRange ifResults = conditionBuilder(
289cadb7ccfSAlex Zinenko           resultType, inBoundsCondition,
290cadb7ccfSAlex Zinenko           [&]() -> scf::ValueVector {
2917c3c5b11SNicolas Vasilache             Value vector = load1DVector(majorIvsPlusOffsets);
292cadb7ccfSAlex Zinenko             // 3.a. If `options.unroll` is true, insert the 1-D vector in the
2937c3c5b11SNicolas Vasilache             // aggregate. We must yield and merge with the `else` branch.
2947c3c5b11SNicolas Vasilache             if (options.unroll) {
2957c3c5b11SNicolas Vasilache               vector = vector_insert(vector, result, majorIvs);
296cadb7ccfSAlex Zinenko               return {vector};
2977c3c5b11SNicolas Vasilache             }
298cadb7ccfSAlex Zinenko             // 3.b. Otherwise, just go through the temporary `alloc`.
2994ead2cf7SAlex Zinenko             std_store(vector, alloc, majorIvs);
300cadb7ccfSAlex Zinenko             return {};
301cadb7ccfSAlex Zinenko           },
302cadb7ccfSAlex Zinenko           [&]() -> scf::ValueVector {
3037c3c5b11SNicolas Vasilache             Value vector = std_splat(minorVectorType, xferOp.padding());
304cadb7ccfSAlex Zinenko             // 3.c. If `options.unroll` is true, insert the 1-D vector in the
3057c3c5b11SNicolas Vasilache             // aggregate. We must yield and merge with the `then` branch.
3067c3c5b11SNicolas Vasilache             if (options.unroll) {
3077c3c5b11SNicolas Vasilache               vector = vector_insert(vector, result, majorIvs);
308cadb7ccfSAlex Zinenko               return {vector};
3097c3c5b11SNicolas Vasilache             }
310cadb7ccfSAlex Zinenko             // 3.d. Otherwise, just go through the temporary `alloc`.
3117c3c5b11SNicolas Vasilache             std_store(vector, alloc, majorIvs);
312cadb7ccfSAlex Zinenko             return {};
3137c3c5b11SNicolas Vasilache           });
314cadb7ccfSAlex Zinenko 
3157c3c5b11SNicolas Vasilache       if (!resultType.empty())
316cadb7ccfSAlex Zinenko         result = *ifResults.begin();
3177c3c5b11SNicolas Vasilache     } else {
3187c3c5b11SNicolas Vasilache       // 4. Guaranteed in-bounds, progressively lower to a 1-D transfer read.
3197c3c5b11SNicolas Vasilache       Value loaded1D = load1DVector(majorIvsPlusOffsets);
3207c3c5b11SNicolas Vasilache       // 5.a. If `options.unroll` is true, insert the 1-D vector in the
3217c3c5b11SNicolas Vasilache       // aggregate.
3227c3c5b11SNicolas Vasilache       if (options.unroll)
3237c3c5b11SNicolas Vasilache         result = vector_insert(loaded1D, result, majorIvs);
3247c3c5b11SNicolas Vasilache       // 5.b. Otherwise, just go through the temporary `alloc`.
3257c3c5b11SNicolas Vasilache       else
3267c3c5b11SNicolas Vasilache         std_store(loaded1D, alloc, majorIvs);
3277c3c5b11SNicolas Vasilache     }
3287c3c5b11SNicolas Vasilache   });
3297c3c5b11SNicolas Vasilache 
330a9b5edc5SBenjamin Kramer   assert((!options.unroll ^ (bool)result) &&
331a9b5edc5SBenjamin Kramer          "Expected resulting Value iff unroll");
3327c3c5b11SNicolas Vasilache   if (!result)
3337c3c5b11SNicolas Vasilache     result = std_load(vector_type_cast(MemRefType::get({}, vectorType), alloc));
3347c3c5b11SNicolas Vasilache   rewriter.replaceOp(op, result);
3354ead2cf7SAlex Zinenko 
3364ead2cf7SAlex Zinenko   return success();
3374ead2cf7SAlex Zinenko }
3384ead2cf7SAlex Zinenko 
3394ead2cf7SAlex Zinenko template <>
3404ead2cf7SAlex Zinenko LogicalResult NDTransferOpHelper<TransferWriteOp>::doReplace() {
3417c3c5b11SNicolas Vasilache   Value alloc;
3427c3c5b11SNicolas Vasilache   if (!options.unroll) {
343247e185dSNicolas Vasilache     alloc = setAllocAtFunctionEntry(memRefMinorVectorType, op);
3444ead2cf7SAlex Zinenko     std_store(xferOp.vector(),
3454ead2cf7SAlex Zinenko               vector_type_cast(MemRefType::get({}, vectorType), alloc));
3467c3c5b11SNicolas Vasilache   }
3474ead2cf7SAlex Zinenko 
3484ead2cf7SAlex Zinenko   emitLoops([&](ValueRange majorIvs, ValueRange leadingOffsets,
3494ead2cf7SAlex Zinenko                 ValueRange majorOffsets, ValueRange minorOffsets,
3504ead2cf7SAlex Zinenko                 MemRefBoundsCapture &memrefBounds) {
3517c3c5b11SNicolas Vasilache     // Lower to 1-D vector_transfer_write and let recursion handle it.
3527c3c5b11SNicolas Vasilache     auto emitTransferWrite = [&](ValueRange majorIvsPlusOffsets) {
3534ead2cf7SAlex Zinenko       SmallVector<Value, 8> indexing;
3544ead2cf7SAlex Zinenko       indexing.reserve(leadingRank + majorRank + minorRank);
3554ead2cf7SAlex Zinenko       indexing.append(leadingOffsets.begin(), leadingOffsets.end());
3564ead2cf7SAlex Zinenko       indexing.append(majorIvsPlusOffsets.begin(), majorIvsPlusOffsets.end());
3574ead2cf7SAlex Zinenko       indexing.append(minorOffsets.begin(), minorOffsets.end());
3587c3c5b11SNicolas Vasilache       Value result;
3597c3c5b11SNicolas Vasilache       // If `options.unroll` is true, extract the 1-D vector from the
3607c3c5b11SNicolas Vasilache       // aggregate.
3617c3c5b11SNicolas Vasilache       if (options.unroll)
3627c3c5b11SNicolas Vasilache         result = vector_extract(xferOp.vector(), majorIvs);
3637c3c5b11SNicolas Vasilache       else
3647c3c5b11SNicolas Vasilache         result = std_load(alloc, majorIvs);
36547cbd9f9SNicolas Vasilache       auto map =
36647cbd9f9SNicolas Vasilache           getTransferMinorIdentityMap(xferOp.getMemRefType(), minorVectorType);
3671870e787SNicolas Vasilache       ArrayAttr masked;
368cc0a58d7SNicolas Vasilache       if (!xferOp.isMaskedDim(xferOp.getVectorType().getRank() - 1)) {
3691870e787SNicolas Vasilache         OpBuilder &b = ScopedContext::getBuilderRef();
370cc0a58d7SNicolas Vasilache         masked = b.getBoolArrayAttr({false});
3711870e787SNicolas Vasilache       }
3727c3c5b11SNicolas Vasilache       vector_transfer_write(result, xferOp.memref(), indexing,
3731870e787SNicolas Vasilache                             AffineMapAttr::get(map), masked);
3744ead2cf7SAlex Zinenko     };
3757c3c5b11SNicolas Vasilache 
3767c3c5b11SNicolas Vasilache     // 1. Compute the inBoundsCondition in the current loops ivs + offset
3777c3c5b11SNicolas Vasilache     // context.
3787c3c5b11SNicolas Vasilache     SmallVector<Value, 4> majorIvsPlusOffsets;
3797c3c5b11SNicolas Vasilache     Value inBoundsCondition = emitInBoundsCondition(
3807c3c5b11SNicolas Vasilache         majorIvs, majorOffsets, memrefBounds, majorIvsPlusOffsets);
3817c3c5b11SNicolas Vasilache 
3827c3c5b11SNicolas Vasilache     if (inBoundsCondition) {
3837c3c5b11SNicolas Vasilache       // 2.a. If the condition is not null, we need an IfOp, to write
3847c3c5b11SNicolas Vasilache       // conditionally. Progressively lower to a 1-D transfer write.
385cadb7ccfSAlex Zinenko       conditionBuilder(inBoundsCondition,
386cadb7ccfSAlex Zinenko                        [&] { emitTransferWrite(majorIvsPlusOffsets); });
3877c3c5b11SNicolas Vasilache     } else {
3887c3c5b11SNicolas Vasilache       // 2.b. Guaranteed in-bounds. Progressively lower to a 1-D transfer write.
3897c3c5b11SNicolas Vasilache       emitTransferWrite(majorIvsPlusOffsets);
3907c3c5b11SNicolas Vasilache     }
3914ead2cf7SAlex Zinenko   });
3924ead2cf7SAlex Zinenko 
3934ead2cf7SAlex Zinenko   rewriter.eraseOp(op);
3944ead2cf7SAlex Zinenko 
3954ead2cf7SAlex Zinenko   return success();
3964ead2cf7SAlex Zinenko }
3974ead2cf7SAlex Zinenko 
398da95a0d8SNicolas Vasilache } // namespace
399da95a0d8SNicolas Vasilache 
4004ead2cf7SAlex Zinenko /// Analyzes the `transfer` to find an access dimension along the fastest remote
4014ead2cf7SAlex Zinenko /// MemRef dimension. If such a dimension with coalescing properties is found,
4024ead2cf7SAlex Zinenko /// `pivs` and `vectorBoundsCapture` are swapped so that the invocation of
4034ead2cf7SAlex Zinenko /// LoopNestBuilder captures it in the innermost loop.
4044ead2cf7SAlex Zinenko template <typename TransferOpTy>
4054ead2cf7SAlex Zinenko static int computeCoalescedIndex(TransferOpTy transfer) {
4064ead2cf7SAlex Zinenko   // rank of the remote memory access, coalescing behavior occurs on the
4074ead2cf7SAlex Zinenko   // innermost memory dimension.
4084ead2cf7SAlex Zinenko   auto remoteRank = transfer.getMemRefType().getRank();
4094ead2cf7SAlex Zinenko   // Iterate over the results expressions of the permutation map to determine
4104ead2cf7SAlex Zinenko   // the loop order for creating pointwise copies between remote and local
4114ead2cf7SAlex Zinenko   // memories.
4124ead2cf7SAlex Zinenko   int coalescedIdx = -1;
4134ead2cf7SAlex Zinenko   auto exprs = transfer.permutation_map().getResults();
4144ead2cf7SAlex Zinenko   for (auto en : llvm::enumerate(exprs)) {
4154ead2cf7SAlex Zinenko     auto dim = en.value().template dyn_cast<AffineDimExpr>();
4164ead2cf7SAlex Zinenko     if (!dim) {
4174ead2cf7SAlex Zinenko       continue;
4184ead2cf7SAlex Zinenko     }
4194ead2cf7SAlex Zinenko     auto memRefDim = dim.getPosition();
4204ead2cf7SAlex Zinenko     if (memRefDim == remoteRank - 1) {
4214ead2cf7SAlex Zinenko       // memRefDim has coalescing properties, it should be swapped in the last
4224ead2cf7SAlex Zinenko       // position.
4234ead2cf7SAlex Zinenko       assert(coalescedIdx == -1 && "Unexpected > 1 coalesced indices");
4244ead2cf7SAlex Zinenko       coalescedIdx = en.index();
4254ead2cf7SAlex Zinenko     }
4264ead2cf7SAlex Zinenko   }
4274ead2cf7SAlex Zinenko   return coalescedIdx;
4284ead2cf7SAlex Zinenko }
4294ead2cf7SAlex Zinenko 
4304ead2cf7SAlex Zinenko /// Emits remote memory accesses that are clipped to the boundaries of the
4314ead2cf7SAlex Zinenko /// MemRef.
4324ead2cf7SAlex Zinenko template <typename TransferOpTy>
4334ead2cf7SAlex Zinenko static SmallVector<Value, 8>
4344ead2cf7SAlex Zinenko clip(TransferOpTy transfer, MemRefBoundsCapture &bounds, ArrayRef<Value> ivs) {
4354ead2cf7SAlex Zinenko   using namespace mlir::edsc;
4364ead2cf7SAlex Zinenko 
4374ead2cf7SAlex Zinenko   Value zero(std_constant_index(0)), one(std_constant_index(1));
4384ead2cf7SAlex Zinenko   SmallVector<Value, 8> memRefAccess(transfer.indices());
4394ead2cf7SAlex Zinenko   SmallVector<Value, 8> clippedScalarAccessExprs(memRefAccess.size());
4404ead2cf7SAlex Zinenko   // Indices accessing to remote memory are clipped and their expressions are
4414ead2cf7SAlex Zinenko   // returned in clippedScalarAccessExprs.
4424ead2cf7SAlex Zinenko   for (unsigned memRefDim = 0; memRefDim < clippedScalarAccessExprs.size();
4434ead2cf7SAlex Zinenko        ++memRefDim) {
4444ead2cf7SAlex Zinenko     // Linear search on a small number of entries.
4454ead2cf7SAlex Zinenko     int loopIndex = -1;
4464ead2cf7SAlex Zinenko     auto exprs = transfer.permutation_map().getResults();
4474ead2cf7SAlex Zinenko     for (auto en : llvm::enumerate(exprs)) {
4484ead2cf7SAlex Zinenko       auto expr = en.value();
4494ead2cf7SAlex Zinenko       auto dim = expr.template dyn_cast<AffineDimExpr>();
4504ead2cf7SAlex Zinenko       // Sanity check.
4514ead2cf7SAlex Zinenko       assert(
4524ead2cf7SAlex Zinenko           (dim || expr.template cast<AffineConstantExpr>().getValue() == 0) &&
4534ead2cf7SAlex Zinenko           "Expected dim or 0 in permutationMap");
4544ead2cf7SAlex Zinenko       if (dim && memRefDim == dim.getPosition()) {
4554ead2cf7SAlex Zinenko         loopIndex = en.index();
4564ead2cf7SAlex Zinenko         break;
4574ead2cf7SAlex Zinenko       }
4584ead2cf7SAlex Zinenko     }
4594ead2cf7SAlex Zinenko 
4604ead2cf7SAlex Zinenko     // We cannot distinguish atm between unrolled dimensions that implement
4614ead2cf7SAlex Zinenko     // the "always full" tile abstraction and need clipping from the other
4624ead2cf7SAlex Zinenko     // ones. So we conservatively clip everything.
4634ead2cf7SAlex Zinenko     using namespace edsc::op;
4644ead2cf7SAlex Zinenko     auto N = bounds.ub(memRefDim);
4654ead2cf7SAlex Zinenko     auto i = memRefAccess[memRefDim];
4664ead2cf7SAlex Zinenko     if (loopIndex < 0) {
4674ead2cf7SAlex Zinenko       auto N_minus_1 = N - one;
46825055a4fSAdam D Straw       auto select_1 = std_select(slt(i, N), i, N_minus_1);
4694ead2cf7SAlex Zinenko       clippedScalarAccessExprs[memRefDim] =
47025055a4fSAdam D Straw           std_select(slt(i, zero), zero, select_1);
4714ead2cf7SAlex Zinenko     } else {
4724ead2cf7SAlex Zinenko       auto ii = ivs[loopIndex];
4734ead2cf7SAlex Zinenko       auto i_plus_ii = i + ii;
4744ead2cf7SAlex Zinenko       auto N_minus_1 = N - one;
47525055a4fSAdam D Straw       auto select_1 = std_select(slt(i_plus_ii, N), i_plus_ii, N_minus_1);
4764ead2cf7SAlex Zinenko       clippedScalarAccessExprs[memRefDim] =
47725055a4fSAdam D Straw           std_select(slt(i_plus_ii, zero), zero, select_1);
4784ead2cf7SAlex Zinenko     }
4794ead2cf7SAlex Zinenko   }
4804ead2cf7SAlex Zinenko 
4814ead2cf7SAlex Zinenko   return clippedScalarAccessExprs;
4824ead2cf7SAlex Zinenko }
4834ead2cf7SAlex Zinenko 
4843393cc4cSNicolas Vasilache namespace mlir {
4853393cc4cSNicolas Vasilache 
4864ead2cf7SAlex Zinenko template <typename TransferOpTy>
4873393cc4cSNicolas Vasilache VectorTransferRewriter<TransferOpTy>::VectorTransferRewriter(
4887c3c5b11SNicolas Vasilache     VectorTransferToSCFOptions options, MLIRContext *context)
4897c3c5b11SNicolas Vasilache     : RewritePattern(TransferOpTy::getOperationName(), 1, context),
4907c3c5b11SNicolas Vasilache       options(options) {}
4914ead2cf7SAlex Zinenko 
4927c3c5b11SNicolas Vasilache /// Used for staging the transfer in a local buffer.
4937c3c5b11SNicolas Vasilache template <typename TransferOpTy>
4943393cc4cSNicolas Vasilache MemRefType VectorTransferRewriter<TransferOpTy>::tmpMemRefType(
4957c3c5b11SNicolas Vasilache     TransferOpTy transfer) const {
4964ead2cf7SAlex Zinenko   auto vectorType = transfer.getVectorType();
4977c3c5b11SNicolas Vasilache   return MemRefType::get(vectorType.getShape(), vectorType.getElementType(), {},
4987c3c5b11SNicolas Vasilache                          0);
4994ead2cf7SAlex Zinenko }
5004ead2cf7SAlex Zinenko 
5014ead2cf7SAlex Zinenko /// Lowers TransferReadOp into a combination of:
5024ead2cf7SAlex Zinenko ///   1. local memory allocation;
5034ead2cf7SAlex Zinenko ///   2. perfect loop nest over:
5044ead2cf7SAlex Zinenko ///      a. scalar load from local buffers (viewed as a scalar memref);
5054ead2cf7SAlex Zinenko ///      a. scalar store to original memref (with clipping).
5064ead2cf7SAlex Zinenko ///   3. vector_load from local buffer (viewed as a memref<1 x vector>);
5074ead2cf7SAlex Zinenko ///   4. local memory deallocation.
5084ead2cf7SAlex Zinenko ///
5094ead2cf7SAlex Zinenko /// Lowers the data transfer part of a TransferReadOp while ensuring no
5104ead2cf7SAlex Zinenko /// out-of-bounds accesses are possible. Out-of-bounds behavior is handled by
5114ead2cf7SAlex Zinenko /// clipping. This means that a given value in memory can be read multiple
5124ead2cf7SAlex Zinenko /// times and concurrently.
5134ead2cf7SAlex Zinenko ///
5144ead2cf7SAlex Zinenko /// Important notes about clipping and "full-tiles only" abstraction:
5154ead2cf7SAlex Zinenko /// =================================================================
5164ead2cf7SAlex Zinenko /// When using clipping for dealing with boundary conditions, the same edge
5174ead2cf7SAlex Zinenko /// value will appear multiple times (a.k.a edge padding). This is fine if the
5184ead2cf7SAlex Zinenko /// subsequent vector operations are all data-parallel but **is generally
5194ead2cf7SAlex Zinenko /// incorrect** in the presence of reductions or extract operations.
5204ead2cf7SAlex Zinenko ///
5214ead2cf7SAlex Zinenko /// More generally, clipping is a scalar abstraction that is expected to work
5224ead2cf7SAlex Zinenko /// fine as a baseline for CPUs and GPUs but not for vector_load and DMAs.
5234ead2cf7SAlex Zinenko /// To deal with real vector_load and DMAs, a "padded allocation + view"
5244ead2cf7SAlex Zinenko /// abstraction with the ability to read out-of-memref-bounds (but still within
5254ead2cf7SAlex Zinenko /// the allocated region) is necessary.
5264ead2cf7SAlex Zinenko ///
5274ead2cf7SAlex Zinenko /// Whether using scalar loops or vector_load/DMAs to perform the transfer,
5284ead2cf7SAlex Zinenko /// junk values will be materialized in the vectors and generally need to be
5294ead2cf7SAlex Zinenko /// filtered out and replaced by the "neutral element". This neutral element is
5304ead2cf7SAlex Zinenko /// op-dependent so, in the future, we expect to create a vector filter and
5314ead2cf7SAlex Zinenko /// apply it to a splatted constant vector with the proper neutral element at
5324ead2cf7SAlex Zinenko /// each ssa-use. This filtering is not necessary for pure data-parallel
5334ead2cf7SAlex Zinenko /// operations.
5344ead2cf7SAlex Zinenko ///
5354ead2cf7SAlex Zinenko /// In the case of vector_store/DMAs, Read-Modify-Write will be required, which
5364ead2cf7SAlex Zinenko /// also have concurrency implications. Note that by using clipped scalar stores
5374ead2cf7SAlex Zinenko /// in the presence of data-parallel only operations, we generate code that
5384ead2cf7SAlex Zinenko /// writes the same value multiple time on the edge locations.
5394ead2cf7SAlex Zinenko ///
5409db53a18SRiver Riddle /// TODO: implement alternatives to clipping.
5419db53a18SRiver Riddle /// TODO: support non-data-parallel operations.
5424ead2cf7SAlex Zinenko 
5434ead2cf7SAlex Zinenko /// Performs the rewrite.
5444ead2cf7SAlex Zinenko template <>
5453393cc4cSNicolas Vasilache LogicalResult VectorTransferRewriter<TransferReadOp>::matchAndRewrite(
5464ead2cf7SAlex Zinenko     Operation *op, PatternRewriter &rewriter) const {
5474ead2cf7SAlex Zinenko   using namespace mlir::edsc::op;
5484ead2cf7SAlex Zinenko 
5494ead2cf7SAlex Zinenko   TransferReadOp transfer = cast<TransferReadOp>(op);
550*dfb7b3feSBenjamin Kramer 
551*dfb7b3feSBenjamin Kramer   // Fall back to a loop if the fastest varying stride is not 1 or it is
552*dfb7b3feSBenjamin Kramer   // permuted.
553*dfb7b3feSBenjamin Kramer   int64_t offset;
554*dfb7b3feSBenjamin Kramer   SmallVector<int64_t, 4> strides;
555*dfb7b3feSBenjamin Kramer   auto successStrides =
556*dfb7b3feSBenjamin Kramer       getStridesAndOffset(transfer.getMemRefType(), strides, offset);
557*dfb7b3feSBenjamin Kramer   if (succeeded(successStrides) && strides.back() == 1 &&
558*dfb7b3feSBenjamin Kramer       transfer.permutation_map().isMinorIdentity()) {
5594ead2cf7SAlex Zinenko     // If > 1D, emit a bunch of loops around 1-D vector transfers.
5604ead2cf7SAlex Zinenko     if (transfer.getVectorType().getRank() > 1)
5617c3c5b11SNicolas Vasilache       return NDTransferOpHelper<TransferReadOp>(rewriter, transfer, options)
5627c3c5b11SNicolas Vasilache           .doReplace();
5634ead2cf7SAlex Zinenko     // If 1-D this is now handled by the target-specific lowering.
5644ead2cf7SAlex Zinenko     if (transfer.getVectorType().getRank() == 1)
5654ead2cf7SAlex Zinenko       return failure();
5664ead2cf7SAlex Zinenko   }
5674ead2cf7SAlex Zinenko 
5684ead2cf7SAlex Zinenko   // Conservative lowering to scalar load / stores.
5694ead2cf7SAlex Zinenko   // 1. Setup all the captures.
5704ead2cf7SAlex Zinenko   ScopedContext scope(rewriter, transfer.getLoc());
5714ead2cf7SAlex Zinenko   StdIndexedValue remote(transfer.memref());
5724ead2cf7SAlex Zinenko   MemRefBoundsCapture memRefBoundsCapture(transfer.memref());
5734ead2cf7SAlex Zinenko   VectorBoundsCapture vectorBoundsCapture(transfer.vector());
5744ead2cf7SAlex Zinenko   int coalescedIdx = computeCoalescedIndex(transfer);
5754ead2cf7SAlex Zinenko   // Swap the vectorBoundsCapture which will reorder loop bounds.
5764ead2cf7SAlex Zinenko   if (coalescedIdx >= 0)
5774ead2cf7SAlex Zinenko     vectorBoundsCapture.swapRanges(vectorBoundsCapture.rank() - 1,
5784ead2cf7SAlex Zinenko                                    coalescedIdx);
5794ead2cf7SAlex Zinenko 
5804ead2cf7SAlex Zinenko   auto lbs = vectorBoundsCapture.getLbs();
5814ead2cf7SAlex Zinenko   auto ubs = vectorBoundsCapture.getUbs();
5824ead2cf7SAlex Zinenko   SmallVector<Value, 8> steps;
5834ead2cf7SAlex Zinenko   steps.reserve(vectorBoundsCapture.getSteps().size());
5844ead2cf7SAlex Zinenko   for (auto step : vectorBoundsCapture.getSteps())
5854ead2cf7SAlex Zinenko     steps.push_back(std_constant_index(step));
5864ead2cf7SAlex Zinenko 
5874ead2cf7SAlex Zinenko   // 2. Emit alloc-copy-load-dealloc.
588f5ed22f0SJakub Lichman   Value tmp = std_alloc(tmpMemRefType(transfer), ValueRange{},
589f5ed22f0SJakub Lichman                         rewriter.getI64IntegerAttr(ALIGNMENT_SIZE));
5904ead2cf7SAlex Zinenko   StdIndexedValue local(tmp);
5914ead2cf7SAlex Zinenko   Value vec = vector_type_cast(tmp);
592d1560f39SAlex Zinenko   loopNestBuilder(lbs, ubs, steps, [&](ValueRange loopIvs) {
593d1560f39SAlex Zinenko     auto ivs = llvm::to_vector<8>(loopIvs);
5944ead2cf7SAlex Zinenko     // Swap the ivs which will reorder memory accesses.
5954ead2cf7SAlex Zinenko     if (coalescedIdx >= 0)
5964ead2cf7SAlex Zinenko       std::swap(ivs.back(), ivs[coalescedIdx]);
5974ead2cf7SAlex Zinenko     // Computes clippedScalarAccessExprs in the loop nest scope (ivs exist).
5984ead2cf7SAlex Zinenko     local(ivs) = remote(clip(transfer, memRefBoundsCapture, ivs));
5994ead2cf7SAlex Zinenko   });
6004ead2cf7SAlex Zinenko   Value vectorValue = std_load(vec);
6014ead2cf7SAlex Zinenko   (std_dealloc(tmp)); // vexing parse
6024ead2cf7SAlex Zinenko 
6034ead2cf7SAlex Zinenko   // 3. Propagate.
6044ead2cf7SAlex Zinenko   rewriter.replaceOp(op, vectorValue);
6054ead2cf7SAlex Zinenko   return success();
6064ead2cf7SAlex Zinenko }
6074ead2cf7SAlex Zinenko 
6084ead2cf7SAlex Zinenko /// Lowers TransferWriteOp into a combination of:
6094ead2cf7SAlex Zinenko ///   1. local memory allocation;
6104ead2cf7SAlex Zinenko ///   2. vector_store to local buffer (viewed as a memref<1 x vector>);
6114ead2cf7SAlex Zinenko ///   3. perfect loop nest over:
6124ead2cf7SAlex Zinenko ///      a. scalar load from local buffers (viewed as a scalar memref);
6134ead2cf7SAlex Zinenko ///      a. scalar store to original memref (with clipping).
6144ead2cf7SAlex Zinenko ///   4. local memory deallocation.
6154ead2cf7SAlex Zinenko ///
6164ead2cf7SAlex Zinenko /// More specifically, lowers the data transfer part while ensuring no
6174ead2cf7SAlex Zinenko /// out-of-bounds accesses are possible. Out-of-bounds behavior is handled by
6184ead2cf7SAlex Zinenko /// clipping. This means that a given value in memory can be written to multiple
6194ead2cf7SAlex Zinenko /// times and concurrently.
6204ead2cf7SAlex Zinenko ///
6214ead2cf7SAlex Zinenko /// See `Important notes about clipping and full-tiles only abstraction` in the
6224ead2cf7SAlex Zinenko /// description of `readClipped` above.
6234ead2cf7SAlex Zinenko ///
6249db53a18SRiver Riddle /// TODO: implement alternatives to clipping.
6259db53a18SRiver Riddle /// TODO: support non-data-parallel operations.
6264ead2cf7SAlex Zinenko template <>
6273393cc4cSNicolas Vasilache LogicalResult VectorTransferRewriter<TransferWriteOp>::matchAndRewrite(
6284ead2cf7SAlex Zinenko     Operation *op, PatternRewriter &rewriter) const {
6294ead2cf7SAlex Zinenko   using namespace edsc::op;
6304ead2cf7SAlex Zinenko 
6314ead2cf7SAlex Zinenko   TransferWriteOp transfer = cast<TransferWriteOp>(op);
632*dfb7b3feSBenjamin Kramer 
633*dfb7b3feSBenjamin Kramer   // Fall back to a loop if the fastest varying stride is not 1 or it is
634*dfb7b3feSBenjamin Kramer   // permuted.
635*dfb7b3feSBenjamin Kramer   int64_t offset;
636*dfb7b3feSBenjamin Kramer   SmallVector<int64_t, 4> strides;
637*dfb7b3feSBenjamin Kramer   auto successStrides =
638*dfb7b3feSBenjamin Kramer       getStridesAndOffset(transfer.getMemRefType(), strides, offset);
639*dfb7b3feSBenjamin Kramer   if (succeeded(successStrides) && strides.back() == 1 &&
640*dfb7b3feSBenjamin Kramer       transfer.permutation_map().isMinorIdentity()) {
6414ead2cf7SAlex Zinenko     // If > 1D, emit a bunch of loops around 1-D vector transfers.
6424ead2cf7SAlex Zinenko     if (transfer.getVectorType().getRank() > 1)
6437c3c5b11SNicolas Vasilache       return NDTransferOpHelper<TransferWriteOp>(rewriter, transfer, options)
6444ead2cf7SAlex Zinenko           .doReplace();
6454ead2cf7SAlex Zinenko     // If 1-D this is now handled by the target-specific lowering.
6464ead2cf7SAlex Zinenko     if (transfer.getVectorType().getRank() == 1)
6474ead2cf7SAlex Zinenko       return failure();
6484ead2cf7SAlex Zinenko   }
6494ead2cf7SAlex Zinenko 
6504ead2cf7SAlex Zinenko   // 1. Setup all the captures.
6514ead2cf7SAlex Zinenko   ScopedContext scope(rewriter, transfer.getLoc());
6524ead2cf7SAlex Zinenko   StdIndexedValue remote(transfer.memref());
6534ead2cf7SAlex Zinenko   MemRefBoundsCapture memRefBoundsCapture(transfer.memref());
6544ead2cf7SAlex Zinenko   Value vectorValue(transfer.vector());
6554ead2cf7SAlex Zinenko   VectorBoundsCapture vectorBoundsCapture(transfer.vector());
6564ead2cf7SAlex Zinenko   int coalescedIdx = computeCoalescedIndex(transfer);
6574ead2cf7SAlex Zinenko   // Swap the vectorBoundsCapture which will reorder loop bounds.
6584ead2cf7SAlex Zinenko   if (coalescedIdx >= 0)
6594ead2cf7SAlex Zinenko     vectorBoundsCapture.swapRanges(vectorBoundsCapture.rank() - 1,
6604ead2cf7SAlex Zinenko                                    coalescedIdx);
6614ead2cf7SAlex Zinenko 
6624ead2cf7SAlex Zinenko   auto lbs = vectorBoundsCapture.getLbs();
6634ead2cf7SAlex Zinenko   auto ubs = vectorBoundsCapture.getUbs();
6644ead2cf7SAlex Zinenko   SmallVector<Value, 8> steps;
6654ead2cf7SAlex Zinenko   steps.reserve(vectorBoundsCapture.getSteps().size());
6664ead2cf7SAlex Zinenko   for (auto step : vectorBoundsCapture.getSteps())
6674ead2cf7SAlex Zinenko     steps.push_back(std_constant_index(step));
6684ead2cf7SAlex Zinenko 
6694ead2cf7SAlex Zinenko   // 2. Emit alloc-store-copy-dealloc.
670f5ed22f0SJakub Lichman   Value tmp = std_alloc(tmpMemRefType(transfer), ValueRange{},
671f5ed22f0SJakub Lichman                         rewriter.getI64IntegerAttr(ALIGNMENT_SIZE));
6724ead2cf7SAlex Zinenko   StdIndexedValue local(tmp);
6734ead2cf7SAlex Zinenko   Value vec = vector_type_cast(tmp);
6744ead2cf7SAlex Zinenko   std_store(vectorValue, vec);
675d1560f39SAlex Zinenko   loopNestBuilder(lbs, ubs, steps, [&](ValueRange loopIvs) {
676d1560f39SAlex Zinenko     auto ivs = llvm::to_vector<8>(loopIvs);
6774ead2cf7SAlex Zinenko     // Swap the ivs which will reorder memory accesses.
6784ead2cf7SAlex Zinenko     if (coalescedIdx >= 0)
6794ead2cf7SAlex Zinenko       std::swap(ivs.back(), ivs[coalescedIdx]);
6804ead2cf7SAlex Zinenko     // Computes clippedScalarAccessExprs in the loop nest scope (ivs exist).
6814ead2cf7SAlex Zinenko     remote(clip(transfer, memRefBoundsCapture, ivs)) = local(ivs);
6824ead2cf7SAlex Zinenko   });
6834ead2cf7SAlex Zinenko   (std_dealloc(tmp)); // vexing parse...
6844ead2cf7SAlex Zinenko 
6854ead2cf7SAlex Zinenko   rewriter.eraseOp(op);
6864ead2cf7SAlex Zinenko   return success();
6874ead2cf7SAlex Zinenko }
6884ead2cf7SAlex Zinenko 
6893393cc4cSNicolas Vasilache void populateVectorToSCFConversionPatterns(
6907c3c5b11SNicolas Vasilache     OwningRewritePatternList &patterns, MLIRContext *context,
6917c3c5b11SNicolas Vasilache     const VectorTransferToSCFOptions &options) {
6924ead2cf7SAlex Zinenko   patterns.insert<VectorTransferRewriter<vector::TransferReadOp>,
6937c3c5b11SNicolas Vasilache                   VectorTransferRewriter<vector::TransferWriteOp>>(options,
6947c3c5b11SNicolas Vasilache                                                                    context);
6954ead2cf7SAlex Zinenko }
6963393cc4cSNicolas Vasilache 
6973393cc4cSNicolas Vasilache } // namespace mlir
6983393cc4cSNicolas Vasilache 
6995f9e0466SNicolas Vasilache namespace {
7005f9e0466SNicolas Vasilache 
7015f9e0466SNicolas Vasilache struct ConvertVectorToSCFPass
7025f9e0466SNicolas Vasilache     : public ConvertVectorToSCFBase<ConvertVectorToSCFPass> {
7035f9e0466SNicolas Vasilache   ConvertVectorToSCFPass() = default;
7045f9e0466SNicolas Vasilache   ConvertVectorToSCFPass(const VectorTransferToSCFOptions &options) {
7055f9e0466SNicolas Vasilache     this->fullUnroll = options.unroll;
7065f9e0466SNicolas Vasilache   }
7075f9e0466SNicolas Vasilache 
7085f9e0466SNicolas Vasilache   void runOnFunction() override {
7095f9e0466SNicolas Vasilache     OwningRewritePatternList patterns;
7105f9e0466SNicolas Vasilache     auto *context = getFunction().getContext();
7115f9e0466SNicolas Vasilache     populateVectorToSCFConversionPatterns(
7125f9e0466SNicolas Vasilache         patterns, context, VectorTransferToSCFOptions().setUnroll(fullUnroll));
7135f9e0466SNicolas Vasilache     applyPatternsAndFoldGreedily(getFunction(), patterns);
7145f9e0466SNicolas Vasilache   }
7155f9e0466SNicolas Vasilache };
7165f9e0466SNicolas Vasilache 
7175f9e0466SNicolas Vasilache } // namespace
7185f9e0466SNicolas Vasilache 
7195f9e0466SNicolas Vasilache std::unique_ptr<Pass>
7205f9e0466SNicolas Vasilache mlir::createConvertVectorToSCFPass(const VectorTransferToSCFOptions &options) {
7215f9e0466SNicolas Vasilache   return std::make_unique<ConvertVectorToSCFPass>(options);
7225f9e0466SNicolas Vasilache }
723