1*4ead2cf7SAlex Zinenko //===- VectorToSCF.cpp - Conversion from Vector to mix of SCF and Std -----===// 2*4ead2cf7SAlex Zinenko // 3*4ead2cf7SAlex Zinenko // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4*4ead2cf7SAlex Zinenko // See https://llvm.org/LICENSE.txt for license information. 5*4ead2cf7SAlex Zinenko // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6*4ead2cf7SAlex Zinenko // 7*4ead2cf7SAlex Zinenko //===----------------------------------------------------------------------===// 8*4ead2cf7SAlex Zinenko // 9*4ead2cf7SAlex Zinenko // This file implements target-dependent lowering of vector transfer operations. 10*4ead2cf7SAlex Zinenko // 11*4ead2cf7SAlex Zinenko //===----------------------------------------------------------------------===// 12*4ead2cf7SAlex Zinenko 13*4ead2cf7SAlex Zinenko #include <type_traits> 14*4ead2cf7SAlex Zinenko 15*4ead2cf7SAlex Zinenko #include "mlir/Conversion/VectorToSCF/VectorToSCF.h" 16*4ead2cf7SAlex Zinenko #include "mlir/Dialect/Affine/EDSC/Intrinsics.h" 17*4ead2cf7SAlex Zinenko #include "mlir/Dialect/SCF/EDSC/Builders.h" 18*4ead2cf7SAlex Zinenko #include "mlir/Dialect/SCF/EDSC/Intrinsics.h" 19*4ead2cf7SAlex Zinenko #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h" 20*4ead2cf7SAlex Zinenko #include "mlir/Dialect/Vector/EDSC/Intrinsics.h" 21*4ead2cf7SAlex Zinenko #include "mlir/Dialect/Vector/VectorOps.h" 22*4ead2cf7SAlex Zinenko #include "mlir/IR/AffineExpr.h" 23*4ead2cf7SAlex Zinenko #include "mlir/IR/AffineMap.h" 24*4ead2cf7SAlex Zinenko #include "mlir/IR/Attributes.h" 25*4ead2cf7SAlex Zinenko #include "mlir/IR/Builders.h" 26*4ead2cf7SAlex Zinenko #include "mlir/IR/Location.h" 27*4ead2cf7SAlex Zinenko #include "mlir/IR/Matchers.h" 28*4ead2cf7SAlex Zinenko #include "mlir/IR/OperationSupport.h" 29*4ead2cf7SAlex Zinenko #include "mlir/IR/PatternMatch.h" 30*4ead2cf7SAlex Zinenko #include "mlir/IR/Types.h" 31*4ead2cf7SAlex Zinenko 32*4ead2cf7SAlex Zinenko using namespace mlir; 33*4ead2cf7SAlex Zinenko using namespace mlir::edsc; 34*4ead2cf7SAlex Zinenko using namespace mlir::edsc::intrinsics; 35*4ead2cf7SAlex Zinenko using vector::TransferReadOp; 36*4ead2cf7SAlex Zinenko using vector::TransferWriteOp; 37*4ead2cf7SAlex Zinenko 38*4ead2cf7SAlex Zinenko /// Helper class captures the common information needed to lower N>1-D vector 39*4ead2cf7SAlex Zinenko /// transfer operations (read and write). 40*4ead2cf7SAlex Zinenko /// On construction, this class opens an edsc::ScopedContext for simpler IR 41*4ead2cf7SAlex Zinenko /// manipulation. 42*4ead2cf7SAlex Zinenko /// In pseudo-IR, for an n-D vector_transfer_read such as: 43*4ead2cf7SAlex Zinenko /// 44*4ead2cf7SAlex Zinenko /// ``` 45*4ead2cf7SAlex Zinenko /// vector_transfer_read(%m, %offsets, identity_map, %fill) : 46*4ead2cf7SAlex Zinenko /// memref<(leading_dims) x (major_dims) x (minor_dims) x type>, 47*4ead2cf7SAlex Zinenko /// vector<(major_dims) x (minor_dims) x type> 48*4ead2cf7SAlex Zinenko /// ``` 49*4ead2cf7SAlex Zinenko /// 50*4ead2cf7SAlex Zinenko /// where rank(minor_dims) is the lower-level vector rank (e.g. 1 for LLVM or 51*4ead2cf7SAlex Zinenko /// higher). 52*4ead2cf7SAlex Zinenko /// 53*4ead2cf7SAlex Zinenko /// This is the entry point to emitting pseudo-IR resembling: 54*4ead2cf7SAlex Zinenko /// 55*4ead2cf7SAlex Zinenko /// ``` 56*4ead2cf7SAlex Zinenko /// %tmp = alloc(): memref<(major_dims) x vector<minor_dim x type>> 57*4ead2cf7SAlex Zinenko /// for (%ivs_major, {0}, {vector_shape}, {1}) { // (N-1)-D loop nest 58*4ead2cf7SAlex Zinenko /// if (any_of(%ivs_major + %offsets, <, major_dims)) { 59*4ead2cf7SAlex Zinenko /// %v = vector_transfer_read( 60*4ead2cf7SAlex Zinenko /// {%offsets_leading, %ivs_major + %offsets_major, %offsets_minor}, 61*4ead2cf7SAlex Zinenko /// %ivs_minor): 62*4ead2cf7SAlex Zinenko /// memref<(leading_dims) x (major_dims) x (minor_dims) x type>, 63*4ead2cf7SAlex Zinenko /// vector<(minor_dims) x type>; 64*4ead2cf7SAlex Zinenko /// store(%v, %tmp); 65*4ead2cf7SAlex Zinenko /// } else { 66*4ead2cf7SAlex Zinenko /// %v = splat(vector<(minor_dims) x type>, %fill) 67*4ead2cf7SAlex Zinenko /// store(%v, %tmp, %ivs_major); 68*4ead2cf7SAlex Zinenko /// } 69*4ead2cf7SAlex Zinenko /// } 70*4ead2cf7SAlex Zinenko /// %res = load(%tmp, %0): memref<(major_dims) x vector<minor_dim x type>>): 71*4ead2cf7SAlex Zinenko // vector<(major_dims) x (minor_dims) x type> 72*4ead2cf7SAlex Zinenko /// ``` 73*4ead2cf7SAlex Zinenko /// 74*4ead2cf7SAlex Zinenko template <typename ConcreteOp> 75*4ead2cf7SAlex Zinenko class NDTransferOpHelper { 76*4ead2cf7SAlex Zinenko public: 77*4ead2cf7SAlex Zinenko NDTransferOpHelper(PatternRewriter &rewriter, ConcreteOp xferOp) 78*4ead2cf7SAlex Zinenko : rewriter(rewriter), loc(xferOp.getLoc()), 79*4ead2cf7SAlex Zinenko scope(std::make_unique<ScopedContext>(rewriter, loc)), xferOp(xferOp), 80*4ead2cf7SAlex Zinenko op(xferOp.getOperation()) { 81*4ead2cf7SAlex Zinenko vectorType = xferOp.getVectorType(); 82*4ead2cf7SAlex Zinenko // TODO(ntv, ajcbik): when we go to k > 1-D vectors adapt minorRank. 83*4ead2cf7SAlex Zinenko minorRank = 1; 84*4ead2cf7SAlex Zinenko majorRank = vectorType.getRank() - minorRank; 85*4ead2cf7SAlex Zinenko leadingRank = xferOp.getMemRefType().getRank() - (majorRank + minorRank); 86*4ead2cf7SAlex Zinenko majorVectorType = 87*4ead2cf7SAlex Zinenko VectorType::get(vectorType.getShape().take_front(majorRank), 88*4ead2cf7SAlex Zinenko vectorType.getElementType()); 89*4ead2cf7SAlex Zinenko minorVectorType = 90*4ead2cf7SAlex Zinenko VectorType::get(vectorType.getShape().take_back(minorRank), 91*4ead2cf7SAlex Zinenko vectorType.getElementType()); 92*4ead2cf7SAlex Zinenko /// Memref of minor vector type is used for individual transfers. 93*4ead2cf7SAlex Zinenko memRefMinorVectorType = 94*4ead2cf7SAlex Zinenko MemRefType::get(majorVectorType.getShape(), minorVectorType, {}, 95*4ead2cf7SAlex Zinenko xferOp.getMemRefType().getMemorySpace()); 96*4ead2cf7SAlex Zinenko } 97*4ead2cf7SAlex Zinenko 98*4ead2cf7SAlex Zinenko LogicalResult doReplace(); 99*4ead2cf7SAlex Zinenko 100*4ead2cf7SAlex Zinenko private: 101*4ead2cf7SAlex Zinenko /// Creates the loop nest on the "major" dimensions and calls the 102*4ead2cf7SAlex Zinenko /// `loopBodyBuilder` lambda in the context of the loop nest. 103*4ead2cf7SAlex Zinenko template <typename Lambda> 104*4ead2cf7SAlex Zinenko void emitLoops(Lambda loopBodyBuilder); 105*4ead2cf7SAlex Zinenko 106*4ead2cf7SAlex Zinenko /// Operate within the body of `emitLoops` to: 107*4ead2cf7SAlex Zinenko /// 1. Compute the indexings `majorIvs + majorOffsets`. 108*4ead2cf7SAlex Zinenko /// 2. Compute a boolean that determines whether the first `majorIvs.rank()` 109*4ead2cf7SAlex Zinenko /// dimensions `majorIvs + majorOffsets` are all within `memrefBounds`. 110*4ead2cf7SAlex Zinenko /// 3. Create an IfOp conditioned on the boolean in step 2. 111*4ead2cf7SAlex Zinenko /// 4. Call a `thenBlockBuilder` and an `elseBlockBuilder` to append 112*4ead2cf7SAlex Zinenko /// operations to the IfOp blocks as appropriate. 113*4ead2cf7SAlex Zinenko template <typename LambdaThen, typename LambdaElse> 114*4ead2cf7SAlex Zinenko void emitInBounds(ValueRange majorIvs, ValueRange majorOffsets, 115*4ead2cf7SAlex Zinenko MemRefBoundsCapture &memrefBounds, 116*4ead2cf7SAlex Zinenko LambdaThen thenBlockBuilder, LambdaElse elseBlockBuilder); 117*4ead2cf7SAlex Zinenko 118*4ead2cf7SAlex Zinenko /// Common state to lower vector transfer ops. 119*4ead2cf7SAlex Zinenko PatternRewriter &rewriter; 120*4ead2cf7SAlex Zinenko Location loc; 121*4ead2cf7SAlex Zinenko std::unique_ptr<ScopedContext> scope; 122*4ead2cf7SAlex Zinenko ConcreteOp xferOp; 123*4ead2cf7SAlex Zinenko Operation *op; 124*4ead2cf7SAlex Zinenko // A vector transfer copies data between: 125*4ead2cf7SAlex Zinenko // - memref<(leading_dims) x (major_dims) x (minor_dims) x type> 126*4ead2cf7SAlex Zinenko // - vector<(major_dims) x (minor_dims) x type> 127*4ead2cf7SAlex Zinenko unsigned minorRank; // for now always 1 128*4ead2cf7SAlex Zinenko unsigned majorRank; // vector rank - minorRank 129*4ead2cf7SAlex Zinenko unsigned leadingRank; // memref rank - vector rank 130*4ead2cf7SAlex Zinenko VectorType vectorType; // vector<(major_dims) x (minor_dims) x type> 131*4ead2cf7SAlex Zinenko VectorType majorVectorType; // vector<(major_dims) x type> 132*4ead2cf7SAlex Zinenko VectorType minorVectorType; // vector<(minor_dims) x type> 133*4ead2cf7SAlex Zinenko MemRefType memRefMinorVectorType; // memref<vector<(minor_dims) x type>> 134*4ead2cf7SAlex Zinenko }; 135*4ead2cf7SAlex Zinenko 136*4ead2cf7SAlex Zinenko template <typename ConcreteOp> 137*4ead2cf7SAlex Zinenko template <typename Lambda> 138*4ead2cf7SAlex Zinenko void NDTransferOpHelper<ConcreteOp>::emitLoops(Lambda loopBodyBuilder) { 139*4ead2cf7SAlex Zinenko /// Loop nest operates on the major dimensions 140*4ead2cf7SAlex Zinenko MemRefBoundsCapture memrefBoundsCapture(xferOp.memref()); 141*4ead2cf7SAlex Zinenko VectorBoundsCapture vectorBoundsCapture(majorVectorType); 142*4ead2cf7SAlex Zinenko auto majorLbs = vectorBoundsCapture.getLbs(); 143*4ead2cf7SAlex Zinenko auto majorUbs = vectorBoundsCapture.getUbs(); 144*4ead2cf7SAlex Zinenko auto majorSteps = vectorBoundsCapture.getSteps(); 145*4ead2cf7SAlex Zinenko SmallVector<Value, 8> majorIvs(vectorBoundsCapture.rank()); 146*4ead2cf7SAlex Zinenko AffineLoopNestBuilder(majorIvs, majorLbs, majorUbs, majorSteps)([&] { 147*4ead2cf7SAlex Zinenko ValueRange indices(xferOp.indices()); 148*4ead2cf7SAlex Zinenko loopBodyBuilder(majorIvs, indices.take_front(leadingRank), 149*4ead2cf7SAlex Zinenko indices.drop_front(leadingRank).take_front(majorRank), 150*4ead2cf7SAlex Zinenko indices.take_back(minorRank), memrefBoundsCapture); 151*4ead2cf7SAlex Zinenko }); 152*4ead2cf7SAlex Zinenko } 153*4ead2cf7SAlex Zinenko 154*4ead2cf7SAlex Zinenko template <typename ConcreteOp> 155*4ead2cf7SAlex Zinenko template <typename LambdaThen, typename LambdaElse> 156*4ead2cf7SAlex Zinenko void NDTransferOpHelper<ConcreteOp>::emitInBounds( 157*4ead2cf7SAlex Zinenko ValueRange majorIvs, ValueRange majorOffsets, 158*4ead2cf7SAlex Zinenko MemRefBoundsCapture &memrefBounds, LambdaThen thenBlockBuilder, 159*4ead2cf7SAlex Zinenko LambdaElse elseBlockBuilder) { 160*4ead2cf7SAlex Zinenko Value inBounds = std_constant_int(/*value=*/1, /*width=*/1); 161*4ead2cf7SAlex Zinenko SmallVector<Value, 4> majorIvsPlusOffsets; 162*4ead2cf7SAlex Zinenko majorIvsPlusOffsets.reserve(majorIvs.size()); 163*4ead2cf7SAlex Zinenko for (auto it : llvm::zip(majorIvs, majorOffsets, memrefBounds.getUbs())) { 164*4ead2cf7SAlex Zinenko Value iv = std::get<0>(it), off = std::get<1>(it), ub = std::get<2>(it); 165*4ead2cf7SAlex Zinenko using namespace mlir::edsc::op; 166*4ead2cf7SAlex Zinenko majorIvsPlusOffsets.push_back(iv + off); 167*4ead2cf7SAlex Zinenko Value inBounds2 = majorIvsPlusOffsets.back() < ub; 168*4ead2cf7SAlex Zinenko inBounds = inBounds && inBounds2; 169*4ead2cf7SAlex Zinenko } 170*4ead2cf7SAlex Zinenko 171*4ead2cf7SAlex Zinenko auto ifOp = ScopedContext::getBuilderRef().create<scf::IfOp>( 172*4ead2cf7SAlex Zinenko ScopedContext::getLocation(), TypeRange{}, inBounds, 173*4ead2cf7SAlex Zinenko /*withElseRegion=*/std::is_same<ConcreteOp, TransferReadOp>()); 174*4ead2cf7SAlex Zinenko BlockBuilder(&ifOp.thenRegion().front(), 175*4ead2cf7SAlex Zinenko Append())([&] { thenBlockBuilder(majorIvsPlusOffsets); }); 176*4ead2cf7SAlex Zinenko if (std::is_same<ConcreteOp, TransferReadOp>()) 177*4ead2cf7SAlex Zinenko BlockBuilder(&ifOp.elseRegion().front(), 178*4ead2cf7SAlex Zinenko Append())([&] { elseBlockBuilder(majorIvsPlusOffsets); }); 179*4ead2cf7SAlex Zinenko } 180*4ead2cf7SAlex Zinenko 181*4ead2cf7SAlex Zinenko template <> 182*4ead2cf7SAlex Zinenko LogicalResult NDTransferOpHelper<TransferReadOp>::doReplace() { 183*4ead2cf7SAlex Zinenko Value alloc = std_alloc(memRefMinorVectorType); 184*4ead2cf7SAlex Zinenko 185*4ead2cf7SAlex Zinenko emitLoops([&](ValueRange majorIvs, ValueRange leadingOffsets, 186*4ead2cf7SAlex Zinenko ValueRange majorOffsets, ValueRange minorOffsets, 187*4ead2cf7SAlex Zinenko MemRefBoundsCapture &memrefBounds) { 188*4ead2cf7SAlex Zinenko // If in-bounds, index into memref and lower to 1-D transfer read. 189*4ead2cf7SAlex Zinenko auto thenBlockBuilder = [&](ValueRange majorIvsPlusOffsets) { 190*4ead2cf7SAlex Zinenko auto map = AffineMap::getMinorIdentityMap( 191*4ead2cf7SAlex Zinenko xferOp.getMemRefType().getRank(), minorRank, xferOp.getContext()); 192*4ead2cf7SAlex Zinenko // Lower to 1-D vector_transfer_read and let recursion handle it. 193*4ead2cf7SAlex Zinenko Value memref = xferOp.memref(); 194*4ead2cf7SAlex Zinenko SmallVector<Value, 8> indexing; 195*4ead2cf7SAlex Zinenko indexing.reserve(leadingRank + majorRank + minorRank); 196*4ead2cf7SAlex Zinenko indexing.append(leadingOffsets.begin(), leadingOffsets.end()); 197*4ead2cf7SAlex Zinenko indexing.append(majorIvsPlusOffsets.begin(), majorIvsPlusOffsets.end()); 198*4ead2cf7SAlex Zinenko indexing.append(minorOffsets.begin(), minorOffsets.end()); 199*4ead2cf7SAlex Zinenko auto loaded1D = 200*4ead2cf7SAlex Zinenko vector_transfer_read(minorVectorType, memref, indexing, 201*4ead2cf7SAlex Zinenko AffineMapAttr::get(map), xferOp.padding()); 202*4ead2cf7SAlex Zinenko // Store the 1-D vector. 203*4ead2cf7SAlex Zinenko std_store(loaded1D, alloc, majorIvs); 204*4ead2cf7SAlex Zinenko }; 205*4ead2cf7SAlex Zinenko // If out-of-bounds, just store a splatted vector. 206*4ead2cf7SAlex Zinenko auto elseBlockBuilder = [&](ValueRange majorIvsPlusOffsets) { 207*4ead2cf7SAlex Zinenko auto vector = std_splat(minorVectorType, xferOp.padding()); 208*4ead2cf7SAlex Zinenko std_store(vector, alloc, majorIvs); 209*4ead2cf7SAlex Zinenko }; 210*4ead2cf7SAlex Zinenko emitInBounds(majorIvs, majorOffsets, memrefBounds, thenBlockBuilder, 211*4ead2cf7SAlex Zinenko elseBlockBuilder); 212*4ead2cf7SAlex Zinenko }); 213*4ead2cf7SAlex Zinenko 214*4ead2cf7SAlex Zinenko Value loaded = 215*4ead2cf7SAlex Zinenko std_load(vector_type_cast(MemRefType::get({}, vectorType), alloc)); 216*4ead2cf7SAlex Zinenko rewriter.replaceOp(op, loaded); 217*4ead2cf7SAlex Zinenko 218*4ead2cf7SAlex Zinenko return success(); 219*4ead2cf7SAlex Zinenko } 220*4ead2cf7SAlex Zinenko 221*4ead2cf7SAlex Zinenko template <> 222*4ead2cf7SAlex Zinenko LogicalResult NDTransferOpHelper<TransferWriteOp>::doReplace() { 223*4ead2cf7SAlex Zinenko Value alloc = std_alloc(memRefMinorVectorType); 224*4ead2cf7SAlex Zinenko 225*4ead2cf7SAlex Zinenko std_store(xferOp.vector(), 226*4ead2cf7SAlex Zinenko vector_type_cast(MemRefType::get({}, vectorType), alloc)); 227*4ead2cf7SAlex Zinenko 228*4ead2cf7SAlex Zinenko emitLoops([&](ValueRange majorIvs, ValueRange leadingOffsets, 229*4ead2cf7SAlex Zinenko ValueRange majorOffsets, ValueRange minorOffsets, 230*4ead2cf7SAlex Zinenko MemRefBoundsCapture &memrefBounds) { 231*4ead2cf7SAlex Zinenko auto thenBlockBuilder = [&](ValueRange majorIvsPlusOffsets) { 232*4ead2cf7SAlex Zinenko // Lower to 1-D vector_transfer_write and let recursion handle it. 233*4ead2cf7SAlex Zinenko Value loaded1D = std_load(alloc, majorIvs); 234*4ead2cf7SAlex Zinenko auto map = AffineMap::getMinorIdentityMap( 235*4ead2cf7SAlex Zinenko xferOp.getMemRefType().getRank(), minorRank, xferOp.getContext()); 236*4ead2cf7SAlex Zinenko SmallVector<Value, 8> indexing; 237*4ead2cf7SAlex Zinenko indexing.reserve(leadingRank + majorRank + minorRank); 238*4ead2cf7SAlex Zinenko indexing.append(leadingOffsets.begin(), leadingOffsets.end()); 239*4ead2cf7SAlex Zinenko indexing.append(majorIvsPlusOffsets.begin(), majorIvsPlusOffsets.end()); 240*4ead2cf7SAlex Zinenko indexing.append(minorOffsets.begin(), minorOffsets.end()); 241*4ead2cf7SAlex Zinenko vector_transfer_write(loaded1D, xferOp.memref(), indexing, 242*4ead2cf7SAlex Zinenko AffineMapAttr::get(map)); 243*4ead2cf7SAlex Zinenko }; 244*4ead2cf7SAlex Zinenko // Don't write anything when out of bounds. 245*4ead2cf7SAlex Zinenko auto elseBlockBuilder = [&](ValueRange majorIvsPlusOffsets) {}; 246*4ead2cf7SAlex Zinenko emitInBounds(majorIvs, majorOffsets, memrefBounds, thenBlockBuilder, 247*4ead2cf7SAlex Zinenko elseBlockBuilder); 248*4ead2cf7SAlex Zinenko }); 249*4ead2cf7SAlex Zinenko 250*4ead2cf7SAlex Zinenko rewriter.eraseOp(op); 251*4ead2cf7SAlex Zinenko 252*4ead2cf7SAlex Zinenko return success(); 253*4ead2cf7SAlex Zinenko } 254*4ead2cf7SAlex Zinenko 255*4ead2cf7SAlex Zinenko /// Analyzes the `transfer` to find an access dimension along the fastest remote 256*4ead2cf7SAlex Zinenko /// MemRef dimension. If such a dimension with coalescing properties is found, 257*4ead2cf7SAlex Zinenko /// `pivs` and `vectorBoundsCapture` are swapped so that the invocation of 258*4ead2cf7SAlex Zinenko /// LoopNestBuilder captures it in the innermost loop. 259*4ead2cf7SAlex Zinenko template <typename TransferOpTy> 260*4ead2cf7SAlex Zinenko static int computeCoalescedIndex(TransferOpTy transfer) { 261*4ead2cf7SAlex Zinenko // rank of the remote memory access, coalescing behavior occurs on the 262*4ead2cf7SAlex Zinenko // innermost memory dimension. 263*4ead2cf7SAlex Zinenko auto remoteRank = transfer.getMemRefType().getRank(); 264*4ead2cf7SAlex Zinenko // Iterate over the results expressions of the permutation map to determine 265*4ead2cf7SAlex Zinenko // the loop order for creating pointwise copies between remote and local 266*4ead2cf7SAlex Zinenko // memories. 267*4ead2cf7SAlex Zinenko int coalescedIdx = -1; 268*4ead2cf7SAlex Zinenko auto exprs = transfer.permutation_map().getResults(); 269*4ead2cf7SAlex Zinenko for (auto en : llvm::enumerate(exprs)) { 270*4ead2cf7SAlex Zinenko auto dim = en.value().template dyn_cast<AffineDimExpr>(); 271*4ead2cf7SAlex Zinenko if (!dim) { 272*4ead2cf7SAlex Zinenko continue; 273*4ead2cf7SAlex Zinenko } 274*4ead2cf7SAlex Zinenko auto memRefDim = dim.getPosition(); 275*4ead2cf7SAlex Zinenko if (memRefDim == remoteRank - 1) { 276*4ead2cf7SAlex Zinenko // memRefDim has coalescing properties, it should be swapped in the last 277*4ead2cf7SAlex Zinenko // position. 278*4ead2cf7SAlex Zinenko assert(coalescedIdx == -1 && "Unexpected > 1 coalesced indices"); 279*4ead2cf7SAlex Zinenko coalescedIdx = en.index(); 280*4ead2cf7SAlex Zinenko } 281*4ead2cf7SAlex Zinenko } 282*4ead2cf7SAlex Zinenko return coalescedIdx; 283*4ead2cf7SAlex Zinenko } 284*4ead2cf7SAlex Zinenko 285*4ead2cf7SAlex Zinenko /// Emits remote memory accesses that are clipped to the boundaries of the 286*4ead2cf7SAlex Zinenko /// MemRef. 287*4ead2cf7SAlex Zinenko template <typename TransferOpTy> 288*4ead2cf7SAlex Zinenko static SmallVector<Value, 8> 289*4ead2cf7SAlex Zinenko clip(TransferOpTy transfer, MemRefBoundsCapture &bounds, ArrayRef<Value> ivs) { 290*4ead2cf7SAlex Zinenko using namespace mlir::edsc; 291*4ead2cf7SAlex Zinenko 292*4ead2cf7SAlex Zinenko Value zero(std_constant_index(0)), one(std_constant_index(1)); 293*4ead2cf7SAlex Zinenko SmallVector<Value, 8> memRefAccess(transfer.indices()); 294*4ead2cf7SAlex Zinenko SmallVector<Value, 8> clippedScalarAccessExprs(memRefAccess.size()); 295*4ead2cf7SAlex Zinenko // Indices accessing to remote memory are clipped and their expressions are 296*4ead2cf7SAlex Zinenko // returned in clippedScalarAccessExprs. 297*4ead2cf7SAlex Zinenko for (unsigned memRefDim = 0; memRefDim < clippedScalarAccessExprs.size(); 298*4ead2cf7SAlex Zinenko ++memRefDim) { 299*4ead2cf7SAlex Zinenko // Linear search on a small number of entries. 300*4ead2cf7SAlex Zinenko int loopIndex = -1; 301*4ead2cf7SAlex Zinenko auto exprs = transfer.permutation_map().getResults(); 302*4ead2cf7SAlex Zinenko for (auto en : llvm::enumerate(exprs)) { 303*4ead2cf7SAlex Zinenko auto expr = en.value(); 304*4ead2cf7SAlex Zinenko auto dim = expr.template dyn_cast<AffineDimExpr>(); 305*4ead2cf7SAlex Zinenko // Sanity check. 306*4ead2cf7SAlex Zinenko assert( 307*4ead2cf7SAlex Zinenko (dim || expr.template cast<AffineConstantExpr>().getValue() == 0) && 308*4ead2cf7SAlex Zinenko "Expected dim or 0 in permutationMap"); 309*4ead2cf7SAlex Zinenko if (dim && memRefDim == dim.getPosition()) { 310*4ead2cf7SAlex Zinenko loopIndex = en.index(); 311*4ead2cf7SAlex Zinenko break; 312*4ead2cf7SAlex Zinenko } 313*4ead2cf7SAlex Zinenko } 314*4ead2cf7SAlex Zinenko 315*4ead2cf7SAlex Zinenko // We cannot distinguish atm between unrolled dimensions that implement 316*4ead2cf7SAlex Zinenko // the "always full" tile abstraction and need clipping from the other 317*4ead2cf7SAlex Zinenko // ones. So we conservatively clip everything. 318*4ead2cf7SAlex Zinenko using namespace edsc::op; 319*4ead2cf7SAlex Zinenko auto N = bounds.ub(memRefDim); 320*4ead2cf7SAlex Zinenko auto i = memRefAccess[memRefDim]; 321*4ead2cf7SAlex Zinenko if (loopIndex < 0) { 322*4ead2cf7SAlex Zinenko auto N_minus_1 = N - one; 323*4ead2cf7SAlex Zinenko auto select_1 = std_select(i < N, i, N_minus_1); 324*4ead2cf7SAlex Zinenko clippedScalarAccessExprs[memRefDim] = 325*4ead2cf7SAlex Zinenko std_select(i < zero, zero, select_1); 326*4ead2cf7SAlex Zinenko } else { 327*4ead2cf7SAlex Zinenko auto ii = ivs[loopIndex]; 328*4ead2cf7SAlex Zinenko auto i_plus_ii = i + ii; 329*4ead2cf7SAlex Zinenko auto N_minus_1 = N - one; 330*4ead2cf7SAlex Zinenko auto select_1 = std_select(i_plus_ii < N, i_plus_ii, N_minus_1); 331*4ead2cf7SAlex Zinenko clippedScalarAccessExprs[memRefDim] = 332*4ead2cf7SAlex Zinenko std_select(i_plus_ii < zero, zero, select_1); 333*4ead2cf7SAlex Zinenko } 334*4ead2cf7SAlex Zinenko } 335*4ead2cf7SAlex Zinenko 336*4ead2cf7SAlex Zinenko return clippedScalarAccessExprs; 337*4ead2cf7SAlex Zinenko } 338*4ead2cf7SAlex Zinenko 339*4ead2cf7SAlex Zinenko namespace { 340*4ead2cf7SAlex Zinenko 341*4ead2cf7SAlex Zinenko /// Implements lowering of TransferReadOp and TransferWriteOp to a 342*4ead2cf7SAlex Zinenko /// proper abstraction for the hardware. 343*4ead2cf7SAlex Zinenko /// 344*4ead2cf7SAlex Zinenko /// For now, we only emit a simple loop nest that performs clipped pointwise 345*4ead2cf7SAlex Zinenko /// copies from a remote to a locally allocated memory. 346*4ead2cf7SAlex Zinenko /// 347*4ead2cf7SAlex Zinenko /// Consider the case: 348*4ead2cf7SAlex Zinenko /// 349*4ead2cf7SAlex Zinenko /// ```mlir 350*4ead2cf7SAlex Zinenko /// // Read the slice `%A[%i0, %i1:%i1+256, %i2:%i2+32]` into 351*4ead2cf7SAlex Zinenko /// // vector<32x256xf32> and pad with %f0 to handle the boundary case: 352*4ead2cf7SAlex Zinenko /// %f0 = constant 0.0f : f32 353*4ead2cf7SAlex Zinenko /// scf.for %i0 = 0 to %0 { 354*4ead2cf7SAlex Zinenko /// scf.for %i1 = 0 to %1 step %c256 { 355*4ead2cf7SAlex Zinenko /// scf.for %i2 = 0 to %2 step %c32 { 356*4ead2cf7SAlex Zinenko /// %v = vector.transfer_read %A[%i0, %i1, %i2], %f0 357*4ead2cf7SAlex Zinenko /// {permutation_map: (d0, d1, d2) -> (d2, d1)} : 358*4ead2cf7SAlex Zinenko /// memref<?x?x?xf32>, vector<32x256xf32> 359*4ead2cf7SAlex Zinenko /// }}} 360*4ead2cf7SAlex Zinenko /// ``` 361*4ead2cf7SAlex Zinenko /// 362*4ead2cf7SAlex Zinenko /// The rewriters construct loop and indices that access MemRef A in a pattern 363*4ead2cf7SAlex Zinenko /// resembling the following (while guaranteeing an always full-tile 364*4ead2cf7SAlex Zinenko /// abstraction): 365*4ead2cf7SAlex Zinenko /// 366*4ead2cf7SAlex Zinenko /// ```mlir 367*4ead2cf7SAlex Zinenko /// scf.for %d2 = 0 to %c256 { 368*4ead2cf7SAlex Zinenko /// scf.for %d1 = 0 to %c32 { 369*4ead2cf7SAlex Zinenko /// %s = %A[%i0, %i1 + %d1, %i2 + %d2] : f32 370*4ead2cf7SAlex Zinenko /// %tmp[%d2, %d1] = %s 371*4ead2cf7SAlex Zinenko /// } 372*4ead2cf7SAlex Zinenko /// } 373*4ead2cf7SAlex Zinenko /// ``` 374*4ead2cf7SAlex Zinenko /// 375*4ead2cf7SAlex Zinenko /// In the current state, only a clipping transfer is implemented by `clip`, 376*4ead2cf7SAlex Zinenko /// which creates individual indexing expressions of the form: 377*4ead2cf7SAlex Zinenko /// 378*4ead2cf7SAlex Zinenko /// ```mlir-dsc 379*4ead2cf7SAlex Zinenko /// auto condMax = i + ii < N; 380*4ead2cf7SAlex Zinenko /// auto max = std_select(condMax, i + ii, N - one) 381*4ead2cf7SAlex Zinenko /// auto cond = i + ii < zero; 382*4ead2cf7SAlex Zinenko /// std_select(cond, zero, max); 383*4ead2cf7SAlex Zinenko /// ``` 384*4ead2cf7SAlex Zinenko /// 385*4ead2cf7SAlex Zinenko /// In the future, clipping should not be the only way and instead we should 386*4ead2cf7SAlex Zinenko /// load vectors + mask them. Similarly on the write side, load/mask/store for 387*4ead2cf7SAlex Zinenko /// implementing RMW behavior. 388*4ead2cf7SAlex Zinenko /// 389*4ead2cf7SAlex Zinenko /// Lowers TransferOp into a combination of: 390*4ead2cf7SAlex Zinenko /// 1. local memory allocation; 391*4ead2cf7SAlex Zinenko /// 2. perfect loop nest over: 392*4ead2cf7SAlex Zinenko /// a. scalar load/stores from local buffers (viewed as a scalar memref); 393*4ead2cf7SAlex Zinenko /// a. scalar store/load to original memref (with clipping). 394*4ead2cf7SAlex Zinenko /// 3. vector_load/store 395*4ead2cf7SAlex Zinenko /// 4. local memory deallocation. 396*4ead2cf7SAlex Zinenko /// Minor variations occur depending on whether a TransferReadOp or 397*4ead2cf7SAlex Zinenko /// a TransferWriteOp is rewritten. 398*4ead2cf7SAlex Zinenko template <typename TransferOpTy> 399*4ead2cf7SAlex Zinenko struct VectorTransferRewriter : public RewritePattern { 400*4ead2cf7SAlex Zinenko explicit VectorTransferRewriter(MLIRContext *context) 401*4ead2cf7SAlex Zinenko : RewritePattern(TransferOpTy::getOperationName(), 1, context) {} 402*4ead2cf7SAlex Zinenko 403*4ead2cf7SAlex Zinenko /// Used for staging the transfer in a local scalar buffer. 404*4ead2cf7SAlex Zinenko MemRefType tmpMemRefType(TransferOpTy transfer) const { 405*4ead2cf7SAlex Zinenko auto vectorType = transfer.getVectorType(); 406*4ead2cf7SAlex Zinenko return MemRefType::get(vectorType.getShape(), vectorType.getElementType(), 407*4ead2cf7SAlex Zinenko {}, 0); 408*4ead2cf7SAlex Zinenko } 409*4ead2cf7SAlex Zinenko 410*4ead2cf7SAlex Zinenko /// Performs the rewrite. 411*4ead2cf7SAlex Zinenko LogicalResult matchAndRewrite(Operation *op, 412*4ead2cf7SAlex Zinenko PatternRewriter &rewriter) const override; 413*4ead2cf7SAlex Zinenko }; 414*4ead2cf7SAlex Zinenko 415*4ead2cf7SAlex Zinenko /// Lowers TransferReadOp into a combination of: 416*4ead2cf7SAlex Zinenko /// 1. local memory allocation; 417*4ead2cf7SAlex Zinenko /// 2. perfect loop nest over: 418*4ead2cf7SAlex Zinenko /// a. scalar load from local buffers (viewed as a scalar memref); 419*4ead2cf7SAlex Zinenko /// a. scalar store to original memref (with clipping). 420*4ead2cf7SAlex Zinenko /// 3. vector_load from local buffer (viewed as a memref<1 x vector>); 421*4ead2cf7SAlex Zinenko /// 4. local memory deallocation. 422*4ead2cf7SAlex Zinenko /// 423*4ead2cf7SAlex Zinenko /// Lowers the data transfer part of a TransferReadOp while ensuring no 424*4ead2cf7SAlex Zinenko /// out-of-bounds accesses are possible. Out-of-bounds behavior is handled by 425*4ead2cf7SAlex Zinenko /// clipping. This means that a given value in memory can be read multiple 426*4ead2cf7SAlex Zinenko /// times and concurrently. 427*4ead2cf7SAlex Zinenko /// 428*4ead2cf7SAlex Zinenko /// Important notes about clipping and "full-tiles only" abstraction: 429*4ead2cf7SAlex Zinenko /// ================================================================= 430*4ead2cf7SAlex Zinenko /// When using clipping for dealing with boundary conditions, the same edge 431*4ead2cf7SAlex Zinenko /// value will appear multiple times (a.k.a edge padding). This is fine if the 432*4ead2cf7SAlex Zinenko /// subsequent vector operations are all data-parallel but **is generally 433*4ead2cf7SAlex Zinenko /// incorrect** in the presence of reductions or extract operations. 434*4ead2cf7SAlex Zinenko /// 435*4ead2cf7SAlex Zinenko /// More generally, clipping is a scalar abstraction that is expected to work 436*4ead2cf7SAlex Zinenko /// fine as a baseline for CPUs and GPUs but not for vector_load and DMAs. 437*4ead2cf7SAlex Zinenko /// To deal with real vector_load and DMAs, a "padded allocation + view" 438*4ead2cf7SAlex Zinenko /// abstraction with the ability to read out-of-memref-bounds (but still within 439*4ead2cf7SAlex Zinenko /// the allocated region) is necessary. 440*4ead2cf7SAlex Zinenko /// 441*4ead2cf7SAlex Zinenko /// Whether using scalar loops or vector_load/DMAs to perform the transfer, 442*4ead2cf7SAlex Zinenko /// junk values will be materialized in the vectors and generally need to be 443*4ead2cf7SAlex Zinenko /// filtered out and replaced by the "neutral element". This neutral element is 444*4ead2cf7SAlex Zinenko /// op-dependent so, in the future, we expect to create a vector filter and 445*4ead2cf7SAlex Zinenko /// apply it to a splatted constant vector with the proper neutral element at 446*4ead2cf7SAlex Zinenko /// each ssa-use. This filtering is not necessary for pure data-parallel 447*4ead2cf7SAlex Zinenko /// operations. 448*4ead2cf7SAlex Zinenko /// 449*4ead2cf7SAlex Zinenko /// In the case of vector_store/DMAs, Read-Modify-Write will be required, which 450*4ead2cf7SAlex Zinenko /// also have concurrency implications. Note that by using clipped scalar stores 451*4ead2cf7SAlex Zinenko /// in the presence of data-parallel only operations, we generate code that 452*4ead2cf7SAlex Zinenko /// writes the same value multiple time on the edge locations. 453*4ead2cf7SAlex Zinenko /// 454*4ead2cf7SAlex Zinenko /// TODO(ntv): implement alternatives to clipping. 455*4ead2cf7SAlex Zinenko /// TODO(ntv): support non-data-parallel operations. 456*4ead2cf7SAlex Zinenko 457*4ead2cf7SAlex Zinenko /// Performs the rewrite. 458*4ead2cf7SAlex Zinenko template <> 459*4ead2cf7SAlex Zinenko LogicalResult VectorTransferRewriter<TransferReadOp>::matchAndRewrite( 460*4ead2cf7SAlex Zinenko Operation *op, PatternRewriter &rewriter) const { 461*4ead2cf7SAlex Zinenko using namespace mlir::edsc::op; 462*4ead2cf7SAlex Zinenko 463*4ead2cf7SAlex Zinenko TransferReadOp transfer = cast<TransferReadOp>(op); 464*4ead2cf7SAlex Zinenko if (AffineMap::isMinorIdentity(transfer.permutation_map())) { 465*4ead2cf7SAlex Zinenko // If > 1D, emit a bunch of loops around 1-D vector transfers. 466*4ead2cf7SAlex Zinenko if (transfer.getVectorType().getRank() > 1) 467*4ead2cf7SAlex Zinenko return NDTransferOpHelper<TransferReadOp>(rewriter, transfer).doReplace(); 468*4ead2cf7SAlex Zinenko // If 1-D this is now handled by the target-specific lowering. 469*4ead2cf7SAlex Zinenko if (transfer.getVectorType().getRank() == 1) 470*4ead2cf7SAlex Zinenko return failure(); 471*4ead2cf7SAlex Zinenko } 472*4ead2cf7SAlex Zinenko 473*4ead2cf7SAlex Zinenko // Conservative lowering to scalar load / stores. 474*4ead2cf7SAlex Zinenko // 1. Setup all the captures. 475*4ead2cf7SAlex Zinenko ScopedContext scope(rewriter, transfer.getLoc()); 476*4ead2cf7SAlex Zinenko StdIndexedValue remote(transfer.memref()); 477*4ead2cf7SAlex Zinenko MemRefBoundsCapture memRefBoundsCapture(transfer.memref()); 478*4ead2cf7SAlex Zinenko VectorBoundsCapture vectorBoundsCapture(transfer.vector()); 479*4ead2cf7SAlex Zinenko int coalescedIdx = computeCoalescedIndex(transfer); 480*4ead2cf7SAlex Zinenko // Swap the vectorBoundsCapture which will reorder loop bounds. 481*4ead2cf7SAlex Zinenko if (coalescedIdx >= 0) 482*4ead2cf7SAlex Zinenko vectorBoundsCapture.swapRanges(vectorBoundsCapture.rank() - 1, 483*4ead2cf7SAlex Zinenko coalescedIdx); 484*4ead2cf7SAlex Zinenko 485*4ead2cf7SAlex Zinenko auto lbs = vectorBoundsCapture.getLbs(); 486*4ead2cf7SAlex Zinenko auto ubs = vectorBoundsCapture.getUbs(); 487*4ead2cf7SAlex Zinenko SmallVector<Value, 8> steps; 488*4ead2cf7SAlex Zinenko steps.reserve(vectorBoundsCapture.getSteps().size()); 489*4ead2cf7SAlex Zinenko for (auto step : vectorBoundsCapture.getSteps()) 490*4ead2cf7SAlex Zinenko steps.push_back(std_constant_index(step)); 491*4ead2cf7SAlex Zinenko 492*4ead2cf7SAlex Zinenko // 2. Emit alloc-copy-load-dealloc. 493*4ead2cf7SAlex Zinenko Value tmp = std_alloc(tmpMemRefType(transfer)); 494*4ead2cf7SAlex Zinenko StdIndexedValue local(tmp); 495*4ead2cf7SAlex Zinenko Value vec = vector_type_cast(tmp); 496*4ead2cf7SAlex Zinenko SmallVector<Value, 8> ivs(lbs.size()); 497*4ead2cf7SAlex Zinenko LoopNestBuilder(ivs, lbs, ubs, steps)([&] { 498*4ead2cf7SAlex Zinenko // Swap the ivs which will reorder memory accesses. 499*4ead2cf7SAlex Zinenko if (coalescedIdx >= 0) 500*4ead2cf7SAlex Zinenko std::swap(ivs.back(), ivs[coalescedIdx]); 501*4ead2cf7SAlex Zinenko // Computes clippedScalarAccessExprs in the loop nest scope (ivs exist). 502*4ead2cf7SAlex Zinenko local(ivs) = remote(clip(transfer, memRefBoundsCapture, ivs)); 503*4ead2cf7SAlex Zinenko }); 504*4ead2cf7SAlex Zinenko Value vectorValue = std_load(vec); 505*4ead2cf7SAlex Zinenko (std_dealloc(tmp)); // vexing parse 506*4ead2cf7SAlex Zinenko 507*4ead2cf7SAlex Zinenko // 3. Propagate. 508*4ead2cf7SAlex Zinenko rewriter.replaceOp(op, vectorValue); 509*4ead2cf7SAlex Zinenko return success(); 510*4ead2cf7SAlex Zinenko } 511*4ead2cf7SAlex Zinenko 512*4ead2cf7SAlex Zinenko /// Lowers TransferWriteOp into a combination of: 513*4ead2cf7SAlex Zinenko /// 1. local memory allocation; 514*4ead2cf7SAlex Zinenko /// 2. vector_store to local buffer (viewed as a memref<1 x vector>); 515*4ead2cf7SAlex Zinenko /// 3. perfect loop nest over: 516*4ead2cf7SAlex Zinenko /// a. scalar load from local buffers (viewed as a scalar memref); 517*4ead2cf7SAlex Zinenko /// a. scalar store to original memref (with clipping). 518*4ead2cf7SAlex Zinenko /// 4. local memory deallocation. 519*4ead2cf7SAlex Zinenko /// 520*4ead2cf7SAlex Zinenko /// More specifically, lowers the data transfer part while ensuring no 521*4ead2cf7SAlex Zinenko /// out-of-bounds accesses are possible. Out-of-bounds behavior is handled by 522*4ead2cf7SAlex Zinenko /// clipping. This means that a given value in memory can be written to multiple 523*4ead2cf7SAlex Zinenko /// times and concurrently. 524*4ead2cf7SAlex Zinenko /// 525*4ead2cf7SAlex Zinenko /// See `Important notes about clipping and full-tiles only abstraction` in the 526*4ead2cf7SAlex Zinenko /// description of `readClipped` above. 527*4ead2cf7SAlex Zinenko /// 528*4ead2cf7SAlex Zinenko /// TODO(ntv): implement alternatives to clipping. 529*4ead2cf7SAlex Zinenko /// TODO(ntv): support non-data-parallel operations. 530*4ead2cf7SAlex Zinenko template <> 531*4ead2cf7SAlex Zinenko LogicalResult VectorTransferRewriter<TransferWriteOp>::matchAndRewrite( 532*4ead2cf7SAlex Zinenko Operation *op, PatternRewriter &rewriter) const { 533*4ead2cf7SAlex Zinenko using namespace edsc::op; 534*4ead2cf7SAlex Zinenko 535*4ead2cf7SAlex Zinenko TransferWriteOp transfer = cast<TransferWriteOp>(op); 536*4ead2cf7SAlex Zinenko if (AffineMap::isMinorIdentity(transfer.permutation_map())) { 537*4ead2cf7SAlex Zinenko // If > 1D, emit a bunch of loops around 1-D vector transfers. 538*4ead2cf7SAlex Zinenko if (transfer.getVectorType().getRank() > 1) 539*4ead2cf7SAlex Zinenko return NDTransferOpHelper<TransferWriteOp>(rewriter, transfer) 540*4ead2cf7SAlex Zinenko .doReplace(); 541*4ead2cf7SAlex Zinenko // If 1-D this is now handled by the target-specific lowering. 542*4ead2cf7SAlex Zinenko if (transfer.getVectorType().getRank() == 1) 543*4ead2cf7SAlex Zinenko return failure(); 544*4ead2cf7SAlex Zinenko } 545*4ead2cf7SAlex Zinenko 546*4ead2cf7SAlex Zinenko // 1. Setup all the captures. 547*4ead2cf7SAlex Zinenko ScopedContext scope(rewriter, transfer.getLoc()); 548*4ead2cf7SAlex Zinenko StdIndexedValue remote(transfer.memref()); 549*4ead2cf7SAlex Zinenko MemRefBoundsCapture memRefBoundsCapture(transfer.memref()); 550*4ead2cf7SAlex Zinenko Value vectorValue(transfer.vector()); 551*4ead2cf7SAlex Zinenko VectorBoundsCapture vectorBoundsCapture(transfer.vector()); 552*4ead2cf7SAlex Zinenko int coalescedIdx = computeCoalescedIndex(transfer); 553*4ead2cf7SAlex Zinenko // Swap the vectorBoundsCapture which will reorder loop bounds. 554*4ead2cf7SAlex Zinenko if (coalescedIdx >= 0) 555*4ead2cf7SAlex Zinenko vectorBoundsCapture.swapRanges(vectorBoundsCapture.rank() - 1, 556*4ead2cf7SAlex Zinenko coalescedIdx); 557*4ead2cf7SAlex Zinenko 558*4ead2cf7SAlex Zinenko auto lbs = vectorBoundsCapture.getLbs(); 559*4ead2cf7SAlex Zinenko auto ubs = vectorBoundsCapture.getUbs(); 560*4ead2cf7SAlex Zinenko SmallVector<Value, 8> steps; 561*4ead2cf7SAlex Zinenko steps.reserve(vectorBoundsCapture.getSteps().size()); 562*4ead2cf7SAlex Zinenko for (auto step : vectorBoundsCapture.getSteps()) 563*4ead2cf7SAlex Zinenko steps.push_back(std_constant_index(step)); 564*4ead2cf7SAlex Zinenko 565*4ead2cf7SAlex Zinenko // 2. Emit alloc-store-copy-dealloc. 566*4ead2cf7SAlex Zinenko Value tmp = std_alloc(tmpMemRefType(transfer)); 567*4ead2cf7SAlex Zinenko StdIndexedValue local(tmp); 568*4ead2cf7SAlex Zinenko Value vec = vector_type_cast(tmp); 569*4ead2cf7SAlex Zinenko std_store(vectorValue, vec); 570*4ead2cf7SAlex Zinenko SmallVector<Value, 8> ivs(lbs.size()); 571*4ead2cf7SAlex Zinenko LoopNestBuilder(ivs, lbs, ubs, steps)([&] { 572*4ead2cf7SAlex Zinenko // Swap the ivs which will reorder memory accesses. 573*4ead2cf7SAlex Zinenko if (coalescedIdx >= 0) 574*4ead2cf7SAlex Zinenko std::swap(ivs.back(), ivs[coalescedIdx]); 575*4ead2cf7SAlex Zinenko // Computes clippedScalarAccessExprs in the loop nest scope (ivs exist). 576*4ead2cf7SAlex Zinenko remote(clip(transfer, memRefBoundsCapture, ivs)) = local(ivs); 577*4ead2cf7SAlex Zinenko }); 578*4ead2cf7SAlex Zinenko (std_dealloc(tmp)); // vexing parse... 579*4ead2cf7SAlex Zinenko 580*4ead2cf7SAlex Zinenko rewriter.eraseOp(op); 581*4ead2cf7SAlex Zinenko return success(); 582*4ead2cf7SAlex Zinenko } 583*4ead2cf7SAlex Zinenko 584*4ead2cf7SAlex Zinenko } // namespace 585*4ead2cf7SAlex Zinenko 586*4ead2cf7SAlex Zinenko void mlir::populateVectorToSCFConversionPatterns( 587*4ead2cf7SAlex Zinenko OwningRewritePatternList &patterns, MLIRContext *context) { 588*4ead2cf7SAlex Zinenko patterns.insert<VectorTransferRewriter<vector::TransferReadOp>, 589*4ead2cf7SAlex Zinenko VectorTransferRewriter<vector::TransferWriteOp>>(context); 590*4ead2cf7SAlex Zinenko } 591